第一篇:高二数学《等差数列》教学设计
【小编寄语】查字典数学网小编给大家整理了高二数学《等差数列》教学设计,希望能给大家带来帮助!
(一)教学目标
1.知识与技能:通过实例,理解等差数列的概念;探索并掌握等差数列的通项公式;能在具体的问题情境中,发现数列的等差关系并能用有关知识解决相应的问题;体会等差数列与一次函数的关系。
2.过程与方法:让学生对日常生活中实际问题分析,引导学生通过观察,推导,归纳抽象出等差数列的概念;由学生建立等差数列模型用相关知识解决一些简单的问题,进行等差数列通项公式应用的实践操作并在操作过程中,通过类比函数概念、性质、表达式得到对等差数列相应问题的研究。
3.情态与价值:培养学生观察、归纳的能力,培养学生的应用意识。
(二)教学重、难点
重点:理解等差数列的概念及其性质,探索并掌握等差数列的通项公式;会用公式解决一些简单的问题,体会等差数列与一次函数之间的联系。
难点:概括通项公式推导过程中体现出的数学思想方法。
(三)学法与教学用具
学法:引导学生首先从四个现实问题(数数问题、女子举重奖项设置问题、水库水位问题、储蓄问题)概括出数组特点并抽象出等差数列的概念;接着就等差数列的特点,推导出等差数列的通项公式;可以用多种方法对等差数列的通项公式进行推导。
教学用具:投影仪
(四)教学设想
[创设情景]
上节课我们学习了数列。在日常生活中,人口增长、教育贷款、存款利息等等这些大家以后会接触得比较多的实际计算问题,都需要用到有关数列的知识来解决。今天我们就先学习一类特殊的数列。
[探索研究] 由学生观察分析并得出答案:
(放投影片)在现实生活中,我们经常这样数数,从0开始,每隔5数一次,可以得到数列:0,5,____,____,____,____,2000年,在澳大利亚悉尼举行的奥运会上,女子举重被正式列为比赛项目。该项目共设置了7个级别。其中较轻的4个级别体重组成数列(单位:kg):48,53,58,63。
水库的管理人员为了保证优质鱼类有良好的生活环境,用定期放水清理水库的杂鱼。如果一个水库的水位为18cm,自然放水每天水位降低2.5m,最低降至5m。那么从开始放水算起,到可以进行清理工作的那天,水库每天的水位组成数列(单位:m):18,15.5,13,10.5,8,5.5
我国现行储蓄制度规定银行支付存款利息的方式为单利,即不把利息加入本金计算下一期的利息。按照单利计算本利和的公式是:本利和=本金(1+利率寸期).例如,按活期存入10 000元钱,年利率是0.72%。那么按照单利,5年内各年末的本利和分别是:
时间年初本金(元)年末本利和(元)
第1年10 00010 072
第2年10 00010 144
第3年10 00010 216
第4年10 00010 288
第5年10 00010 360
各年末的本利和(单位:元)组成了数列:10 072,10 144,10 216,10 288,10 360。
思考:同学们观察一下上面的这四个数列:0,5,10,15,20,①
48,53,58,63 ②
18,15.5,13,10.5,8,5.5 ③
072,10 144,10 216,10 288,10 360 ④
看这些数列有什么共同特点呢?
(由学生讨论、分析)
引导学生观察相邻两项间的关系,得到:
对于数列①,从第2项起,每一项与前一项的差都等于 5;
对于数列②,从第2项起,每一项与前一项的差都等于 5;
对于数列③,从第2项起,每一项与前一项的差都等于-2.5;
对于数列④,从第2项起,每一项与前一项的差都等于 72;
由学生归纳和概括出,以上四个数列从第2项起,每一项与前一项的差都等于同一个常数(即:每个都具有相邻两项差为同一个常数的特点)。
[等差数列的概念]
对于以上几组数列我们称它们为等差数列。请同学们根据我们刚才分析等差数列的特征,尝试着给等差数列下个定义:
等差数列:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列。
这个常数叫做等差数列的公差,公差通常用字母d表示。那么对于以上四组等差数列,它们的公差依次是5,5,-2.5,72。
提问:如果在 与
中间插入一个数A,使
,A,成等差数列数列,那么A应满足什么条件?
