第一篇:《笔算乘法》教案2
《笔算乘法》教案
【教学内容】
教科书第74页例1,练习十六第1—4题。
【教学目标】
使学生经历多位数乘一位数(不进位)的计算过程,初步学会乘法竖式的书写格式,了解竖式每一步计算的含义培养学生独立思考和合作交流的学习方法和积极的学习态度,体验计算方法的多样化。
【教学重、难点】
会写竖式的格式并理解竖式中每一步计算的含义。
【教具、学具准备】
课件、小棒。
【教学过程】
一、提出问题。
课件演示例1的情境图画外音:“元旦到了小明、小华和小英正在用彩笔画画准备布置‘迎接元旦’专刊他们要用美丽鲜艳的彩色图画歌颂伟大的祖国,迎接新年的到来从这幅图画中,你能提出哪些用乘法计算的数学问题呢?”引导学生提出:他们每人都有一盒彩笔,每盒12枝他们一共有多少枝彩笔呢?先请同学们估算一下,3盒大约有多少枝彩笔?
教师提问:如果我们要知道准确的枝数,该怎么办呢? 小精灵问:怎样算一共有多少枝彩笔?
二、探讨交流。请同学们说一说:
(1)用什么方法计算?怎么列式?(2)12×3表示什么意思?
(3)这道题与我们以前学过的乘法计算有什么不同? 教师提问:这道题该怎样算呢?
让小组内每个同学先思考3分钟,在纸上算算看,能不能算出来也可以摆出小棒(或其他学具)或画图等如果能想出几种算法的,就把几种算法都写出来。算完以后,在小组里交流,把自己的算法说给同组的其他同学听。
小组长归纳一下本小组一共想出了哪几种算法这时教师巡回了解各组的情况,尤其要鼓励学习有困难的学生积极参与小组的活动。
全班汇报由各小组的代表向全班同学汇报自己小组的各种算法,教师将其板演在黑板上。
三、分类评价。
教师提出要求:现在同学们想出了这么多种算法,我们能不能把这些算法分类,看一看一共有几种思路。
估计学生的算法可能有如下几类:
1、摆学具求得数。
引导学生摆因为一个因数是12,所以一行摆1捆零2根;因为另一个因数是3,所以摆3行,一共摆了3捆零6根,也就是得36。
2、画图求出得数。
3、连加法。12+12+12=36
4、数的分解组成。
10×3=30
2×3=6
30+6=36
5、拆数法(转化成表内乘法)。
8×3=24
7×3=21
6×3=18 4×3=12或
5×3=15或
18+18=36 24+12=36
21+15=36 评价各种算法,组织学生议论,每一种算法是怎么计算的,各有什么适用范围。
1、摆学具和画图也是一种很好的方法但我们学了数学以后就应尽量使用计算的方法来算。
2、根据乘法的含义用连加的方法也是可以的,但是如果因数的个数比较多,算起来就比较麻烦。
3、把一个因数分解成几个十和几个一,分别与另一个因数相乘,再把几个乘积加起来这种方法不管因数是几都能算。
四、介绍竖式。
从刚才议论的结果来看,用数的分解组成方法来算比较简便,那么我们能不能把这三个算式像加法竖式那样合并成一个竖式呢?下面就请大家打开课本第74页看看小英是怎样列出乘法竖式的?
