f1七年级数学下册 第五章 相交线与平行线-平行线的判定教案 新人教版(最终版)

时间:2019-05-12 17:55:43下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《f1七年级数学下册 第五章 相交线与平行线-平行线的判定教案 新人教版(最终版)》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《f1七年级数学下册 第五章 相交线与平行线-平行线的判定教案 新人教版(最终版)》。

第一篇:f1七年级数学下册 第五章 相交线与平行线-平行线的判定教案 新人教版(最终版)

辽宁省瓦房店市第八初级中学七年级数学下册 第五章 相交线与平行线-平行线的判定教案 新人教版

本节的重点是:平行线的判定公理及两个判定定理.一般的定义与第一个判定定理是等价的.都可以做判定的方法.但平行线的定义不好用来判定两直线相交还是不相交.这样,有必要借助两条直线被第三条直线截成的角来判定.因此,这一个判定公理和两个判定定理就显得尤为重要了.它们是判断两直线平行的依据,也为下一节,学习习近平行线的性质打下了基础.

本节内容的难点是:理解由判定公理推出判定定理的证明过程.学生刚刚接触用演绎推理方法证明几何定理或图形的性质,对几何证明的意义还不太理解.有些同学甚至认为从直观图形即可辨认出的性质,没必要再进行证明.这些都使几何的入门教学困难重重.因此,教学中既要有直观的演示和操作,也要有严格推理证明的板书示范.创设情境,不断渗透,使学生初步理解证明的步骤和基本方法,能根据所学知识在括号内填上恰当的公理或定理.

2、教学建议

在平行线判定公理的教学中,应充分体现一条主线索:“充分实验—仔细观察—形成猜想—实践检验—明确条件和结论.”

教师可演示教材中所示的教具,还可以让每个学生都用三角板和直尺画出平行线.在此

过程中,注意角的变化情况.事实充分,学生可以理解,如果同位角相等,那么两直线一定会平行.

平行线的判定公理后,有些同学可能会意识到“内错角相等,两直线也会平行”.教师可组织学生按所给图形进行讨论.如何利用已知和几何的公理、定理来证明这个显然成立的事实.也可多叫几个同学进行重复.逐步使学生欣赏到数学证明的严谨性.另一个定理的发现与证明过程也与此类似.

教学设计示例1

一、教学目标

1.了解推理、证明的格式,掌握平行线判定公理和第一个判定定理.

2.会用判定公理及第一个判定定理进行简单的推理论证.

3.通过模型演示,即“运动—变化”的数学思想方法的运用,培养学生的“观察—分析”和“归纳—总结”的能力.

二、学法引导

1.教师教法:启发式引导发现法.

2.学生学法:独立思考,主动发现.

三、重点·难点及解决办法

(一)重点

在观察实验的基础上进行公理的概括与定理的推导.

(二)难点

判定定理的形成过程中逻辑推理及书写格式.

(三)解决办法

1.通过观察实验,巧妙设问,解决重点.

2.通过引导正确思维,严格展示推理书写格式,明确方法来解决难点、疑点.

四、课时安排

l课时

五、教具学具准备

三角板、投影胶片、投影仪、计算机.

六、师生互动活动设计

1.通过两组题,复习旧知,引入新知.

2.通过实验观察,引导思维,概括出公理及定理的推导,并以练习进行巩固.

3.通过教师提问,学生回答完成归纳小结.

七、教学步骤

(-)明确目标

教学建议

1、教材分析

(1)知识结构:

由平行线的画法,引出平行线的判定公理(同位角相等,两直线平行).由公理推出:内错角相等,两直线平行.同旁内角互补,两条直线平行,这两个定理.

(2)重点、难点分析 :

本节的重点是:平行线的判定公理及两个判定定理.一般的定义与第一个判定定理是等价的.都可以做判定的方法.但平行线的定义不好用来判定两直线相交还是不相交.这样,有必要借助两条直线被第三条直线截成的角来判定.因此,这一个判定公理和两个判定定理就显得尤为重要了.它们是判断两直线平行的依据,也为下一节,学习习近平行线的性质打下了基础.

本节内容的难点是:理解由判定公理推出判定定理的证明过程.学生刚刚接触用演绎推理方法证明几何定理或图形的性质,对几何证明的意义还不太理解.有些同学甚至认为从直观图形即可辨认出的性质,没必要再进行证明.这些都使几何的入门教学困难重重.因此,教学中既要有直观的演示和操作,也要有严格推理证明的板书示范.创设情境,不断渗透,使学生初步理解证明的步骤和基本方法,能根据所学知识在括号内填上恰当的公理或定理.

2、教学建议

在平行线判定公理的教学中,应充分体现一条主线索:“充分实验—仔细观察—形成猜

想—实践检验—明确条件和结论.”

教师可演示教材中所示的教具,还可以让每个学生都用三角板和直尺画出平行线.在此过程中,注意角的变化情况.事实充分,学生可以理解,如果同位角相等,那么两直线一定会平行.

平行线的判定公理后,有些同学可能会意识到“内错角相等,两直线也会平行”.教师可组织学生按所给图形进行讨论.如何利用已知和几何的公理、定理来证明这个显然成立的事实.也可多叫几个同学进行重复.逐步使学生欣赏到数学证明的严谨性.另一个定理的发现与证明过程也与此类似.

教学设计示例1

一、教学目标

1.了解推理、证明的格式,掌握平行线判定公理和第一个判定定理.

2.会用判定公理及第一个判定定理进行简单的推理论证.

3.通过模型演示,即“运动—变化”的数学思想方法的运用,培养学生的“观察—分析”和“归纳—总结”的能力.

二、学法引导

1.教师教法:启发式引导发现法.

2.学生学法:独立思考,主动发现.

三、重点·难点及解决办法

(一)重点

在观察实验的基础上进行公理的概括与定理的推导.

(二)难点

判定定理的形成过程中逻辑推理及书写格式.

(三)解决办法

1.通过观察实验,巧妙设问,解决重点.

2.通过引导正确思维,严格展示推理书写格式,明确方法来解决难点、疑点.

四、课时安排

l课时

五、教具学具准备

三角板、投影胶片、投影仪、计算机.

六、师生互动活动设计

1.通过两组题,复习旧知,引入新知.

2.通过实验观察,引导思维,概括出公理及定理的推导,并以练习进行巩固.6

3.通过教师提问,学生回答完成归纳小结.