由学生回答:因为a,A,b组成了一个等差数列,那么由定义可以知道:
A-a=b-A
所以就有
由三个数a,A,b组成的等差数列可以看成最简单的等差数列,这时,A叫做a与b的等差中项。
不难发现,在一个等差数列中,从第2项起,每一项(有穷数列的末项除外)都是它的前一项与后一项的等差中项。
如数列:1,3,5,7,9,11,13中5是3和7的等差中项,1和9的等差中项。9是7和11的等差中项,5和13的等差中项。
看来,从而可得在一等差数列中,若m+n=p+q则
[等差数列的通项公式]
对于以上的等差数列,我们能不能用通项公式将它们表示出来呢?这是我们接下来要学习的内容。
⑴、我们是通过研究数列
的第n项与序号n之间的关系去写出数列的通项公式的。下面由同学们根据通项公式的定义,写出这四组等差数列的通项公式。
由学生经过分析写出通项公式:
① 这个数列的第一项是5,第2项是10(=5+5),第3项是15(=5+5+5),第4项是20(=5+5+5+5),由此可以猜想得到这个数列的通项公式是
② 这个数列的第一项是48,第2项是53(=48+5),第3项是58(=48+52),第4项是63(=48+53),由此可以猜想得到这个数列的通项公式是
③ 这个数列的第一项是18,第2项是15.5(=18-2.5),第3项是13(=18-2.52),第4项是10.5(=18-2.53),第5项是8(=18-2.54),第6项是5.5(=18-2.55)由此可以猜想得到这个数列的通项公式是
④ 这个数列的第一项是10072,第2项是10144(=10172+72),第3项是10216(=10072+722),第4项是10288(=10072+723),第5项是10360(=10072+724),由此可以猜想得到这个数列的通项公式是
⑵、那么,如果任意给了一个等差数列的首项
和公差d,它的通项公式是什么呢?
引导学生根据等差数列的定义进行归纳:
(n-1)个等式
所以
思考:那么通项公式到底如何表达呢?
得出通项公式:由此我们可以猜想得出:以
为首项,d为公差的等差数列的通项公式为:
也就是说,只要我们知道了等差数列的首项
和公差d,那么这个等差数列的通项
就可以表示出来了。
选讲:除此之外,还可以用迭加法和迭代法推导等差数列的通项公式:(迭加法):
是等差数列,所以
两边分别相加得
所以
(迭代法):
是等差数列,则有
所以
[例题分析]
例
1、⑴求等差数列8,5,2,的第20项.⑵-401是不是等差数列-5,-9,-13,的项?如果是,是第几项?
分析:⑴要求出第20项,可以利用通项公式求出来。首项知道了,还需要知道的是该等差数列的公差,由公差的定义可以求出公差;
⑵这个问题可以看成是上面那个问题的一个逆问题。要判断这个数是不是数列中的项,就是要看它是否满足该数列的通项公式,并且需要注意的是,项数是否有意义。
解:⑴由
=8,d=5-8=-3,n=20,得
⑵由
=-5,d=-9-(-5)=-4,得这个数列的通项公式为
由题意知,本题是要回答是否存在正整数n,使得-401=-4n-1成立。
解这个关于n的方程,得n=100,即-401是这个数列的第100项。
例题评述:从该例题中可以看出,等差数列的通项公式其实就是一个关于
、、d、n(独立的量有3个)的方程;另外,要懂得利用通项公式来判断所给的数是不是数列中的项,当判断是第几项的项数时还应看求出的项数是否为正整数,如果不是正整数,那么它就不是数列中的项。
(放投影片)例2.某市出租车的计价标准为1.2元/km,起步价为10元,即最初的4km(不含4千米)计费10元。如果某人乘坐该市的出租车去往14km处的目的地,且一路畅通,等候时间为0,需要支付多少车费?