课件一步一步展示竖式的书写过程,突出书写的步骤和书写的位置,边演示边说明如果没有电脑设备,也可板书:先出示有部分积相加的竖式,再出示简便竖式,并说明为什么可以写成简便竖式。
学生在练习本上完成“做一做”的三题,教师巡视了解情况如有发现错误,指导订正。
五、巩固练习。
学生完成练习十六的作业每道题先让学生估算,然后再用竖式计算。第1题让学生独立完成后,说说为什么是用乘法计算。第2题让学生独立完成后,同桌互相检查并说说自己是怎么算的。第3题让学生独立完成后,再交流这道题有哪几种算法。
《笔算乘法》教案
【教学内容】
教科书第76页例2,77页练习十七。
【教学目标】
使学生初步掌握多位数乘一位数(不连续进位的)笔算方法使学生明白、理解进位的道理,培养学生初步的数学应用意识。
【教学重、难点】
笔算时乘的顺序及当某一位上乘得积满几十时怎么进位。
【教具、学具准备】
课件、小棒等。
【教学过程】
一、沟通联系,创设情境,提出问题。
1、笔算(让学生板演)。
共同订正,指名学生说一说计算过程。
2、课件出示例2王老师买连环画的情境图引出小精灵提出的问题“王老师买了多少本连环画?”。
二、自主探索,解决问题。
1、学生利用手中的小棒摆摆看,独立探索、思考计算方法。
2、小组内交流,讨论,形成统一的意见。
3、学生汇报选择的计算方法,集体研讨辩论,根据学生的回答板书。
教师归纳总结:我们在笔算18×3时,先从第一个因数的个位乘起,用3乘第一个因数个位上的8得24,积满十,向十位进2,在积的个位上写4;再用3乘第一个因数十位上的1得3个十,再加上进上来的2个十是5个十,在积的十位上写5,为了书写简便,通常笔算竖式写成第二种形式。
三、拓展练习,指名演板。192 ×4 ——
192 ×34 ——
教师归纳总结:
我们在笔算192×4时,先用4乘第一个因数个位上的2得8,在积的个位上写8;再用4乘第一个因数十位上的9得36个十,积满300,向百位进3,在积的十位上写6;用4乘第一个因数百位上的1得4个百,再加上进上来的3个百是7个百,在积的百位上写7,为了书写简便,通常笔算竖式写成第二种形式
四、总结算法。
笔算多位数乘一位数(不连续进位)时,从第一个因数的个位乘起,先算几个一,再算几个十,几个百,计算过程中哪一位上乘得的积满几十,就向前一位进几。
四、应用提高。
1、完成教科书第76页的做一做,并集体订正,指名说一说,哪道题的计算有错,错在哪里,怎样改正。
2、完成练习十七。
五、全课总结。
引导学生说一说笔算多位数乘一位数(不连续进位)时应该注意什么?
《笔算乘法》教案
【教学内容】
教材第78页例3及做一做、第79页例4及做一做。
【教学目的】
1、使学生掌握需要连续进位的多位数乘一位数的笔算方法,能够正确进行计算。
2、培养学生初步的迁移类推能力。
3、渗透数学知识来源于生活实际的思想,培养学生初步的数学应用意识。
【教学重、难点】
进位叠加是本节教学的重点,也是本节教学的难点。
【教具准备】
课件等
【教学过程】
一、复习。口算下列各题。
二、新课。
(1)、出示例3的课件,指名学生说题意:有9箱矿泉水,每箱24瓶,一共多少瓶?(2)、指三个学生到黑板前用竖式板演,让其它同学在练习本上试着算教师巡视,注意发现学生计算过程中的问题。
(3)、大多数学生做完后,教师带领全班学生共同订正先请计算正确的学生说一说计算过程,再请有错的学生说出错在什么地方教师还可以举典型错式并要学生说说错在什么地方?
(4)、教师结合题目提醒学生注意:用第二个因数乘第一个因数的十位数时,要看看个位上乘得的积有没有进位,如有进位,不要忘记加上进上来的数。
三、做“做一做”中的题目。
学生做题时,教师注意发现学生的计算顺序、连续进位的方法、积的书写位置等方面的问题订正时,让学生针对所发现的问题,学生说说乘的顺序,连续进位时应注意些什么?
四、出示例4课件。
指名让学生说说题意:运动场的看台分为8个区,每个区有634个座位,运动场最多可以坐多少人?
①、指名学生板演,其余的学生自己做,再让同桌两个同学互相说说自己是怎么计算的。②、大多数学生做完后,教师带领全班学生共同订正、讨论。③、学生最可能发生的错误是:(1)忘记加后面进上来的数。
(2)进位时加错(因为这里又要算乘又要算加)。(3)错用进上来的数去乘另一个因数。
④、教学本例题时,教师引导学生每算一步,都看看有没有进位,进的是几,把进上来的数记在竖式相应位置的横线上,算前一位的积时,要想想有没有漏加后面进上来的数,算完以后,再检查一两遍。
⑤、请计算正确的学生说一说计算的过程,再请计算有错的学生说出错在什么地方,是什么原因造成的,今后计算要注意些什么?