七、教学步骤

(-)明确目标

掌握平行线判定公理和第一个判定定理及运用其进行简单的推理论证.

(二)整体感知

以情境设计,引出课题,以模型演示,引导学生观察,、分析、总结,讲授新知,以变式训练巩固新知,在整节课中,较充分地体现了逻辑推理.

(三)教学过程

创设情境,引出课题

师:上节课我们学习了平行线、平行公理及推论,请同学们判断下列语句是否正确,并说明理由(出示投影).

1.两条直线不相交,就叫平行线.

2.与一条直线平行的直线只有一条.

3.如果直线、都和平行,那么、就平行.

学生活动:学生口答上述三个问题.

【教法说明】通过三个判断题,使学生回顾上节所学知识,第1题在于强化平行线定义 的前提条件“在同一平面内”,第2题不仅回顾平行公理,同时使学生认识学习几何,语言一定要准确、规范,同一问题在不同条件下,就有不同的结论,第3题复习巩固平行公理推论的同时提示学生,它也是判定两条直线平行的方法.

师:测得两条直线相交,所成角中的一个是直角,能判定这两条直线垂直吗?根据什么?

学生:能判定垂直,根据垂直的定义.

师:在同一平面内不相交的两条直线是平行线,你有办法测定两条直线是平行线吗?

学生活动:学生思考,如何测定两条直线是否平行?

教师在学生思考未得结论的情况下,指出不能直接利用手行线的定义来测定两条直线是否平行,必须找其他可以测定的方法,有什么方法呢?

学生活动:学生思考,在前面复习近平行公理推论的情况下,有的学生会提出,再作一条直线,让,再看 是否平行于 就可以了.

师:这种想法很好,那么,如何作,使它与平行?若作出 后,又如何判断 是否与平行?

学生活动:学生思考老师的提问,意识到刚才的回答,似是而非,不能解决问题.

师:显然,我们的问题没有得到解决,为此我们来寻找另外一些判定方法,就是今天我们要学习的平行线的判定(板书课题).

[板书]2.5平行线的判定(1).

【教法说明】由垂线定义可以来判断两线是否垂直,学生自然想到要用平行线定义来判断,但我们无法测定直线是否不相交,也就不能利用定义来判断.这时,学生会考虑平行公

理推论,此时教师只须简单地追问,就让学生弄清问题未能解决,由此引入新课内容.

探究新知,讲授新课

教师给出像课本第78页图2–20那样的两条直线被第三条直线所截的模型,转动,让学生观察,转动到不同位置时,的大小有无变化,再让 从小变大,说出直线 与 的位置关系变化规律.

【教法说明】让学生充分观察,在教师的启发式提问下,分析、思考、总结出结论.

图1

学生活动: 转动到不同位置时,也随着变化,当 从小变大时,直线 从原来在右边与直线 相交,变到在左边与 相交.

师:在这个过程中,存在一个与 不相交即与平行的位置,那么 多大时,直线 呢?也就是说,我们若判定两条直线平行,需要找角的关系.

师:下面先请同学们回忆平行线的画法,过直线 外一点 画 的平行线 .

学生活动:学生在练习本上完成,教师在黑板上演示(见图1).

师:由刚才的演示,请同学们考虑,画平行线的过程,实际上是保证了什么?

图2

学生:保证了两个同位角相等.

师:由此你能得到什么猜想?

学生:两条直线被第三条直线所截,如果同位角相等,那么两条直线平行.

师:我们的猜想正确吗?会不会有某一特定的时刻,即使同位角不等,而两条直线也平行呢?

教师用计算机演示运动变化过程.在观察实验之前,让学生看清 角和 角(如图2),而后开始实验,让学生充分观察并讨论能得出什么结论.

学生活动:学生观察、讨论、分析.

总结了,当 时,不平行,而无论 取何值,只要,、就平行.

图3

教师引导学生自己表达出结论,并告诉学生这个结论称为平行线的判定公理.

[板书]两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.

简单说成:同位角相等,两直线平行.

即:∵(已知见图3),∴(同位角相等,两直线平行).

【教法说明】通过实际画图和用计算机演示运动—变化过程,让学生确信公理的正确.尝

试反馈,巩固练习(出示投影).

图4

1.如图4,,吗?

2.,当 时,就能使 .

【教法说明】这两个题目旨在巩固所学的判定公理,对于第2题是已知结论,找出使它成立的题设,这是证明问题时应掌握的一种思考方法,要求学生逐步学会执因导果和执果索因的思考方法,教师在教学时要注意逐渐培养学生的这种数学思想.

(出示投影)

直线、被直线 所截.

图5

1.见图5,如果,那么 与 有什么关系?

2. 与 有什么关系?

3. 与 是什么位置关系的一对角?

学生活动:学生观察,思考分析,给出答案: 时,与 相等,与 是内错角.

师: 与 满足什么条件,可以得到 ?为什么?

学生活动:,因为,通过等量代换可以得到 .

师: 时,你进而可以得到什么结论?

学生活动: .

师:由此你能总结出什么正确结论?

学生活动:内错角相等,两直线平行.

师:也就是说,我们得到了判定两直线平行的另一个方法:

[板书]两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.

简单说成:内错角相等,两直线平行.

【教法说明】通过教师的启发、引导式提问法,引导学生自己去发现角之间的关系,进而归纳总结出结论,主要采用探讨问题的方式,能够培养学生积极思考、善于动脑分析的良好学习习惯.

师:上面的推理过程,可以写成

∵(已知),(对顶角相等),∴ .

[∵(已证)],∴(同位角相等,两直线平行).

【教法说明】这里的推理过程可以放手让学生试着说,这样才能使学生大胆尝试,培养他们勇于进取的精神.

教师指出:方括号内的“∵ ”,就是上面刚刚得到的“∴ ”,在这种情况下,方括号内这一步可以省略.

尝试反馈,巩固练习(出示投影)

1.如图1,直线、被直线 所截.

(1)量得,就可以判定,它的根据是什么?

(2)量得,就可以判定,它的根据是什么?

2.如图2,是 的延长线,量得 .

(1)从,可以判定哪两条直线平行?它的根据是什么?

(2)从,可以判定哪两条直线平行?它的根据是什么?

图1 图2

学生活动:学生口答.

【教法说明】这组题旨在巩固平行线的判定公理和判定方法的掌握,使学生熟悉并会用于解决简单的说理问题.

