第一篇:函数零点教学设计
一、【教案背景】
1、课题:函数的零点
2、教材版本:苏教版数学必修
(一)第二章2.5.1函数的零点
3、课时:1课时
二、【教学分析】 教材内容分析:
本节课的主要内容有函数零点的概念、函数零点存在性判定。
函数的零点,是中学数学的一个重要概念,从函数值与自变量对应的角度看,就是使函数值为0的实数x;从方程的角度看,即为相应方程f(x)=0的实数根,从函数的图形表示看,函数的零点就是函数f(x)与x轴交点的横坐标.函数是中学数学的核心概念,核心的根本原因之一在于函数与其他知识具有广泛的联系性,而函数的零点就是其中的一个链结点,它从不同的角度,将数与形,函数与方程有机的联系在一起。
本节是函数应用的第一课,因此教学时应当站在函数应用的高度,从函数与其他知识的联系的角度来引入较为适宜。教学目标:
1、知识与技能
(1)能利用二次函数的图象与判别式的符号,判断一元二次方程根的存在性及根的个数。
(2)了解函数零点与相应方程的根的联系,掌握零点存在的判定条件。
2、过程与方法
(1)通过观察例题的图象,发现函数在区间端点上的函数值之积的特点,找到连续函数在某个区间上存在零点的判断方法。
(2)渗透算法思想,运用算法解决问题,为后面系统学习算法做准备。
3、情感、态度与价值观
在函数与方程的联系中体验数学中的转化思想的意义和价值,培养学生在函数与方程的联系中体验数形结合思想和转化思想的意义和价值,发展学生对变量数学的认识,体会函数知识的核心作用.体验数学内在美,激发学习热情,培养学生创新意识和科学精神。教学重点: 零点的概念及零点存在性判定。
教学难点: 探究判断函数的零点个数和所在区间的方法。教学方法:
问题是课堂教学的灵魂,以问题为主线贯穿始终;以学生为主体,以教师为主导,以能力发展为目标,精心设计引导性问题,从学生的认识规律出发进行启发式教学,利用课件,动画等引导学生对问题的思考,运用学生自主学习、小组合作探究的教学方式。
三、【教学过程】
(一)、问题情境
(1)画出二次函数的图象,并写出图象与x轴交点的横坐标。
说明:通过学生熟悉的二次函数图象入手,让学生体会二次函数图象与x轴交点的数值与方程根的对应关系,方程的实数根就是的函数值为0时自变量x的值,建立初步的数形结合数学思想。(课件展示函数图象)
(2)画出二次函数、与的图象,并写出图象与x轴交点的横坐标。
说明:通过两小题让学生认识到当二次函数的图象在x轴上方时,与之对应的方程无解,当二次函数的图象恰好与x轴相交时,与之对应的方程有相等的实数根,建立初步的函数与方程数学思想。
提出二次函数零点的概念(我们把使二次函数的值为0的实数x称为二次函数的零点)。
(二)、合作探究
探究二次函数的零点、二次函数的图象与一元二次方程的实数根之间的关系?
Δ>0 Δ=0 Δ<0
方程根的的图象的零点
说明:小组合作探究,由学生回答,教师对答案给予鼓励性的评价。通过完成以上问题,让学生体会从具体到一般函数图象与x轴交点与相应方程根的关系。如果学生有困难,教师可作一下点拨,结合二次函数的图象,推广到一般函数零点的定义。板书课题:函数的零点
(三)、意义建构
函数的零点概念:我们把使函数的值为0的实数称为函数的零点(zeropoint)。
注:(1)零点不是点。
等价关系
函数y=f(x)的零点
方程f(x)=0实数根(数)
函数y=f(x)的图象与x轴交点的横坐标(形)
有了上述的关系,就可用函数的观点看待方程,方程的根即函数的零点,可以把解方程的问题互化为思考函数图象与x轴的交点问题。这正是函数与方程思想的基础。
说明:通过对概念的陈述,让学生了解函数零点的概念及性质,对函数零点的概念有了完整的认识,达到质的飞跃。
(四)、数学运用
例1:求下列函数的零点,并画出下列函数的简图。①
② ③ ④
⑤
(师用展示台展示学生的作图,指出优缺点)
说明:求函数零点,体现函数与方程互相转化的思想。本题的五个小题都简单,主要考察学生零点概念的掌握情况,题目包含了我们从初中到目前已经学过的常见函数,目的让学生通过及时练习加强对函数零点的的认识。
通过画简图,了解图象的变化形式,要注意体现零点性质的应用。为下面学习根的存在条件奠定基础。
例2 求证:二次函数有两个不同的零点。
说明:可让学生充分讨论例2的解法,发展学生的发散性思维,第一,从数的角度,将函数问题转化方程问题,体现“函数与方程”思想.第二,从形的角度,图象与x轴有两个不同的交点。几何画板演示画图象过程,引导学生观察当函数图象穿过x轴时,图象就与x轴产生了交点,图象穿过x轴这是一种几何现象,那么如何用代数形式来描述呢?用屏幕显示刺函数图象,多次播放抛物线穿过x轴的画面。板书证明过程
证明:设,则 f(1)=-2<0。
因为它的图象是一条开口向上的抛物线(不间断),这表明此图象一定穿过x轴,所以函数的图象与x轴有两个不同的交点。因此,二次函数有两个不同的零点。
从上面的解答知道,此函数有两个零点是。
问题(1)你能说明此函数在哪个区间[a,b]上存在零点()吗? 问题(2)如何判断一个函数在区间(a,b)上是否存在零点?