⑥、做79页的做一做,指名上黑板演板,订正时,要提醒学生注意,计算时要特别细心,算完后一定要仔细检查。
五、课堂练习。
1、做练习十八的第1题,让学生独立用竖式计算,教师巡视,然后集体订正。
2、做练习十八的第2题,让学生列出算式,再计算,然后集体订正,订正时让学生说说是怎样列式的。
六、阅读第82页后面的“你知道吗?”然后教师可适当再解释一下,并提醒学生计算时看清运算符号。
七、课堂小结:
今天,我们学习了连续进位的多位数乘一位数的笔算乘法,笔算时每一位上乘的积都要加上从低一位进上来的数,所以我们在计算时要认真、仔细,算完后要养成检验的习惯。
《笔算乘法》教案
【教学内容】
教科书第83—84页的例5,例6和“做一做”的习题,练习十九的第1—4题。
【教学目的】
1、使学生掌握0和任何数相乘都得0。
2、使学生掌握因数中间有0的乘法的计算方法。
【教学过程】
一、复习。
1、口答。
(1)3×4表示几个几相加?(2)2×5表示几个几相加?
2、填空(出示小黑板)。一个因数是一位数的乘法法则:
(1)、从个位起,用一位数依次乘另一个因数的每一位数。(2、)哪一位上乘得的积满十,就向前一位进几。
二、新课。
1、教学例5。
(1)、教师在课桌上摆3个盘子,每个盘子放2个苹果提问: 有几个盘子?每个盘子里放了几个苹果?(板书:222)
3个盘子里一共有多少个苹果?用加法怎样算?(在原板书上写出:2+2+2=6)用乘法怎样算?(板书:2×3=6)。2×3表示几个几相加?(3个2相加)(2)、教师从每个盘子里拿走1个苹果提问: 现在每个盘子里有几个苹果?(1个)
3个盘子里一共有几个苹果?用加法怎样算?(板书:1+1+1=3)用乘法怎样算?(板书:1×3=3)
这个算式表示几个几相加?(3个1相加)(3)、教师再从每个盘子里拿走1个苹果,再问: 现在每个盘子里有几个苹果?(0个或1个也没有)。要求3个盘子里一共有多少个苹果,用加法怎样列式?(板书:0+0+0=0)
用乘法怎样算?想一想是求几个几相加。(板书:0×3=0)
“0×3”表示什么呢?(3个0相加)。
“0×3”表示3个0相加,结果得0想一想,0×5等于多少呢?为什么?(0×5表示5个0相加,结果得0。教师在黑板上板书出下面的两组算式: 3×4=4×3=5×6=6×5=
让学生说出得数后问:每一组的得数怎样?(都相等)。师:我们刚学过0×3=0,那么3×0得多少呢? 学生回答后,教师在0×3=0的下面板书出3×0=0。再出一组算式0×9和9×0让学生回答得数是多少。最后出0×0让学生填,得出0×0=0。
教师小结:大家看这些算式,0乘以一个数和一个数乘以0都得0,0乘以0也得0,所以0和任何数相乘都得0,教师把写好的“0和任何数相乘都得0”这句话的小黑板挂出来。
2、教学例6 教师先出示112×4,让学生用竖式计算订正时,让学生说说用一位数乘多位数乘的顺序和积的书写位置然后将112改为102师:102×4,因数中间有0,乘的顺序和积的书写位置同112×4的是一样的乘的时候也要用一位数去乘另一个因数的每一位数,多位数十位上的0也要乘,乘得的积是0,要在积的十位上写0教师边说边把算式的得数写出来教学1005×6,先让学生自己做一做。
教师巡视,注意了解学生做的情况大多数学生做完后,请
一、两个计算正确的学生说一说计算过程,教师再结合学生计算中的问题,重点讲一讲:6乘多位数十位上的0得0本来应在十位上写0,但个位进上来3,所以必须加上进上来的3因此,要在积的十位上写36乘百位上的0得0,十位没向百位进位,所以在积的百位上应写0教师还要强调:因数中间不管有几个0,都要一个一个地乘,乘得的0也不能省略;如果有进上来的数必须加上,不能漏掉。3、6下面的“做一做”的第2题。
教师巡视,发现问题给予个别辅导,然后集体订正。
三、课堂练习。
练习十九第1题指名让
一、两个学生说说是怎样计算的。
练习十九第2题可以带领学生一起做一道小题,使学生明白题意,先要进行乘法计算,再进行比较。
练习十九第3题学生独立完成,集体订正时,让学生说一说解题思路。
《笔算乘法》教案 【教学内容】
课本第86页的例7 【教学目标】
(一)通过一般演算和简算的对比,让学生悟出简算的方法。
(二)使学生能够正确地进行一个因数末尾有0的乘法简算。
(三)培养学生的计算能力。
【教学重、难点】
(一)重点:理解算理、掌握法则、正确地进行一个因数末尾有0的乘法笔算。
(二)难点:准确、迅速地进行一个因数末尾有0的乘法笔算。
【课前准备】
教具:课件。
【教学过程设计】
复习准备。
1教师谈话:同学们,前面我们学习了一个因数中间有0的乘法笔算,今天,我们一起学习一个因数末尾有0的乘法笔算。
(板书课题:一个因数末尾有0的乘法)。2口算下面各题,并回答问题(课件)。
请你观察每一组题,你发现以上各算式有什么特点(末尾有0)。它们的乘积有什么特点?(它们的乘积有0的个数和因数0个数相同)。