变式训练,培养能力

(出示投影)

1.如图3所示,由,可判断哪两条直线平行?由,可判断哪两条直线平行?

2.如图4,已知,吗?为什么?

图3 图4

学生活动:学生思考后回答问题.教师给以指正并启发、引导得出答案.

【教法说明】这组题不仅让学生认识变式图形,加强识图能力,同时培养学生的发散思维,也就是培养学生从多角度、全方位考虑问题,从而得到一题多解.提高了学生的解题能力.

(四)总结扩展

2.结合判一定理的证明过程,熟悉表达推理证明的要求,初步了解推理证明的格式.

八、布置作业

课本第97页习题2.2A组第4、5、6(1)(2)题.

作业 答案

4.当 时,就能使 .

5.(1)从,推出,根据同位角相等,两直线平行.

(2)从,推出,根据内错角相等,两直线平行.

6.(1)可断定,根据同位角相等,两直线平行.

(2)可断定,根据内错角相等,两直线平行.

第二篇:七年级数学下册 相交线与平行线测试题

相交线与平行线测试题

一、填空题

1.一个角的余角是30º,则这个角的补角是2.一个角与它的补角之差是20º,则这个角的大小是3.时钟指向3时30分时,这时时针与分针所成的锐角是4.如图②,∠1 = 82º,∠2 = 98º,∠3 = 80º,则∠4 = 度.5.如图③,直线AB,CD,EF相交于点O,AB⊥CD,OG平分∠AOE,∠FOD = 28º,则∠BOE =度,∠AOG =度.6.如图④,AB∥CD,∠BAE = 120º,∠DCE = 30º,则∠AEC =.7.把一张长方形纸条按图⑤中,那样折叠后,若得到∠AOB′= 70º,则∠OGC = 8.如图⑦,正方形ABCD中,M在DC上,且BM = 10,N是AC上一动点,则DN + MN的最小值为.9.如图所示,当半径为30cm的转动轮转过的角度为120时,则传送带上的物体A平移的距离为cm。

10.如图所示,在四边形ABCD中,AD∥BC,BC>AD,∠B与∠C互余,将AB,CD分

别平移到图中EF和EG的位置,则△EFG为三角形,若AD=2cm,BC=8cm,则FG =。

11.如图9,如果∠1=40°,∠2=100°,那么∠3的同位角等于,∠3的内错角等

于,∠3的同旁内角等于.

12.如图10,在△ABC中,已知∠C=90°,AC=60 cm,AB=100 cm,a、b、c…是在△ABC

内部的矩形,它们的一个顶点在AB上,一组对边分别在AC上或与AC平行,另一组对边分别在BC上或与BC平行.若各矩形在AC上的边长相等,矩形a的一边长是72 cm,则这样的矩形a、b、c…的个数是

F

二、选择题

1.下列正确说法的个数是()

①同位角相等②对顶角相等

③等角的补角相等④两直线平行,同旁内角相等

A.1,B.2,C.3,D.42.下列说法正确的是()

A.两点之间,直线最短;

B.过一点有一条直线平行于已知直线;

C.和已知直线垂直的直线有且只有一条;

D.在平面内过一点有且只有一条直线垂直于已知直线.3.下列图中∠1和∠2是同位角的是()

A.⑴、⑵、⑶,B.⑵、⑶、⑷,C.⑶、⑷、⑸,D.⑴、⑵、⑸

4.如果一个角的补角是150°,那么这个角的余角的度数是()

A.30°B.60°C.90°D.120°

5.下列语句中,是对顶角的语句为()

A.有公共顶点并且相等的两个角

B.两条直线相交,有公共顶点的两个角

C.顶点相对的两个角

D.两条直线相交,有公共顶点没有公共边的两个角

6.下列命题正确的是()

A.内错角相等

B.相等的角是对顶角

C.三条直线相交,必产生同位角、内错角、同旁内角

D.同位角相等,两直线平行

7.两平行直线被第三条直线所截,同旁内角的平分线()

A.互相重合B.互相平行C.互相垂直D.无法确定

8.在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转。)

C D

9.三条直线相交于一点,构成的对顶角共有()

A、3对B、4对C、5对D、6对

10.如图,已知AB∥CD∥EF,BC∥AD,AC平分∠BAD,那么图中与

∠AGE相等的角有()

A.5个B.4个C.3个D.2个

11.如图6,BO平分∠ABC,CO平分∠ACB,且MN∥BC,设AB

=12,BC=24,AC=18,则△AMN的周长为()。

A、30B、36C、42D、18

12.如图,若AB∥CD,则∠A、∠E、∠D之间的关系是()

A.∠A+∠E+∠D=180°

B.∠A-∠E+∠D=180°

C.∠A+∠E-∠D=180°

D.∠A+∠E+∠D=270°

三、计算题

1.如图,直线a、b被直线c所截,且a∥b,若∠1=118°求∠2为多少度?

2.已知一个角的余角的补角比这个角的补角的一半大90°,求这个角的度数等于多少?

四、证明题

1.已知:如图,DA⊥AB,DE平分∠ADC,CE平分∠BCD, C且∠1+∠2=90°.试猜想BC与AB有怎样的位置关系,D并说明其理由

B

2.已知:如图所示,CD∥EF,∠1=∠2,.试猜想∠3与∠ACB有怎样的大小关系,并说明其理由 A

GD

E

CBF

3.如图,已知∠1+∠2+180°,∠DEF=∠A, A试判断∠ACB与∠DEB的大小关系,并对结论进行说明.D

2F

CBE

4.如图,∠1=∠2,∠D=∠A,那么∠B=∠C吗?为什么?