解:根据题意,当该市出租车的行程大于或等于4km时,每增加1km,乘客需要支付1.2元.所以,我们可以建立一个等差数列
来计算车费.令
=11.2,表示4km处的车费,公差d=1.2。那么当出租车行至14km处时,n=11,此时需要支付车费
答:需要支付车费23.2元。
例题评述:这是等差数列用于解决实际问题的一个简单应用,要学会从实际问题中抽象出等差数列模型,用等差数列的知识解决实际问题。
(放投影片)思考例题:例3 已知数列
的通项公式为
其中p、q为常数,且p0,那么这个数列一定是等差数列吗? 分析:判定
是不是等差数列,可以利用等差数列的定义,也就是看
(n1)是不是一个与n无关的常数。解:取数列
中的任意相邻两项
(n1),求差得
它是一个与n无关的数.所以
是等差数列。
课本左边旁注:这个等差数列的首项与公差分别是多少?
这个数列的首项
。由此我们可以知道对于通项公式是形如
的数列,一定是等差数列,一次项系数p就是这个等差数列的公差,首项是p+q.例题评述:通过这个例题我们知道判断一个数列是否是等差数列的方法:如果一个数列的通项公式是关于正整数n的一次型函数,那么这个数列必定是等差数列。
[探究]
引导学生动手画图研究完成以下探究: ⑴在直角坐标系中,画出通项公式为
的数列的图象。这个图象有什么特点?
⑵在同一个直角坐标系中,画出函数y=3x-5的图象,你发现了什么?据此说一说等差数列
与一次函数y=px+q的图象之间有什么关系。
分析:⑴n为正整数,当n取1,2,3,时,对应的 可以利用通项公式求出。经过描点知道该图象是均匀分布的一群孤立点;
⑵画出函数y=3x-5的图象一条直线后发现数列的图象(点)在直线上,数列的图象是改一次函数当x在正整数范围内取值时相应的点的集合。于是可以得出结论:等差数列
的图象是一次函数y=px+q的图象的一个子集,是y=px+q定义在正整数集上对应的点的集合。
该处还可以引导学生从等差数列
中的p的几何意义去探究。[随堂练习] 例1之后:课本45页练习第1题;例2之后:课本45页练习第2题;[课堂小结] 本节主要内容为: ①等差数列定义:即
(n2)②等差数列通项公式:
(n1)
推导出公式:
(五)评价设计
1、已知
是等差数列.⑴
是否成立?
呢?为什么? ⑵
是否成立?据此你能得出什么结论?
是否成立?据此你又能得出什么结论?
2、已知等差数列
的公差为d.求证:
第二篇:高二数学等差数列前n项和教学设计
2017-2018学第一学期教学设计
几何概型
高二(4)组 孙彦艳
教材分析
和古典概型一样,在特定情形下,我们可以用几何概型来计算事件发生的概率。它也是一种等可能概型。
教材首先通过实例对比概念给予描述,然后通过均匀随机数随机模拟的方法的介绍,给出了几何概型的一种常用计算方法。与本课开始介绍的P(A)的公式计算方法前后对应,使几何概型这一知识板块更加系统和完整。
这节内容中的例题既通俗易懂,又具有代表性,有利于我们的教与学生的学。教学重点是几何概型的计算方法,尤其是设计模型运用随机模拟方法估计未知量;教学难点是突出用样本估计总体的统计思想,把求未知量的问题转化为几何概型求概率的问题。教学目标
1.通过这节内容学习,让学生了解几何概型,理解其基本计算方法并会运用。