说一说200×3,340×2你是怎样想的?为什么这样计算?怎样计算简便?(200×3,200是2个100,2个100乘以3是6个100,是600)(340×2,340是3个100,4个10,3个100乘以2是6个100,是600,4个10乘以2是8个10是80,600加上80是680)。
师问:还可以怎样想?(200×3,先用2乘以3得6,再在后面添2个0得600)(340×2,先用34乘以2得68,再在后面添上1个0得680)。
以上两种算法,用哪种算法比较简便?(用第二种算法比较简便)。
教师结合学生的回答总结:因数末尾有0的乘法题,可以先用一位数乘另一个因数中前面的数,再看因数末尾有几个0,就在乘得的数的后面添上几个0。
3用最快的速度口算出得数。120×34
30×2
300×3
2000×4 4用竖式计算下面各题。35×3=
25×3= 学习新课。
1、出示例题:350×3。
提问:350是多少个十?(35个10)。
3个35个十是多少”(105个十,也就是1050)。
2、观察复习中的35×3=105和例题350×3=1050这两个竖式,你能想出350×3=1050还有更简便的算法吗?
教师引导着学生概括出简便计算的竖式写法:要把一位数写在另一个因数0前面的数字下边,计算时不用管0,算好后,因为积是表示几个十,所以要在得数的后面添写一个0学生边说,老师边板书。
算法竖式相比较,指出:这两种算法竖式的写法不同,计算结果一样,后一种比较简便。
3、让学生试算2500×3,要求用简便方法,一人到黑板上板演,其他人做在练习本上,如有疑惑的地方,同桌可以商量。
提问:2500×3为什么得7500?(因为2500是1个2000和1个500组成,3个2000是6000,3个500是1500,6000加上1500得7500)从竖式上看,乘得的75后面为什么添上2个0?(因为末尾有2个0,所以得在乘得的数的末尾添上2个0)。
4、师生共同概括出因数末尾有0的乘法的简便算法:一位数乘多位数,遇到因数末尾有0的时候,可以先用一位数去乘0前面的数,再看因数末尾有几个0,就在乘得的数的末尾添写几个0。
巩固反馈
1、不用计算,直接写出得数: 已知18×4=72已知12×8=96 180×4=
120×8= 1800×4=
1200×8=
已知105×3=315已知14×5=70 1050×3=
140×5= 10500×3=
1400×5=
2、列式并计算:
18,180,1800的4倍各是多少?
3、一条蚕大约吐丝1500米,6条蚕大约吐丝多少米?
4、综合练习(在规定时间内做对的同学奖红五星,有问题的同学给予指导帮助)1900×3
4060×5
2700×4
5206×7 小结:
同学们,这节课你又掌握了什么新知识?(因数末尾有0的乘法的简便算法)因数末尾有0的乘法怎样算简便?在用简便算法计算的过程中,要先乘0前面的数,得出结果以后再添0。
第二篇:《笔算乘法》教案2
《笔算乘法》教案2
笔算乘法(4课时)第1课时
教学内容:63页例
1、做一做,练习十五1、2题。教学目标:
让学生经历两位数乘两位数的笔算过程,学会计算两位数乘两位数进位的乘法。在学习活动中感受数学与生活的密切联系。
教学重点:学会计算两位数乘两位数进位的乘法(不进位)。教学过程:
一、提出问题。
呈现例1的画面,让学生观察
用完整的话把这幅图的内容、问题说一说。
请学生说一说用什么方法解决这个问题,从而列出算式24×12。
二、探讨计算方法
1、各组讨论:怎样计算24×12。请把想出的计算方法写在纸上。
2、组织交流。
各组展示本组的算法。不容易说清楚的,就写在黑板上。方法一: 24×10 = 240 24×2 = 48 240 + 48 = 288
方法二:
4
× 1 2 48 ……24×2的积
4
……24×10的积(个位的0不写)
8 8
3、师生评议。
(1)请学生说一说,喜欢哪种方法?为什么?(2)教师对学生发表的意见作以肯定或补充。(3)重点评议笔算。
用检查竖式每一步计算的方式,再现笔算过程。
三、练习
1、尝试练习。
用竖式计算63页“做一做”的8道题。请几名学生上黑板板演,讲评。
2、独立完成练习十六第1题。
四、总结
1、请学生讨论笔算乘法时要注意什么问题,并交流。
2、教师强调:用竖式计算时,每次乘得的数的末位应该和那一位对齐。还要注意记住进位数,正确处理进位问题。
第2课时
教学内容:笔算乘法的练习课(完成练习十五的相关练习)教学目标:
1、通过练习,使学生进一步熟练掌握两位数乘两位数的笔算方法。
2、能解决用乘法计算的实际问题。教学过程:
一、基本练习:
1、学生回顾上节课学习的内容。
2、口算练习:
60×20 80×20 60×40
300×70 30×80 12×40
330×2
240×2
60×3
33×30
3、笔算: 练习十五第2题:
39×11
31×31
23×33
22×24
12×41
21×32 请6名学生上黑板板演,其他学生每题都做。讲评。说说两位数乘两位数笔算该注意什么?