BAF

E

五、应用题

1.如图(a)示,五边形ABCDE是张大爷十年前承包的一块土地示意图,经过多年开垦荒地,现已变成图(b)所示的形状,但承包土地与开垦荒地的分界小路(即图(b)中折线CDE)还保留着.张大爷想过E点修一条直路,直路修好后,•要保持直路左边的土地面积与承包时的一样多,右边的土地面积与开垦的荒地面积一样多.请你用有关知识,按张大爷的要求设计出修路方案.(不计分界小路与直路的占地面积)

(1)写出设计方案,并在图中画出相应的图形;

(2)说明方案设计理由.E

AD

ADBCMEN

(a)(b)

9.10.11.80,80,100

12.9

BDDBDDCCDAAC

三、(1)解:∵ ∠1+∠3=180°(平角的定义)

又 ∵∠1=118°(已知)

∴∠3= 180°-∠1 = 180°-118°= 62°

∵a∥b(已知)

∴∠2=∠3=62°(两直线平行,内错角相等)

答:∠2为62°

(2)解:设这个角的余角为x,那么这个角的度数为(90°-x),这个角的补角为(90°+x),这个角的余角的补角为(180°-x)依题意,列方程为:

180°-x=(x+90°)+90°

解之得:x=30°

这时,90°-x=90°-30°=60°.答:所求这个的角的度数为60°.另解:设这个角为x,则:

180°-(90°-x)-(180°-x)=90°

解之得:x=60°

答:所求这个的角的度数为60°.四、(1)解: BC与AB位置关系是BC⊥AB。其理由如下:

∵ DE平分∠ADC, CE平分∠DCB(已知),∴∠ADC=2∠1, ∠DCB=2∠2(角平分线定义).∵∠1+∠2=90°(已知)

∴∠ADC+∠DCB = 2∠1+2∠2

= 2(∠1+∠2)=2×90° = 180°.∴ AD∥BC(同旁内角互补,•两直线平行).∴ ∠A+∠B=180°(两直线平行,同旁内角互补).∵ DA⊥AB(已知)

∴ ∠A=90°(垂直定义).∴∠B=180°-∠A = 180°-90°=90°

∴BC⊥AB(垂直定义).1212

(2)解: ∠3与∠ACB的大小关系是∠3=∠ACB,其理由如下:

∵ CD∥EF(已知),∴∠2=∠DCB(两直线直行,同位角相等).又∵∠1=

第三篇:七年级数学下册《相交线与平行线》证明题

七年级数学下册《相交线与平行线》测试题

一、选择题:(每题2.5分,共35分)

1.下列所示的四个图形中,1和2是同位角的是()...

112

221③②①

A.②③B.①②③C.①②④D.①④ ④B

342D2.如右图所示,点E在AC的延长线上,下列条件中能判断...AB//CD()A.34B.12

C.DDCED.DACD180ACE

3.一学员练习驾驶汽车,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的角度可能是()

A.第一次向左拐30,第二次向右拐30B.第一次向右拐50,第二次向左拐130

C.第一次向右拐50,第二次向右拐130D.第一次向左拐50,第二次向左拐130

4.两条平行直线被第三条直线所截,下列命题中正确的是()..

A.同位角相等,但内错角不相等B.同位角不相等,但同旁内角互补

C.内错角相等,且同旁内角不互补D.同位角相等,且同旁内角互补

5.下列说法中错误的个数是()..

(1)过一点有且只有一条直线与已知直线平行。

(2)过一点有且只有一条直线与已知直线垂直。

(3)在同一平面内,两条直线的位置关系只有相交、平行两种。

(4)不相交的两条直线叫做平行线。

(5)有公共顶点且有一条公共边的两个角互为邻补角。

A.1个B.2个C.3个D.4个

6.下列说法中,正确的是()..

A.图形的平移是指把图形沿水平方向移动。

B.平移前后图形的形状和大小都没有发生改变。

C.“相等的角是对顶角”是一个真命题。

D.“直角都相等”是一个假命题。

7.如右图,AB//CD,且A25,C45,则E的度数是()A.60B.70C.110D.80 8.如右图所示,已知ACBC,CDAB,垂足分别是 的是()C、D,那么以下线段大小的比较必定成立....A.CDADB.ACBCC.BCBDD.CDBD

9.在一个平面内,任意四条直线相交,交点的个数最多有()

A.7个B.6个C.5个D.4个

10.如右图所示,BE平分ABC,DE//BC,图中相等的角共有()DA.3对B.4对C.5对D.6对

11.如图,CD⊥AB,垂足为D,AC⊥BC,垂足为C.

图中线段的长能表示点到直线(或线段)距离的线段有()

(A)1条(B)3条(C)5条(D)7条

12.若AO⊥BO,垂足为O,∠AOC︰∠AOB=2︰9,则∠BOC的度数等于„„()(A)20°(B)70°(C)110°(D)70°或110°

13、如图,AD∥EF∥BC,且EG∥AC.那么图中与∠1相等的角(不包括∠1)的个数是()

(A)2(B)4(C)5(D)6

14.某人从A点出发向北偏东60°方向速到B点,再从B点出发向南偏西15°方向速到

B

EC

A

D

B

A

E

C

B

C

D

C点,则∠ABC等于()

(A)75°(B)105°(C)45°(D)135°

三、填空题:(每题2.5分,共40分)

1.把命题“等角的余角相等”写成“如果„„,那么„„。”的形式 为。

=110,则2=2.用吸管吸易拉罐内的饮料时,如图①,

1互相平行)

A

BC

图①

图②

图③

3.有一个与地面成30°角的斜坡,如图②,现要在斜坡上竖一电线杆,当电线杆与斜坡成的1=°时,电线杆与地面垂直。

4.如图③,按角的位置关系填空:A与1是;A与

3是;2与3是。5.如图④,若12=220,则3=。

a

123

C

B

B’

c

ab

图⑤图⑥



6.如图⑤,已知a//b,若150,则2若3=100,则2。

‘’‘7.如图⑥,为了把ABC平移得到ABC,可以先将ABC向右平移格,再向上

图④

b

平移格。

8、如图,AB∥CD,AD∥BC,∠B=60°,∠EDA=50°.则∠CDF=

9、如图,当∠1=∠时,AB∥DC;当∠D+∠=180°时,AB∥DC; 当∠B=∠时,AB∥CD.

10、如图,O是△ABC内一点,OD∥AB,OE∥BC,OF∥AC,∠B=45°,∠C=75°,则∠DOE=,∠EOF=,∠FOD=.

第8题第9题第10题

11、在同一平面内,有五条直线两两相交,最多可成 对同位角对对顶角对同旁内角。

12、两个角的两边分别平行,其中一个角比另一个角的3倍少20°.则这两个角的度数分别是.

13、如图,AB∥EF∥CD,EG平分∠BEF,∠B+∠BED+∠D=192°,∠B-∠D=24°,则∠GEF=.

14、如图,AD∥BC,点O在AD上,BO、CO分别平分∠ABC、∠DCB,若

∠A+∠D=m°.则∠BOC=______.