让学生自己思考、发言得到的结论,教师整理后得到函数零点的存在性判定。
如果函数在区间上的图象是一条不间断的曲线,且,则函数在区间内有零点。
教师给出这个结论,组织学生对下面问题进行讨论。通过讨论认识问题的本质,升华对零点存在性判定的理解。
(1)若f(a)·f(b)<0,函数y=f(x)在区间(a,b)上就存在零点吗?
(2)若函数y=f(x)在区间[a,b]上连续,且f(a)·f(b)<0,则f(x)在区间(a,b)内会是只有一个零点么?
(3)若函数y=f(x)在区间[a,b]上连续,且f(a)·f(b)>0,则f(x)在区间(a,b)内就一定没有零点么?
(4)在什么条件下,函数y=f(x)在区间(a,b)上可存在唯一零点?
(5)如果是二次函数y=f(x)的零点,且,那么f(a)·f(b)<0一定成立吗?
为了帮助大家更好体会该结论,我们把它设计成流程图。
说明:设置成流程图,既直观、清晰,又为学生将来学习算法奠定基础。算法的特殊表示符号,学生不知道,师生共同完成即可。
例3.求证:函数在区间(-2,-1)上存在零点.
说明: 学生完成过程中,教师巡视,展台展示优秀作品及步骤有问题者,达到纠正错误及解题规范化。
(五)、归纳总结
说明:这个环节,学生主动总结本节课学到的知识,将本节课所讲的知识点系统整理,为后面的函数零点的应用奠定基础。
(六)、反馈练习
(1)函数f(x)=2x2-5x+2的零点是
;
(2)二次函数y=2x2+px+15的一个零点是-3,则另一个零点是
;(3)若函数f(x)=x2-2ax+a没有零点,则实数a的取值范围;
(4)已知函数f(x)的图象是不间断的,有如下的x,f(x)对应值表:
那么函数在区间[1,6]上的零点至少有
个;(5)在二次函数中,ac<0,则其零点的个数为
;
说明:本环节用时5分钟,考完后小组互换,立即批改.发现问题立即纠正,再通过课后作业加以巩固.对做的好的及时给予表扬。
(七)、作业布置
1、完成苏教版必修1第76页练习1、2。
2、①有2个零点;②3个零点;③4个零点.四、【板书设计】
屏幕
函数的零点
一、函数零点的定义:我们把使函数的值为0的实数称为函数的零点(零点不是点).二、方程的根与函数零点之间的等价关系
函数y=f(x)有零点
方程f(x)=0有实数根(数)
函数y=f(x)的图象与x轴有交点(形)零点存在性判定
例1
例2
五、【教学反思】
前苏联数学家斯托利亚说过:“积极的教学应是数学活动(思维活动)的教学,而不是数学活动的结束—数学知识的教学。”反思“函数的零点”的课堂教学,本人觉得类似这样的数学概念、原理的教学,教学设计应特别重视“过程性”,教学过程应特别强调“参与性”,要让学生“参与”到教学过程中去.唯有学生的过程参与,才能较好地激发其主动性,确立其主体地位.吸引学生“参与”,关键招数之一是对教材进行“问题化”处理,用问题去引领学生探究。学生“参与”到教学过程中来,就是要参与知识建构、参与思维训练、参与方法提炼。
本课中,围绕教学目标知识生成的过程,设计了若干问题,以问题为中心,以学生为主体,让他们亲身经历,体验函数的零点知识的建构过程,函数零点存在性结论的探求,体现了本节课设计的基本理念:过程性、问题性和主体性。
第二篇:函数零点的教学设计
函数零点教学设计
教学目标
1、理解函数零点的具体定义
2、深入理解判定函数零点的两个条件
3、能够利用零点判定定理解决简单函数零点问题
教学重难点
重点
1、理解函数零点存在性定理
2、能够利用定理判断简单函数的零点 难点
1、对函数零点存在性定理的理解
2、灵活运用定理解决函数零点存在性问题
教学过程
例题展示