4、正误辩析:
教师用小黑板出示4道计算出现错误的笔算式题,让学生判断正误,并进行改正。
二、解决问题:
1、完成练习十五第3题:(1)引导学生看图,获取信息。
(2)同桌互相说:把图上的意思完整的说一说。(3)独立列出算式,并用竖式笔算。(4)集体讲评。
2、学生独立完成练习十五第4题:
三、综合练习:
完成《学案》相应的练习。
四、学习总结:
说说这节课有什么收获?笔算乘法要注意什么?
第3课时
教学内容:65页例
2、做一做,练习十六1、2题。教学目标:
让学生经历两位数乘两位数的笔算过程,学会计算两位数乘两位数进位的乘法。在学习活动中感受数学与生活的密切联系。
教学重点:学会计算两位数乘两位数进位的乘法。教学过程:
一、提出问题。
呈现下围棋的画面,介绍有关围棋赛的事例或战绩。
放大棋盘,让学生观察棋盘结构。使学生了解到:围棋的棋盘面由纵横19道线交叉组成。接着,把棋子放在纵横线的交叉点上,引出问题:“棋盘上一共有多少个交叉点?” 请学生说一说用什么方法解决这个问题,从而列出算式19×19。
二、探讨计算方法
1、各组讨论:怎样计算19×19。请把想出的计算方法写在纸上。
2、组织交流。
各组展示本组的算法。不容易说清楚的,就写在黑板上。
3、师生评议。
(1)请学生说一说,喜欢哪种方法?为什么?
(2)教师对学生发表的意见作以肯定或补充。使学生了解每一种算法的特点和适用范围。例如,估算的方法能很快算出大约有400个交叉点,但它不能满足解决问题的要求。(3)重点评议笔算。
用检查竖式每一步计算的方式,再现笔算过程。
三、练习
1、尝试练习。
用竖式计算65页“做一做”中的4道题。
2、完成练习十六第1、2题。
四、总结
1、请学生讨论笔算乘法时要注意什么问题,并交流。
2、教师强调:用竖式计算时,每次乘得的数的末位应该和那一位对齐。还要注意记住进位数,正确处理进位问题。
第4课时
教学内容:笔算乘法的练习课(完成练习十六的相关练习)教学目标:
1、通过练习,使学生进一步熟练掌握两位数乘两位数(进位)的笔算方法。
2、能解决用乘法计算的实际问题。教学过程:
一、基本练习:
1、学生回顾上节课学习的内容。
2、开火车进行口算练习:
40×20
60×20
80×40 400×70 12×30 12×40
44×20
230×2 70×3
11×400
3、笔算练习(进位与不进位的对比): 23×31
33×31
43×12
11×25 23×34
54×13
39×27
17×28(1)学生笔算。
(2)请学生观察比较:上行的题目和下行的题目有什么异同?
(3)学生讨论交流:它们的计算方法是一样的,不同的是上行的题目计算时没有进位,而下一行的题目需要进位。
(4)说说笔算乘法要注意什么?