CA

E

BF

D

图⑦

第13题第14题第15题

15、三条直线AB、CD、EF相交于点O,如图⑦所示,AOD的对

顶角是,FOB的对顶角是,EOB的邻补角

是。

16、有一条直的等宽纸带,按图(1)折叠时,纸带重叠部分中的∠a=度.

四、解答题。(每题4分,共40分)

1、如图,已知:1=2,D=50,求B的度数。

E

A

B

D

GH

C2、如图,AB//CD,AE平分BAD,CD与AE相交于F,CFEE。求证:AD//BC。

3、如图,已知AB//CD,B40,CN是BCE的平分线,CMCN,求BCM的度数。

A

D

F

B

C

E

AB

N

M

C

D

E4、如图,AB∥CD∥PN,∠ABC=50°,∠CPN=150°.求∠BCP的度数.

5、如图,∠CAB=100°,∠ABF=110°,AC∥PD,BF∥PE,求∠DPE的度数.

6、如图,DB∥FG∥EC,∠ABD=60°,∠ACE=36°,AP平分∠BAC.

求∠PAG的度数.

7、如图,AB∥CD,∠1=115°,∠2=140°,求∠3的度数.

8、已知:如图,AC∥DE,DC∥EF,CD平分∠BCA.

求证:EF平分∠BED.

9、已知:如图,AB∥CD,∠1=∠B,∠2=∠D.求证:BE⊥DE.

10、已知:如图,AB∥CD,请你观察∠E、∠B、∠D之间有什么关系,并证明你所得的结论.

第四篇:相交线与平行线教案

第七章 相交线与平行线

7.1相交线

【教学目标】

1.了解两条直线相交形成四个角;2.理解对顶角、邻补角的概念;3.掌握对顶角的性质及它的推导过程;4.能运用对顶角的性质解决一些问题.5.培养识图能力.【教学重点】

1.对顶角、邻补角的概念;2.对顶角的性质及应用.【对话设计】

〖探究1〗 两条直线相交所得的角

B(1)如图,直线AB、CD相交于O,若∠1=140º,你能求出其它3个角的度数吗?(2)两条直线相交所得的四个角之间,有怎样的关系(指位置及大小)? 2(3)〖结论〗在(1)图中,∠1与∠2是______角,∠1与∠3是____角,C D 4 3 ∠2的对顶角是______,邻补角是_______________.O 〖了解邻补角及对顶角的特征〗(见P5)

A 〖探究2〗“顾名思义,如果两个角的顶点重合,这两个角是对顶角.”这句话对吗?画图说明.〖探究3〗如图,C是直线AB上一点,CD是射线,图中有几个角?哪两个角互为邻补角? 有两个角互为对顶角吗? A 〖结论〗在很多图形中,邻补角还可以看成是一条直线与端点在这条直线上的一条射线组成的两个角.C 〖探究4〗判断下列语句是否正确: B D(1)互补的两个角一定是邻补角.(2)一个角的邻补角一定和它互补.A(3)邻补角是有特殊位置关系的两个互补的角.〖补充练习〗

D 1.如图,D、E分别是AB、AC上的一点,BE与CD交于点G,若∠B=∠C,猜测图中哪些角是相等的.B 2.如图,E是AD上一点,图中有互补的角吗?有相等的角吗?为什么? A(注意:什么叫对顶角?)3.说明下列语句为什么是错误的:(1)一个锐角和一个钝角一定互补;(2)若两个角互补,则这两个角一定是一个锐角,一个钝角.C 〖作业〗

E G C B E D

7.2相交线与垂线(第一课时)【教学目标】

1.理解垂线、垂线段的意义;2.会用三角尺或量角器过一点画已知直线的垂线;3.掌握垂线的性质1.【教学重点】

1.区分垂线和垂线段;2.用三角尺或量角器过一点画已知直线的垂线;A 3.垂线的性质1.2 【教学难点】 C D 4 3 怎样画一条线段或射线的垂线.O 【对话设计】

B 〖探究1〗 两条直线相交的特殊情况

如图, 直线AB、CD相交于O,若∠1=90º,求其它3个角.〖阅读〗了解垂直、垂线和垂足(见P6).〖理解〗日常生活中, 两条直线互相垂直的情形很常见(见P6图5.1-6).你能再举出其它例子吗? 〖探究2〗 过一点画直线的垂线

B(1)用三角尺画已知直线的垂线,这样的垂线能画出几条?(2)如图,过直线AB上的已知点P,用三角尺画AB的垂线;过直线上一点,可以画几条直线与这条直线垂直? P A(3)如图,过直线AB外的已知点P,用三角尺画AB的垂线,并注明垂足.· B P 过直线外一点,可以画几条直线与这条直线垂直?(4)从直线AB外的已知点P,到直线AB画垂线段,与(3)比较,注意区分垂线和垂线段.A 〖阅读归纳〗你知道垂线的第一条性质吗(见P7)?请注意理解“有” 与“有且只有”的区别.· P 〖探究3〗 怎样画一条线段或射线的垂线

规定:画一条线段或射线的垂线,就是画线段或射线所在直线的垂线.A(1)过线段AB外的已知点P,画线段AB的垂线;

B(2)过射线AB外的已知点P,画射线AB的垂线.P · 〖探究4〗点到直线的距离

这是一幅比例尺为1:500 000的地图,你能分别求出李庄A到火车站B和吴镇D的距离吗?你认为铁路上是否存在到李庄距离最近的点? 〖作业〗 A B P37练习

习题

A · B

c D

7.2 垂线(第二课时)【教学目标】

1.理解点到直线的距离的意义,并会度量点到直线的距离;2.掌握垂线的性质2;3.感受简单推理.【教学重点】

1.点到直线的距离;2.度量点到直线的距离;3.垂线的性质2.【教学难点】

区分垂线段与点到直线的距离.【对话设计】

〖探究1〗怎样测量跳远的成绩

如图,这是你们班的运动员小欣在校运会上跳远后留下的脚印,裁判员怎样测量跳远的成绩?画出皮尺

起 的位置.跑

线 〖归纳〗你能说出垂线的第二条性质吗? 什么叫做点到直线的距离(见P8)?

〖探究2〗

如图,要从A处到河边B挖一道水渠AB引水,B点一般应选在哪一处?为什么?如果比例尺是1:100 000,水渠大约要挖多长?