2.通过对照前面学过的知识,让学生自主思考,寻找几何概型的随机模拟计算方法,设计估计未知量的方案,培养学生的实际操作能力。
3.通过学习,让学生体会试验结果的随机性与规律性,培养学生的科学思维方法,提高学生对自然界的认知水平。任务分析
在这节内容中,介绍几何概型主要是为了更广泛地满足随机模拟的需要,因此,教学重点是随机模拟部分。这节内容的教学需要一些实物模型作为教具,如教科书中的转盘模型、例2中的随机撒豆子的模型等。教学中应当注意让学生实际动手操作,以使学生相信模拟结果的真实性,然后再通过计算机或计算器产生均匀随机数进行模拟试验,得到模拟的结果。随机模拟的教学中要充分使用信息技术,让学生亲自动手产生随机数,进行模拟活动。有条件的学校可以让学生用一种统计软件统计模拟的结果。教学设计
一、问题情境
如图,有两个转盘。甲、乙两人玩转盘游戏,规定当指针指向B区域时,甲获胜,否则乙获胜。
问题:在下列两种情况下分别求甲获胜的概率。
二、建立模型
1.提出问题
首先引导学生分析几何图形和甲获胜是否有关系,若有关系,和几何体图形的什么表面特征有关系?学生凭直觉,可能会指出甲获胜的概率与扇形弧长或面积有关。即:字母B所在扇形弧长(或面积)与整个圆弧长(或面积)的比。接着提出这样的问题:变换图中B与N的顺序,结果是否发生变化?(教师还可做出其他变换后的图形,以示决定几何概率的因素的确定性)。
题中甲获胜的概率只与图中几何因素有关,我们就说它是几何概型。
注意:(1)这里“只”非常重要,如果没有“只”字,那么就意味着几何概型的概率可能还与其他因素有关,这是错误的。(2)正确理解“几何因素”,一般说来指区域长度(或面积或体积)。
2.引导学生讨论归纳几何概型定义,教师明晰———抽象概括 如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型。
在几何概型中,事件A的概率的计算公式如下:
3.再次提出问题,并组织学生讨论
(1)情境中两种情况下甲获胜的概率分别是多少?
(2)在500ml的水中有一个草履虫,现从中随机取出2ml水样放到显微镜下观察,求发现草履虫的概率。
(3)某人午觉醒来,发现表停了,他打开收音机,想听电台报时,求他等待的时间不多于10min的概率。通过以上问题的研讨,进一步明确几何概型的意义及基本计算方法。
三、解释应用
[例题]
1.假设你家订了一份报纸,送报人可能在早上6:30~7:30之间把报纸送到你家,而你父亲离开家去工作的时间在早上7:00~8:00之间,问你父亲在离开家前能得到报纸(称为事件A)的概率是多少。
分析:我们有两种方法计算事件的概率。(1)利用几何概型的公式。(2)利用随机模拟的方法。
解法1:如图,方形区域内任何一点的横坐标表示送报人送到报纸的时间,纵坐标表示父亲离开家去工作的时间。假设随机试验落在方形内任一点是等可能的,所以符合几何概型的条件。根据题意,只要点落到阴影部分,就表示父亲在离开家前能得到报纸,即事件A发生,所以
解法2:设X,Y是0~1之间的均匀随机数。X+6。5表示送报人送到报纸的时间,Y+7表示父亲离开家去工作的时间。如果Y+7>X+6。5,即Y>X-0。5,那么父亲在离开家前能得到报纸。用计算机做多次试验,即可得到P(A)。