4、正误辩析:
教师用小黑板出示6道计算出现错误的笔算式题,让学生判断正误,并进行改正。
二、解决问题:
1、完成练习十六第3题:(1)引导学生看图,获取信息。
(2)同桌互相说:把图上的意思完整的说一说。(3)独立列出算式,并用竖式笔算。(4)集体讲评。
2、学生独立完成练习十五第4题、第8题。
第8题:在解决这道题时,是不是所有的信息都用上?为什么“每套12张”用不上?这样的题目给了你什么启示?
三、综合练习:
独立完成练习十六第5、6、7题。
四、学习总结:
说说这节课有什么收获?笔算乘法要注意什么?
第三篇:《笔算乘法》教案
《笔算乘法》教案
教学目标:
.知识目标:
让学生经历两位数乘两位数的笔算过程,学会计算两位数乘两位数进位的乘法。
2.能力目标:
学会计算两位数乘两位数进位的乘法。
3.情感目标:
在学习活动中感受数学与生活的密切联系。
教具准备:
多媒体(有下围棋的录像或画面)或投影仪;多个南瓜形算式卡片(每张上一个算式)。
教学过程:
一、创设情景、生成问题:
.口算
20×16=
5×30=
84×40=
27×50=
33×20=
30×52=
8×10=
91×20=
2.笔算
36×5=
22×24=
3.呈现下围棋的录像或画面:
师:同学们,你们谁会下围棋呀?若学生没有围棋方面的知识老师介绍有关围棋赛的事例。
放大棋盘,让学生观察棋盘结构。使学生了解到:围棋的棋盘面由纵横19道线交叉组成。
接着,把棋子放在纵横线的交叉点上,引出问题:“棋盘上一共有多少个交叉点?”,请学生说一说用什么方法解决这个问题,从而列出算式19×19。(板书19×19)
二、探索交流、解决问题:
.各组讨论:怎样计算19×19。
请把想出的计算方法写在纸上。
2.组织交流。
各组展示本组的算法。不容易说清楚的,就写在黑板上。
(1)19≈20
(2)20×19=380
(3)
20×20=400
380-19=361
×19
361
3.师生评议。
(1)请学生说一说,喜欢哪种方法?为什么?
(2)教师对学生发表的意见作以肯定或补充。使学生了解每一种算法的特点和适用范围。例如:估算的方法能很快算出大约有400个交叉点,但它不能满足解决问题的要求,口算的方法适合一个因数接近整十数,而有些题运用笔算比较简单。
老师总结:我们这节课主要学习第三种方法:两位数乘两位数的笔算(板书课题:两位数乘两位数的笔算)。
4.学习笔算。
让学生看板书,把笔算过程结合题目让学生说一说,先让优等生说一说。(19×19先用9×19,九九八十一,写1进8,一九得九,9+8=17,第一层是171,再用十位1乘19,一九得九,9对着十位写,一一得一,第二层就是190,0省略不写;171+190=361)教师重点标出。
观察今天学习的两位数乘两位数与昨天学的有什么不同(今天有进位,昨天学的没有进位,补充板书)
让学生根据刚才的计算过程再重新算一遍。师巡视,给予指导。
三、巩固应用、内化提高
.尝试练习。
用竖式计算第65页“做一做”中的4道题。可以让几个组的学生做前2道,另几个组的学生做后2道题。
完成计算后,组织交流。说出笔算的过程,加深学生对笔算过程的了解。
2.完成练习十六第1题。
独立计算,集体订正。根据班上出现错题的情况,和学生一起讨论错误的原因,请学生订正错题。请学生注意:计算时要认真仔细。
3.完成练习十六第2题。
贴出写有算式的南瓜卡片。用语言描述菜园里收南瓜的情境,请同学们帮助菜农收南瓜。
让学生自由选择卡片,算对的就收获了这个南瓜。
完成后,先检查是不是算对了,再比一比哪组学生收获的南瓜多。奖励优胜组。
四、回顾整理,反思提升
.请学生讨论笔算乘法时要注意什么问题,并交流。
2.教师强调:用竖式计算时,每次乘得的数的末位应该和那一位对齐。还要注意记住进位数,正确处理进位问题。
五、作业设计
.笔算下面各题
43×28=
51×37=
8×24=
35×58=
32×27=
45×26=
53×17=
65×28=
2.学校有56个班级,每班有45人,全校共有多少名学生?
3.有28棵桃树,每行19棵,一共有多少棵桃树?
4.今天李叔叔商店里运进18箱香蕉,每箱重16千克,每箱售价50元。
(1)李叔叔一共运进多少千克香蕉?