〖课堂练习〗

1.从三角形的一个顶点向它的对边画垂线,顶点和垂足间的线段(垂线段)叫做三角形的高.请用三角板分别画出下面三角形的三 条高(各用三种颜色).A · A A A B

2.书上40-41页习题

C C B B

C

7.3平行线

平行线(第一课时)

【教学目标】 1.知道三线八角;2.知道同位角、内错角和同旁内角.【对话设计】 〖复习〗

两条直线相交所成的角共有四个,这四个角之间有哪几种关系? 〖有关三线八角的介绍〗

一条直线分别同两条直线相交(或者说两条直线被第三条直线所截), 构成8个角,这些角中,没有公共顶点的两个角之间有以下三种位置关系:同位角、内错角和同旁内角.如图,直线AB、CD与直线EF相交,∠1和∠5,∠2和∠6,∠3和∠7,∠F 和∠8都是同位角,共有4对;2 ∠5和∠3,∠6和∠4都是内错角,共有2对;∠3和∠6,∠4和∠5都是同D C 4 3 旁内角,共2对.5 6 A B 〖探索1〗 8 7 如图,直线AB、CD与直线EF相交,图中哪几对角是同位角?哪几对角是E 内错角?哪几对角是同旁内角?

F C 1 3 5 D A 6 8 7 B E 〖探索2〗

如图,直线AB、CD与直线EF相交,∠5和_____是同位角,和____是内

B D 错角,与______是同旁内角.1 2 5 6 E F 4 8 7 3 C A 〖探索3〗如图,直线AB、CD与直线EF相交,图中哪几对角是同位角?

E 哪几对角是内错角?哪几对角是同旁内角? 2

D C 4 3

A 5

B 〖探索4〗 F 如图,找出∠1的内错角,用红笔一笔画出它们,先观察这两个角是否像

A D 英文字母“N”, 再指出它们是哪两条直线被哪一条直线所截而成.1 〖探索5〗 B C

如图,已知四边形ABCD是梯形,你能用红笔一笔画出图中任意一对同旁内角吗?图中一有几对同旁内角?

B

〖探索6〗 D 如图,直线EF、CD与直线AB相交, 任意找出一对同位角,分别记为∠1和∠2,你能用红笔一笔画出这两

E 个角吗?

A A D C B C F 7.3平行线(第二课时)【教学目标】

1.了解空间两条直线的位置关系;2.了解平行线的概念,理解同一平面内两条直线的位置关系;3.认识平行线的性质1、2.P 【对话设计】 · 〖复习交流〗

如图,已知直线AB和直线外一点P,你能过点P画一条直线与AB平行A B 吗?把你的画法与同伴交流,看谁的方法好.〖介绍空间两条直线的位置关系〗

D' C' 如图,与长方体的棱AB平行的棱有__________________等____条,它们都B' A' 和AB在同一平面内;与AB相交的棱有______________等____条, 它们也和AB在同一平面C DD 内;A B 棱AB与棱B'C'不相交也不平行,像这样的两条直线叫做异面直线,与AB异面的直线还有______________等____条.〖归纳〗在同一平面内,两条直线的位置关系只有_____、_______两种.〖探索1〗在一张半透明的纸上任意画一条直线AB,在直线外任取一点P,你能折出过点P的平行线吗?试一试,并把你的折法与同伴交流.E D P · 〖探索2〗经过直线外一点,可以画两条直线和这条直线平行吗? C F 〖平行公理1介绍〗 经过直线外一点,有且只有一条直线与这条直线平行.A B 〖释义〗本书中所说的基本事实是人们在长期实践中总结出来的结论, 基本事实也称为公理.〖想一想〗如图,P是直线AB外一点,CD与EF相交于P.若CD与ABC D平行,则EF与AB平行吗?为什么? E F 〖探索3〗如图,若CD∥AB,且 EF∥AB,则CD与EF能不平行吗?为

A B 什么? 〖平行公理2介绍〗

如果两条直线都和第三条直线平行,那么这两条直线也互相平行.〖友情提示〗

若a=b=c(字母表示数),那么,a=c ,根据的是等式的性质.若a∥b,b∥∥c(字母表示直线),那么a∥b.根据的是平行公理2.7.4平行线的判定(第一课时)【教学目标】

1.掌握平行线的判定方法;2.了解从平行的判定公理得出其它两种判定方法的过程;3.感受逻辑推理;4.感受把未知化为已知的思想.【教学重点与难点】

探索并掌握平行线的判定方法.【对话设计】 〖探索1〗

P 我们以前学过用直尺和三角尺画平行线.如果只用一把三角尺可以· 吗?如果可以,请用这种方法过点P画一条直线与AB平行.你能够说明你所画的直线一定与AB平行吗? A B 〖介绍平行线的判定方法1〗

两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.〖说明〗方法1也是基本事实(公理).〖探索2〗

木工经常用角尺画平行线,你能说出其中的道理吗(见P15)?如果只要求画平行线,不用角尺(例如只用三角尺中的一个锐角)行吗?

b 2 〖探索3〗 如图,如果∠1=∠2,由平行线的判定方法1,能得出a∥b吗? a 〖结论〗由平行线的判定方法1,可以得出平行线的判定方法2: c 两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.〖归纳〗

遇到一个新问题时,常常把它转化为已知的(或已经解决的)问题来解决.这一节中,我们利用“同位角相等,两直线平行”得到“内错角相等,两直线平行”.〖探索4〗如图,现在我们一起来探究: 两条直线(a、b)被第三条直线(c)所截,如果同旁内角互补(∠1+∠2=180º),那么这两条直线(a、b)平行吗?

b 〖结论〗由平行线的判定方法1(或2),可以得出平行线的判定方法3: 两条1 a 直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.c

〖练习〗 1 2 a 4 3 如图,分别指出下面各推理的根据:(1)∠2=∠5a∥b;

(2)∠4=∠5a∥b;

b c 5 a∥b.(3)∠3+∠5=180º

〖作业〗 P47-48

7.4平行线的判定(第二课时)【教学目标】

会应用平行线的判定方法.【对话设计】

〖复习思考〗(见P18)

D C 〖探索1〗如图,下面的两个角分别是哪两条直线被哪一条直线所截而成?它们是什么角?(1)∠BAC与∠DCA;A B(2)∠DAC与∠BCA.〖探索2〗如图,a、b、c、d是直线,E、F、G、H是交点,(1)若∠1=∠2,可以证明a∥b,而不能证明c∥d.这是因为∠1和∠2是