教师引导学生独立解答,充分调动学生自主设计随机模拟方法,并组织学生展示自己的解答过程,要求学生说明解答的依据。教师总结,并明晰用计算机(或计算器)产生随机数的模拟试验。强调:这里采用随机数模拟方法,是用频率去估计概率,因此,试验次数越多,频率越接近概率。
2.如图,在正方形中随机撒一大把豆子,计算落在圆中的豆子数与落在正方形中的豆子数之比,并以此估计圆周率的值。
解:随机撒一把豆子,每个豆子落在正方形内任何一点是等可能的,落在每个区域的豆子数与这个区域的面积近似成正比,即
假设正方形的边长为2,则
由于落在每个区域的豆子数是可以数出来的,所以
这样就得到了π的近似值。另外,我们也可以用计算器或计算机模拟,步骤如下:(1)产生两组0~1区间的均匀随机数,a1=RAND,b1=RAND;(2)经平移和伸缩变换,a=(a1-0。5)*2,b=(b1-0。5)*2;
(3)数出落在圆内a2+b2<1的豆子数N1,计算落在正方形中的豆子数)。
可以发现,随着试验次数的增加,得到π的近似值的精度会越来越高。
本例启发我们,利用几何概型,并通过随机模拟法可以近似计算不规则图形的面积。[练习]
1.如图30-4,如果你向靶子上射200镖,你期望多少镖落在黑色区域。
2.利用随机模拟方法计算图30-5中阴影部分(y=1和y=x2围成的部分)的面积。
(N代表
3.画一椭圆,让学生设计方案,求此椭圆的面积。
四、拓展延伸
1.“概率为数‘0’的事件是不可能事件,概率为1的事件是必然事件”,这句话从几何概型的角度还能成立吗? 2.你能说一说古典概型和几何概型的区别与联系吗? 3.你能说说频率和概率的关系吗? 点评
这篇案例设计完整,整体上按知识难易逐渐深入,同时充分调动了学生的积极性,以学生之间互动为主,教师引导为辅。例题既有深化所学知识的,又有应用所学知识的。“拓展延伸”既培养了学生的思维能力,又有利于学生从总体上把握这节课所学的知识。
第三篇:《等差数列》教学设计
等差数列第一课时教学设计片断
重庆市教育科学研究院 张晓斌
教学过程
1.创设情境,直奔课题
①德国数学家高斯八岁时计算1+2+3+„+100=?时,所用到的数列:1,2,3,4,„,100。②姚明刚进NBA一周里每天训练发球的个数依次是:6000,6500,7000,7500,8000,8500,9000。.③匡威运动女鞋的尺码(鞋底长,单位是cm):22,23,23,24,24,25,25,26。
引导学生观察:上面的数列①、②、③有什么共同特点?
学生容易发现这些数列有一个共同特点:从第二项起,每一项与前一项的差都等于同一个常数,我们把具有这一特点的数列叫做等差数列(此时写出课题)。
2.阐述定义,理解内涵
在前面的基础上得出等差数列的定义:
如果一个数列从第二项起,每一项与前一项的差都等于同一个常数,那么这个数列就叫等差数列。这个常数叫做等差数列的公差,通常用字母d来表示。
你觉得在理解等差数列的定义时应注意什么?启发学生回答: ①“从第二项起”(这是为了保证“每一项”都有“前一项”);
②每一项与它的前一项的差必须是同一个常数(因为“同一个常数”体现了等差数列的基本特征); 然后在理解概念的基础上,引导学生将等差数列的文字语言转化为数学语言,归纳出一串数学表达式,即a2a1d,a3a2d,,anan1d,an1and,,这其中最能刻划等差数列的本质特征的是哪一个等式?