(2)你还能提出什么数学问题?
第四篇:笔算乘法教案
一、教材依据
根据《义务教育课程标准实验教材》三年级数学下册,人民教育出版社出版,第五章第二节笔算乘法第一课时设计的。
二、设计思路
指导思想:以学生为中心,激发学生学习兴趣为主,教师侧面引导为辅,让学生在错误中寻找真知,探求数学计算之奥妙。
设计理念:复习旧知,设问导入,例题范演,解释算理,习题演练,纠正错误,掌握新知。
教材分析:本节是在已学过的乘法认识与乘法口诀,多位数乘以一位数的乘法以及口算两位数乘以整十数和估算两位数乘两位数的基础上进行的,是今后学习两位数乘三位数,多位数乘多位数,小数乘法的基础。
学情分析:本节是在学生能够比较熟练口算整
十、整百数乘以一位数,两位数乘以一位数(每位乘积不满十),并且掌握了多位数乘以一位数的计算方法,还学会了口算两位数乘以整十数和估算两位数乘以两位数的基础上进行的。
三、教学目标
1.掌握两位数乘以两位数的不进位乘法的笔算方法(列竖式计算)。
2.理解用第二个因数的十位上的数乘第一个因数得多少个十,乘得的数的末位要和因数的十位对齐。
3.培养学生良好的书写习惯,树立细节决定成败的思想。
4.引导学生在学习过程中体会到计算机的广泛应用,激发学生热爱科学,学习科学,长大用科学为人类服务。
四、教学重点
1.掌握两位数乘以两位数(不进位)的笔算方法,并会正确计算。
2.解决乘的顺序和第二部分积的书写位置问题。
五、教学难点
理解笔算两位数乘以两位数(不进位)的计算原理。
六、教学准备
教师制作课件,搜集图片,设计复习题和巩固练习题;学生准备数学练习本和笔,提前预习本节内容。
七、教学过程
一)教学内容:笔算乘法课本第63页的例1及做一做
(二)教学方法:示范法和探究法
(三)教学策略:以提问形式激发学生思考,辅助引导以发挥学生的主动探究能力
(四)教学进程:
1.学前准备
(1)口算:
(2)估算:
(3)笔算并说出计算过程:
2.新知学习
同学们,我们之前学会了多位数乘以一位数的计算方法,请同学们现在思考:如果两位数乘以两位数,我们应该如何进行计算呢?有没有同学知道(知道的请讲述计算方法并给予肯定)。今天呢,我们就一起研究一下两位数乘以两位数的不进位笔算乘法(出示标题)。
(1)教学问题提出
出示课本例2的主题图,让学生说一说这幅图所展示的情景是什么(小丽和妈妈去书店买书,小丽买一套12本的书,每本24元,她在想妈妈一共要付多少钱?)
(2)分析解决问题
学生分组讨论,帮助小丽解决这个问题(),教师引导学生思考这是一道什么样的乘法算式(两位数乘以两位数的乘法算式),请同学们帮助小丽估算一下妈妈要付多少钱()?如果妈妈给营业员阿姨200元,营业员阿姨同意不?说清判断理由。启发学生用学过的知识做具体计算:
可分成三步进行计算,第一步:;第二步:;第三步:,从而得到(或者,)。
教师对于正确做出答案的同学给予表扬,在计算的过程中,部分同学提前很好的预习了本节内容,运用了书上的列竖式进行笔算,却对书上的列竖式笔算过程不是很理解,教师可让学生提出自己的疑惑引起大家的思考,并对提出的问题给予表扬。
(3)教师演示笔算方法 24×12=288 2 4
24×10=240 × 1 2(因数12中的1代表一个十)× 1 2 24×2=48
8(48是24×2的积)8 240+48=288 + 2 4 0(240是24×10的积)
+ 2 4
8(个位上的0可不写,如右式)
8
(4)归纳总结计算方法
在列竖式计算当中,数位要对齐,用哪一个数位上的数去乘哪个因数的数位上的数与所得的积的末位必须与哪个数位对齐,通常是从因数的最低位乘起,乘完后再把所乘得的积加起来。
3.知识强化
(1)完成课本上第63页做一做
前4题让学生上黑板练习,完成后说出计算过程,教师在学生讲解前将第二部分乘积用红色笔描出来,引起同学们的注意。(2)知识强化
①判断正误,对的画“√”,错的画“×”,并改正过来。2 2
2 ×1 4
×1 3
×1 3 8()