H E 2 a 直线_______和_____被直线____所截而成,它们与直线____无关.(2)同样的道理,若已知∠1 = ∠3,可以证明______∥______,这是因为3 1 b 它们是直线____和______被直线______所截而成.G F c d

D C 〖探索3〗如图,BE是AB 的延长线,从∠CBE=∠A可以判定_____∥______,这是因为相等的两角是直线____和____被直线____所截 而成(与直线_____无关),判定平行的根据是___________________

A E __________________.B 〖提示〗用彩色笔在图中画出相等的两个角(∠CBE和∠A),理解为什么不能由此推出AB∥CD.〖说明〗学习和运用判定方法1的难点是:

A(1)判定两个角是不是同位角;(2)确定这两个同位角是哪两条直线被那一条直线所截而成;

D E(3)进而判定可以证明哪两条直线平行.B C 〖探索4〗如图,D是AB上一点,E是AC 上一点, ,根据判定方法1,如果知道哪两个角相等,就可以证明DE∥BC? C A 〖探索5〗如图,AE与CD相交于O,若∠A=110º,∠1=70º,就可以E O 证明AB∥CD,这是为什么? B D 〖作业〗

7.5平行线的性质(第一课时)【教学目标】

1.经历从性质公理推出性质2的过程;掌握平行线的性质,并能用它们作简单的逻辑推理;2.感受原命题与逆命题,从而了解平行线的性质公理与判定公理的区别,能在推理过程正确使用.【教学重点】

平行线的性质以及应用.【教学难点】

平行线的性质公理与判定公理的区别.【对话设计】

〖探索1〗 反过来也成立吗

过去我们学过: 如果两个数的和为0,这两个数互为相反数.反过来,如果两个数互为相反数,那么这两个数的和为0.这两个句子都是正确的.现在换一个例子:如果两个角是对顶角,那么这两个角相等.它是对的.反过来,如果两个角相等,这两个角是对顶角.对吗? 再看下面的例子:如果一个整数个位上的数字是5,那么它一定能够被5整除.对吗?这句话反过来怎么说?对不对? 〖结论〗如果一个句子是正确的,反过来说(因果对调),就未必正确.〖探索2〗

上一节课,我们学过:同位角相等,两直线平行.反过来怎么说?它还是对的吗?完成P21的探究,写出你的猜想.〖推理举例〗

如果把平行线性质1---“两直线平行,同位角相等”看作是基本事实(公理),3 b 我们可以利用这个公理证明平行线性质2:“两直线平行,内错角相等”.2 1 如图,已知:直线a、b被直线c所截,且a∥b, a 求证:∠1=∠2.c 证明:∵a∥b, ∴∠1=∠3(__________________).∵∠3=∠2(对顶角相等), ∴∠1=∠2(等量代换).b 2 〖探索3〗下面我们来证明平行线的性质3:两直线平行,同旁内角互补.1 请模仿范例写出证明.a c 如图,已知: 直线a、b被直线c所截,且a∥b, 求证:∠1+∠2=180º.证明: b 〖探索4 〗

如图: 直线a、b被直线c所截, a(1)若a∥b,可以得到∠1=∠2.根据什么?

c

(2)若∠1=∠2,可以得到a∥b.根据什么?根据和(1)一样吗? 如图,已知直线a、b被直线c所截,在括号内为下面各小题的推理填上适当的根据:(1)∵a∥b,∴∠1=∠3(___________________);(2)∵∠1=∠3,∴a∥b(_________________).(3)∵a∥b,∴∠1=∠2(__________________);b 2 4(4)∴a∥b,∴∠1+∠4=180º(_____________________________________)a(5)∵∠1=∠2,∴a∥b(___________________);c(6)∵∠1+∠4=180º,∴a∥b(_______________).7.5平行线的性质(第二课时)【教学目标】

掌握两条平行线的距离的概念,并能灵活运用.【对话设计】 〖探索1〗

一块梯形铁片的残余部分如图,量得∠A=75º,∠B=72º,梯形的另外两个角分别是多少度?

〖阅读模仿〗请模仿P23例作答.〖探索2〗 如图,AB∥CD,(1)在AB上任取一点E,向CD画垂线段EF;

C D(2)EF是否也垂直于AB呢?(3)在AB上另取一点G,向CD画垂线段GH;(4)在CD上,点F、H外,任取一点I,向AB画垂线段IJ;B A(5)量出EF、GH、IJ的长,说说你的发现.〖探索3〗

同时垂直于两条平行线,并且夹在这两条平行间的线段之间有什么性质?你能举出实际的例....子吗? 〖概念学习〗

同时垂直于两条平行线,并且夹在这两条平行线间的线段的长度,叫做这两条平行线间的距离.〖概念应用〗 C(1)探索2的图中,两条平行线的距离是多少?(2)如图,若AB∥CD,求AB、CD的距离.D B 〖作业〗p51-52 7.5命题(第三课时)

【教学目标】

掌握命题的概念,并能分清命题的组成部分.【对话设计】 〖概念理解1〗

A

前面,我们学过一些对某一件事情作出判断的句子,例如:(1)如果两条直线都与第三条直线平行,那么,这两条直线也互相平行;(2)等式两边加同一个数,结果仍是等式;(3)对顶角相等.像这样判断一件事情的语句,叫做命题.〖探索1〗下列语句,哪些是命题?哪些不是?(1)过直线AB外一点P,作AB的平行线.(2)过直线AB外一点P,可以作一条直线与AB平行吗?(3)经过直线AB外一点P, 有且只有一条直线与这条直线平行.(4)若|a|=-a,则a≤0.〖概念理解2〗

许多命题都由题设和结论两部分组成.题设是已知事项,结论是由已知事项推出的事项.命题常写成“如果……那么……”的形式,这时,“如果”后接的部分是题设,“那么”后接的的部分是结论.〖探索2〗命题“两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行”中,题设是什么? 〖探索3〗

把下列命题改写成“如果……那么……”的形式:(1)互补的两个角不可能都是锐角;(2)垂直于同一条直线的两条直线平行.〖探索4〗指出下列命题的题设和结论:(1)如果两个数互为相反数,这两个数的商为-1.(2)两直线平行,同旁内角互补.(3)同旁内角互补,两直线平行.(4)同角的余角相等.(5)绝对值相等的两个数相等.〖探索5〗判断下列命题是否正确:(1)如果两个数的和为0,这两个数互为相反数;(2)如果两个数互为相反数,这两个数的和为0;(3)如果两个数互为相反数,这两个数的商为-1;(4)如果两个数的商为-1,这两个数互为相反数.(5)如果两个角是邻补角,这两个角互补;(6)如果两个角互补,这两个角是邻补角..57.6图形的平移

【教学目标】 1.理解什么叫平移;2.经历观察、分析、操作、欣赏及抽象、概括的过程;3.进一步发展空间观念,增强审美意识.【教学重难点】

平移的概念与性质.〖理解平移〗

如图,已知线段AB,平移AB,使点A移动到点A,你能画出平移后的线段AB吗(只要画示意图)?如果是使点A移动到点A呢?与同学交流答案.你能从中体会平移吗? 〖练习〗如图,平移ΔABC,使点A移动到点A,画出平移后的三角形

'''“

' A · A' B · A”A'B'C.〖方格与平移〗如图,平移ΔABC,使点A移动到点A,画出平移后的''三角形ABC.(请注意方格的作用.)