。an1and(d是常数,nN*)或anan1d(d是常数,nN且n2)通过下面三个问题从正反两方面加深对概念的理解:
① 9,8,7,6,5,4,„„是等差数列吗?(递减等差数列)②常数列3,3,„,3,„是等差数列吗?(常数列)
③数列1,4,7,11,15,19是等差数列吗?(非等差数列)
由此三个问题和前面的问题让学生发现:公差d可以是正数、负数,也可以是0;当d0时,等差数列是递增数列;当d0时,等差数列是递减数列;当d0时,等差数列是常数列.④若数列{an}满足:an1and(d是常数,nN且n2),则数列{an}是等差数列吗? 3.探究交流,发现公式
如果等差数列{an}首项是a1,公差是d,那么这个等差数列a2,a3,a4如何表示?an呢? 根据等差数列的定义,不难由学生完成:
因为a2a1d,a3a2d,a4a3d,„„。所以a2a1d,12121212a3a2d(a1d)da12d,a4a3d(a12d)da13d,„„„„„„„„„„„„„„„„„„„„„„„ 由此完成ana1(学生回答)
当n1时,对(*)式两边均为a1,即等式也成立,说明(*)式对nN都成立,因此等差数列的通项公式就是:ana1(n1)d,nN。
上面求通项公式的过程是迭代的过程,所用的方法叫不完全归纳法,这种导出公式的方法不够严密,因此我们有必要寻求更为严密的推导方法。
根据等差数列的定义,引导学生探究发现:
**)d填空,得ana1(n1)d„„(*),这是等差数列的通项公式吗?(让a1a1 a2a1d a3a2d
„„„„„
anan1d
将以上n个式子相加得ana1(n1)d。这种求通项公式的方法叫叠加法,这是一种严密的科学证明方法。
然后再引导学生对此公式进行理解:通项公式含有a1,d,n,an这4个量,已知三个量,就可以求出第4个量,即“知三可求一”,这样通项公式就是方程,从中让学生体会方程思想的运用。
4.运用新知,解决问题
例1已知等差数列18,15,12,9,„„。
(1)请写出a20,an;
(2)-279是否是这个数列中的项,如果是,是第几项?
说明:要判断-279是不是数列的项,关键是求出通项公式,并判断是否存在正整数n,使得an279成立,实质上是要求方程an279的正整数解。
例2已知等差数列{an}中,a510,a1525,求a25的值。解略。(a2540)
解方程组比较麻烦,可否避免?让学生发现:a15a510d(155)d。这是一种巧合,还是对任意的两项差都满足?提出
探究活动一:请同学们思考:在公差为d的等差数列{an}中,an与am有何关系? 由ana1(n1)d和ama1(m1)d易得aman(mn)d(证实并非巧合),从而也有d aman。
mn2
让学生比较ana1(n1)d与aman(mn)d发现,前式是后式的特例,后式是前式的推an(mn)d叫做等差数列的变通式。让学生用变通式再解例2。广。为此我们不妨把am探究活动二:通过例2发现:5,15,25成等差,a5,a15,a25 也成等差;在等差数列{an}中,k1,k2,k3„成等差数列,那么 ak1,ak2,ak3„成等差数列吗?(让学生课后思考)
探究活动三:
由等差数列通项公式得ana1(n1)ddn(a1d)(d,b是常数),当d0的时候,通项公式是关于n的一次式,一次项的系数是公差。等差数列通项可以写成anpnq形式;反之,如果数列{an}的通项公式为anpnq(其中p、q是常数),那么这个数列是等差数列吗?
判定数列{an}是不是等差数列,也就是要看an1an的差是不是与n无关的常数。这由等差数列的定义可以完成证明。
由此得出:数列{an}为等差数列的充要条件是其通项anpnq(p,q是常数)。探究活动四:
(1)在直角坐标系中,画出an3n21(nN*)的图象。这个图象有什么特点?(无穷多个孤立点。)
(2)在同一坐标系下,画出函数y3x21的图象。你发现了什么?(an3n21的图象是直线y3x21上均匀排开的无穷多个孤立点。)(3)等差数列anpnq与函数ypxq图象间有什么关系?(anpnq的图象是直线ypxq 上均匀排开的无穷多个孤立点。)5.归纳小结,提炼精华 一个定义: an1and(d是常数)。
两个公式:ana1(n1)d,anam(nm)d。
三种思想:特殊与一般思想、方程与函数的思想、数形结合的思想。要追问在哪里体现了这些思想方法?
三种方法:不完全归纳法、迭代法、叠加法。6.课后作业,运用巩固
必做题:课本P114习题3.2第1,2,6 题。
备选题:1.在等差数列{an}中,已知a12,a10是第一个大于1的项,求公差d的取值范围。2.我国古代算书《孙子算经》卷中第25题记有:“今有五等诸侯,共分橘子六十颗。人分加三颗。问:五人各得几何?”