试判断函数f(x)=2^x+3x-2在区间[0,2]上的零点个数。解析:∵f(x)在区间[0,2]连续 f(0)·f(2)<0 ∴f(x)在区间[0,2]上有零点-------(根据零点存在性定理只能得到有零
点但零点个数不知)
又∵f(x)在区间[0,2]上单调递增--(连续单调函数零点的两种情况:
1、无零点。
2、有且仅有一个零点)综上:函数f(x)=2^x+3x-2在区间[0,2]上有且仅有一个零点。
小结
1、零点存在性定理
2、增函数+增函数=增函数
3、单调函数零点情况
第三篇:方程的根与函数的零点教学设计
教师的工作就不是原来的意义的教书,应改变为导书,即指导学生去读书,在指导学生学习的同时要点拨给学生学习的方法,帮助学生解疑析难,指导学生形成知识体系与思想方法,亦即将教法向导法转变。例如:方程的根与函数的零点 ①首先开门见山地提出问题
一元二次方程ax2+bx+c=0(a≠0)的根与二次函数b=ax2+bx+c(a≠0)图象有什么关系? ②要解决上述问题还得先确定探索的方法,由特殊到一般:即通过具体的函数与方程来讨论。③分组实施 ④交流汇报结果 ⑤老师精点 ⑥引导猜想 方程f(x)=0有实根零点。
⑦引导学生去总结出:函数y=f(x)有零点的特征(见课本P102)⑧应用
学生完成P102的例题、P103的练习⑨小结:(1)探问题的方法(2)得到的结果(3)能解决什么问题(4)解决问题的步骤 3
y=f(x)的图象与x轴有交点
y=f(x)有零点。从而定义函数的要实现教法的改变,必须转变学法,这更需学生树立正确态度和思想:我要学习、我急需学习,由一段时间努力和体会,学法会形成的。16.在感受中发现,在领悟中升华——“函数的概念与图象”教学的一点随想深圳市平冈中学孙文彩当我拿着精美的新教材,看着一幅幅优美的图片时,给我最大的感触就是:图文并茂,内容丰富,叙述形式充满浓厚的人文时代气息……,特别是当我上完“函数的概念与图象”这部分内容后,感慨很多,在此略加采撷,旨在抛砖引玉,恳请同行指正!(一)让学生感受数学,体会数学的价值。
数学对是客观世界的数量关系和空间形式的描述,它来源于客观世界的实际事物,学生们的生活中处处有数学。教学时如能善于挖掘生活中的数学素材,从生活实际出发,结合学生的生活实际,把教材内容与“数学现实”有机结合起来,引入数学知识,让数学贴近生活,使学生感受数学的实用性,对数学产生亲切感。
教材中“函数的概念与图象”内容就是把学生身边的素材:国民生产总值,一天的温度变化曲线,自由落体运动函数,等等,教者如能把它制成幻灯片作为课堂引入,或者再因地制宜地举出一些其它的实例,如飞机票价表,数学用表,股市走势图,家庭生活用电数……,使学生对熟悉的生活场景的回顾,感受到函数与我们现实生活的密切关系,消除同学们对函数这一概念的陌生感、恐惧感。堂课的背景材料取材于学生最熟悉的资料,当学生看到自己非常熟悉的材料出现在课堂上时,那种油然而生的亲切感会使他们的情绪空前高涨,从而激发主动学习的愿望。有了学生情感的积极参与,课堂将会一片生机盎然。
《数学课程标准》指出:“学生的数学学习内容应当是现实的、有意义的、富有挑战性的,这些内容要有利于学生主动地进行观察、实验、猜测、验证、推理与交流”,用数学眼光去观察生活实际,从而让学生感受生活化的数学,体验数学化的生活,教材为我们提供了一定的让学生进行主动探索的材料,同时更需要发挥教师的主导作用,创造性地使用教材,发挥教师的主观能动性,使数学更贴近学生,拉近学生与书本,与数学的距离。(二)让学生体验数学,涵养数学的灵气