''A' · A C B '

'''〖练习〗如图,平移ΔABC,使点A移动到点A,画出平移后的三角形ABC.(请注意方格的'作用.)

〖平移与旋转〗如图,使ΔABC绕点A旋转90º,画出旋转后的三角''形ABC.(这时方格还有用吗?)'

〖平移的过程与结果〗 下列变换属于平移吗?

作业:p57-58习题

第五篇:七年级数学《相交线与平行线》练习题

过去属于死神,未来属于你自己。彭宏威

七年级数学《相交线与平行线》练习题

一、选择题(每小题4分,共24分)

1.下面四个图形中,∠1与∠2是对顶角的图形的点A到直线c的距离是3cm。

二、填空题(每小题4分,共20分)个数是()

A.0B.1C.2D.

22.一辆汽车在笔直的公路上行驶,两次拐弯后,仍在原来的方向上平行前进,那么两次拐弯的角度是()

A.第一次右拐50°,第二次左拐130°。

B.第一次左拐50°,第二次右拐50°。C.第一次左拐50°,第二次左拐130°。D.第一次右拐50°,第二次右拐50°。

3.同一平面内的四条直线满足a⊥b,b⊥c,c⊥d,则下列式子成立的是()A.a∥bB.b⊥d

C.a⊥dD.b∥c

4.三条直线两两相交于同一点时,对顶角有m对,交于不同三点时,对顶角有n对,则m与n的关系是()

A.m = nB.m>n

C.m<nD.m + n = 10

5.如图,若m∥n,∠1 = 105°,则∠2 =()A.55°B.60°C.65°D.75°

1m2

n

6.下列说法中正确的是()

A.有且只有一条直线垂直于已知直线。

B.从直线外一点到这条直线的垂线段,叫做

这点到这条直线的距离。

C.互相垂直的两条直线一定相交。

D.直线c外一点A与直线c上各点连接而成的所有线段中,最短线段的长是3cm,则

7.两个角的两边两两互相平行,且一个角的12

于另一个角的13,则这两个角的度数分别

为。

8.猜谜语(打本章两个几何名称)。

剩下十分钱;两牛相斗。9.下面生活中的物体的运动情况可以看成平移的是。

(1)摆动的钟摆。(2)在笔直的公路上行驶的汽车。(3)随风摆动的旗帜。(4)摇动的大绳。(5)汽车玻璃上雨刷的运动。(6)从楼顶自由落下的球(球不旋转)。

10.如图,直线AB、CD相交于点O,OE⊥AB,O为垂足,如果∠EOD = 38°,则∠AOC =,∠COB =。

A

E

D

D

O

C

B

AB

(第10题图)(第11题图)11.如图,AC平分∠DAB,∠1 =∠2。填空:因

为AC平分∠DAB,所以∠1 =。所

以∠2 =。所以AB∥。

三、做一做(本题10分)12.已知三角形ABC、点D,过点D作三角形ABC

平移后的图形。

A

D

BC

下载f1七年级数学下册 第五章 相交线与平行线-平行线的判定教案 新人教版(最终版)word格式文档
下载f1七年级数学下册 第五章 相交线与平行线-平行线的判定教案 新人教版(最终版).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    七年级数学相交线与平行线练习题

    相交线与平等线练习题2012-2-251、如图,直线a,b相交于点O,若∠1等于40°,则∠2等于A.50°B.60°C.140°D.160° 2、如图,已知AB∥CD,∠A=70°,则∠1的度数是A.70°B.100°C.110°D.130°3、......

    七年级数学下册2相交线与平行线复习教案

    第2章 相交线与平行线 一、复习目标 1.进一步熟悉相交线所成的角及其基本结论; 2.进一步理解垂线、垂线段的概念及性质,点到直线的距离; 3.熟练掌握三线八角(同位角、内错角、同旁......

    七年级下册数学相交线与平行线巩固提升

    智德教育七年级周末班数学资料 相交线与平行线巩固提升 1.如图,已知DF∥AC,∠C=∠D,要证∠AMB=∠2,请完善证明过程: ∵DF∥AC( _________ ) ∴∠D=∠1( _________ ) ∵∠C=∠D( _______......

    相交线与平行线复习教案

    相交线与平行线复习教案 教学目标 1.经历对本章所学知识回顾与思考的过程,将本章内容条理化,系统化, 梳理本章的知识结构. 2.通过对知识的疏理,进一步加深对所学概念的理......

    平行线与相交线基础知识

    西安学知教育天才出于勤奋,学习要持之以恒 第二章平行线与相交线 一、余角与补角1、如果两个角的和是直角,那么称这两个角互为余角,简称为互余,称其中一个角是另一个角的余角。......

    相交线与平行线知识点

    第五章相交线与平行线知识点小结● 相交线1.相交线:在同一平面内,相交的两条直线。-----特点:有一个交点2.对顶角----特点:(1)有一个公共定点(2)两边互为反向延长线-----性质:对顶角......

    相交线与平行线知识点归纳

    相交线与平行线知识点小结 一、相交线 1.相交线:两条直线相交,有且只有一个交点。(反之,若两条直线只有一个交点,则这两条直线相交。) 2.对顶角----特点:(1)有一个公共定点(2)两边互为......

    相交线与平行线精选测试题

    测试题(一) 一、选择题 1.在同一平面内,如果两条直线不重合,那么它们. (A)平行 (B)相交 (C)相交、垂直 (D)平行或相交 2.如果两条平行线被第三条直线所截,那么其中一组同位角的......