6()
6()2 2
2 1 1 8
6
1 6 ②一家饭店买来22袋大米,每袋24元,问买这些大米共需多少钱? 4.课堂小结
同学们,今天我们学习了什么内容?需要注意什么问题?(今天我们学习了两位数乘以两位数的不进位笔算乘法,应注意用十位上的数去乘第一个因数时,乘得的数的末位数要和十位上的数对齐,也就是和个位乘得的积错开一位)5.作业设计
课本上64页练习十五第一题,要求列竖式计算。
八、板书设计
两位数乘以两位数(不进位)笔算乘法 24×12=288 2 4
24×10=240 × 1 2(因数12中的1代表一个十)
× 1 2 24×2=48 8(48是24×2的积)8 240+48=288 + 2 4 0(240是24×10的积)
+ 2 4
8(个位上的0可不写,如右式)
8 教学反思
1.学生在列竖式进行了两位数乘以两位数的计算过程中,对计算原理的理解有困难,要多给予解释说明和思考时间。
2.在计算过程中,由于不细心造成两部分积的错位,导致结果不正确,在练习讲解过程中,要给予指导,注意书写习惯的培养。
3.部分同学对乘法口诀不熟,导致计算错误,要在课前给予强调,并引导学生熟练掌握口诀。
第五篇:笔算乘法教案
“笔算乘法”教学设计
瓦岗寨乡大范庄小学 张瑞
【教学内容】
人教版《义务教育课程标准实验教科书·数学(三年级上册)》第74页。【教学目标】
1.使学生在尝试写竖式、小组讨论交流算法的过程中掌握笔算乘法的书写格式和算理。
2.培养学生的问题意识和多策略解决问题的能力,体现联系生活学数学的思想。【重点难点】
重点:多位数乘一位数(不进位)乘法的计算方法 难点:竖式计算算理 【教学过程】
一、出示口算题
同学们请看口算,看谁速度快
1.请同学们把书翻到七十四页,这是我们今天要学习的内容,请你认真的读一读、看一看,哪些地方是你看懂的,那些地方是你不懂的地方,把不懂的用笔做上记号。
2.小组讨论互相学习。然后把书合上。
二、提出问题。课件出示情景图。
师:图上的小朋友在干什么?(画画)一副画画的情景含有那些数学信息呢?
生:3个小朋友。三张图画纸。三盒彩笔。„„ 师生共同处理数学信息。并让学生独立提出数学问题:
生1:一共有多少张图画纸? 生2:一共有多少枝彩笔?
师:同学们提出了这么多的问题,真了不起!我们先来解决其中的一个。要求一共有多少枝彩笔,会列算式吗? 生:3×112×3
三、猜想结果,方法验证:
师:估计一下,12×3大约等于几?解说一下,你是怎样估计的? 师:用什么方法就得到12×3准确的结果呢?同学们先商量一下,找出自己喜欢的方法。
请几名代表汇报交流,师板书有代表性的思路:学生讲解各自的思路。
四、提供空间,探索竖式
师:数学讲究简炼,除了以上方法,你还能创造出一种更简单,计算得更快的一种书写形式吗?请你们发挥自己的聪明才智,试一试。(师巡回指导)
教师指定几个人到黑板上板书:师:同学们自己想出了这么多的方法,真了不起,现在同学们来评价一下,你来说一说我的思路,我来说一说你的思路,猜一下,他们在做的时候是怎么想的,先在小组
内说一说。生自由谈: „„生评价得出最简练的方法。列竖式乘时应注意:先从个位乘起,用多位数每一位上的数分别乘这个一位数,再把所得相加。
五、规范格式,归纳方法。
师:(课件演示)师强调竖式的书写格式和计算方法。揭示课题:这就是我们这一节研究的内容:笔算乘法。
师:乘法算式中,各部分都有自己的名称,我们把这两个相乘的数都叫做因数,最后的得数叫做积。乘法竖式时应注意什么?先从个位乘起,用多位数每一位上的数分别乘这个一位数,再把所得相加。师:现在请同学们,闭上眼睛回想一下,12×3笔算竖式的过程和方法。
六、解决问题,拓展应用。
1.解决问题,巩固应用。师:我们刚才解决了一个问题,还有两个问题没有解决。请同学们列式并用竖式解答。学生独立解答,相互交流算法2.一步一步往上爬3.解决问题4.竖式计算,比比谁厉害5.解决问题
七、知识梳理,师生小结。(略)