体验就是个体主动亲历和虚拟地亲历某件事并获得相应的认知和情感的直接经验活动。新颁布的《高中数学课程标准》与原来的教学大纲相比,一个明显的特征是增加了过程性目标和体验性目标,特别强调学生“经历了什么”、“体会了什么”、“感受了什么”。对数学的认识不仅要从数学家关于数学本质的观点去领悟,更要从数学活动的亲身实践中去体验,重视从学生的生活实践和已有的知识经验中学习数学、理解数学和运用数学。所以数学教学必须引导学生通过主动参与和亲身实践,或独立思考、或与同学教师合作探究,让他们发展能力,感受自己的价值,从而激发对学习数学的兴趣。
“函数的概念与图象”设计了一个小组讨论,让学生举出自己生活中遇到,见到的函数实例。同学们的热烈讨论,举出许多生活中的函数实例,实实在在地体验到数学就在自己身边,原来函数就是如此!数学起源于生活,但经过抽象后形成的书本知识远比生活知识来的难以接受。如课本中的函数的概念,函数的三种表示,分段函数等等,学生觉得数学难懂、难学,一个重要的原因就是课程知识与生活的经验严重脱节,把学生死死地捆绑在课本里,死记那些学生认为枯燥的概念和公式。新教材的一个重要特征就是引导学生关注生活,让学生在生活的问题情境中,学会应用数学的思想方法去观察、分析;同时教师要把丰富的,贴近学生生活的素材展现在学生面前,并以此为基点,延伸,拓展,这种建立在学生生活经验上的知识就容易被他们掌握,理解,同化以致于转化成学生的一种数学能力。(三)领悟数学,升华思想,呈现本质
新的课程理念认为,学习任何知识的最佳途径都是由自己去发现,因为这种发现理解最深刻,也最容易掌握其中的内在规律、性质和联系。课堂上让学生亲历体验,有助于学生通过多种活动探究和掌握数学知识,达到对知识的深层理解,更重要的是学生在体验中能够逐步发现规律、认识数学的一般方法。
案例:某种笔记本每个5元,买x(x∈{1,2,3,4})个笔记本的钱数记为y(元),试分别用解析法,列表法,图象法将y表示成x的函数。
学生通过自主探究,给出函数的三种表示,领悟到一个函数有时可以用不同方法表示,同时不同方法的表示又有助于对函数的本质的深层理解。学生学习数学的过程不是一个被动吸收、机械记忆、反复练习的过程,它是一种在已有经验和原有认识的情况下解决问题,形成技能,巩固新知识的有意义的过程,让学生经历知识的再创造,体验知识的形成过程,才能把新知识纳入到原有知识中去,内省为有效知识。(四)让学生应用数学
新教材内容特别注意加强数学应用意识的培养,这是因为随着社会主义市场经济的发展,使得“数学从社会的幕后走到台前”,在很多方面可以直接为社会创造价值。让学生学会数学 认识数学、体验数学、形成正确数学观的过程,在这个过程中以数学知识为载体的数学,不能仅仅追求知识的获得和问题的解决,更重要的是使学生通过这一过程学会数学的思维,体会数学的思想方法,感悟数学的精神并形成积极的数学态度。
案例:一座钢索结构桥的立柱PC与QD的高度都是60m,A,C间距离为200m,B,D间距离为250m,C,D间距离为2000m,E,F间距离为10m,P点与A点间,Q点与B点间分别用直线式桥索相连结,立柱PC,QD间可以近似看做是抛物线式钢索PEQ相连结。现有一只江欧从A点沿着钢索AP,PEQ,QB走向B点,试写出从A点走到B点江欧距离桥面的高度与移动的水平距离之间的函数关系。
这是课本中的一个问题,从中可以看出数学在建筑设计中的应用,教者引导学生完成对问题的分析,提取,抽象,解剖,计算,总结,导出了数学建模,分段函数,二次函数的解析式,待定系数等到数学概念,把学生的创造力发挥得淋漓尽致,学生学数学的过程成了“做数学”、“用数学”的过程。