3.选做题:在等差数列{an}中,已知 a716,求下列各式的值:(1)a6a8;(2)a3a11。
第四篇:等差数列教学设计
等差数列教学设计
教学目标
1. 理解等差数列的概念,掌握等差数列的通项公式,并能运用通项公式解决简单的问题
2. 通过等差数列概念的归纳概括,培养学生的观察、分析资料的能力,积极思维,追求新知的创新意识;
3.通过对等差数列的研究,使学生明确等差数列与一般数列的内在联系,从而渗透特殊与一般的辩证唯物主义观点.教学重点
是等差数列的定义和对通项公式的认识与应用 教学难点
等差数列的通项公式与递推公式的结合与应用 教学过程 回顾练习:
观察该数列的性质。【从第二项开始,每一项减去前一项的差都是3】
观察与思考 下面的几个数列性质并给出结论:(1)38,40,42,44,46,48,50,52,54(2)7500,8000,8500,9000,9500,10000 定义:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那麽这个数列就叫做等差数列。这个常数叫等差数列的公差,通常用字母d表示。
2,5,7,9,11,13,15,17 2,2,2,2,2,2,2,2,2 探究:
数列满足 判断此数列是否为等差数列。等差数列通项公式
推倒方法:
一、不完全归纳法。
二、迭代法。
三、叠加法 例:
1.求等差数列8,5,2,…的第20项。
2.-401是不是等差数列-5,-9,-13,…的项?如果是,是第几项?
3.请在12,24中间插入一个数字a,使得12,a, 24成等差数列,则a的值为多少。
练习:数列的通项公式为
研究:三个数成等差数列,它们的和等于18,它们的平方和为116,求这三个数。
实际应用 某露天剧场有30排座位,第一排有28个座位,后面每排比前排多2个座位,最后一排有座位__________个。
总结:
1.等差数列的概念,会判断一个数列是否为等差数列。2.等差数列的通项公式与递推公式及其应用。3.理解等差数列的通项公式及其引申式。作业:必做习题3.2:1——
5、7 选作10、11
第五篇:等差数列教学设计
新蔡二高教学设计 年级:15级 学科:数学 主备课人:徐德功 日期 2017年12月5日 课题:高三数学一轮复习 等差数列 1.了解等差数列的通项公式an与前n项和公式Sn的关系. 三 维
1、知识目标 2.能通过前n项和公式Sn求出等差数列的通项公式an. 教 学 提高对等差数列的认识,优化解题思路、解题方法,提升数学表达的能
2、能力目标 目 力。标
3、德育目标 培养学生认识数学的美。重点:熟练掌握等差数列的性质运用。难点::解题思路和解题方法的优化。教学过程:【知识精讲】
一、基本概念、性质
1、等差数列的定义:一般地,如果一个数列从 起,每一项与它的前一项的差等于同一个,那么这个数列就叫等差数列,这个常数d叫做等差数列的,2、等差中项:若三个数a,A,b组成等差数列,那么A叫做a与b的,即2A 或A。
3、等差数列的单调性:等差数列的公差 时,数列为递增数列; 时,数列为递减数列; 时,数列为常数列;
4、等差数列an的通项公式性质:(1)对于任意的整数p,q,r,s,如果pqrs,那么apaqaras(2)对于任意的正整数p,q,r,如果pr2q,则apar2aq(3)对于任意的非零实数b,数列{ban}是等差数列,则{an}是等差数列(4)已知{bn}是等差数列,则{anbn}也是等差数列(5){a2n},{a2n1},{a3n},{a3n1},{a3n2}等都是等差数列 5.等差数列an的前n项和公式Sn = 注:(1)、在通项公式与前n项和公式中,涉及五个量的关系,已知其中的三个量,可求其余两个量。(体现方程的思想)(2)、等差数列前n项和公式的特点是n为关于n的二次式,且无常数项。即:s