在教学中,充分挖掘其人文的、科学的和应用的价值,让学生通过对身边具体的事例研究,体会数学和生活的紧密联系,感受数学在科学决策中的价值,从而提高学习数学的兴趣。学生在学习过程中因为数学的抽象性,数学问题解决经常伴随着困难,但难度只要不超过学生的能力,总有可能获得成功。美国著名的数学教育家波利亚说过:“如果学生在学校里没有机会尝尽为求解而奋斗的喜怒哀乐,那么他的数学教育就在最重要的地方失败了。”但在失败后的成功是更令人兴奋的,心中的愉悦是无法形容的,当学生有了这种情感体验后,就会不断地去追求,使自己的学习走向深入,就会感受到数学是伟大。
第四篇:“方程的根与函数的零点”教学设计
一.内容和内容解析
本节内容有函数零点概念、函数零点与相应方程根的关系、函数零点存在性定理.函数零点是研究当函数的值为零时,相应的自变量的取值,反映在函数图象上,也就是函数图象与轴的交点横坐标.由于函数的值为零亦即,其本身已是方程的形式,因而函数的零点必然与方程有着不可分割的联系,事实上,若方程有解,则函数存在零点,且方程的根就是相应函数的零点,也是函数图象与轴的交点横坐标.顺理成章的,方程的求解问题,可以转化为求函数零点的问题.这是函数与方程关系认识的第一步.零点存在性定理,是函数在某区间上存在零点的充分不必要条件.如果函数在区间[a,b]上的图象是一条连续不断的曲线,并且满足f(a)f(b)0,则函数在区间(a,b)内至少有一个零点,但零点的个数,需结合函数的单调性等性质进行判断.定理的逆命题不成立.方程的根与函数零点的研究方法,符合从特殊到一般的认识规律,从特殊的、具体的二次函数入手,建立二次函数的零点与相应二次方程的联系,然后将其推广到一般的、抽象的函数与相应方程的情形;零点存在性的研究,也同样采用了类似的方法,同时还使用了数形结合思想及转化与化归思想.方程的根与函数零点的关系研究,不仅为用二分法求方程的近似解的学习做好准备,而且揭示了方程与函数之间的本质联系,这种联系正是中学数学重要思想方法函数与方程思想的理论基础.可见,函数零点概念在中学数学中具有核心地位.本节的教学重点是,方程的根与函数零点的关系、函数零点存在性定理.二.目标和目标解析
通过本课教学,要求学生:理解并掌握方程的根与相应函数零点的关系,在此基础上,学会将求方程的根的问题转化为求相应函数零点的问题;理解零点存在性定理,并能初步确定具体函数存在零点的区间.1.能够结合具体方程(如二次方程),说明方程的根、相应函数图象与轴的交点横坐标以及相应函数零点的关系;
2.正确理解函数零点存在性定理:了解图象连续不断的意义及作用;知道定理只是函数存在零点的一个充分条件;了解函数零点只能不止一个;
3.能利用函数图象和性质判断某些函数的零点个数;
4.能顺利将一个方程求解问题转化为一个函数零点问题,写出与方程对应的函数;并会判断存在零点的区间(可使用计算器).三.教学问题诊断分析
学生已有的认知基础是,初中学习过二次函数图象和二次方程,并且解过当函数值为0时,求相应自变量的值的问题,初步认识到二次方程与二次函数的联系,对二次函数图象与轴是否相交,也有一些直观的认识与体会.在高中阶段,已经学习了函数概念与性质,掌握了部分基本初等函数的图象与性质.教学的重点是方程的根与函数零点的关系及零点存在性定理的深入理解与应用.以二次方程及相应的二次函数为例,引入函数零点的概念,说明方程的根与函数零点的关系,学生并不会觉得困难.学生学习的难点是准确理解零点存在性定理,并针对具体函数(或方程),能求出存在零点(或根)的区间.教学过程中,通过引导学生通过探究,发现方程的根与函数零点的关系;而零点存在性定理的教学,则应引导学生观察函数图象与轴的交点的情况,来研究函数零点的情况,通过研究:①函数图象不连续;②;③,函数在区间上不单调;④,函数在区间上单调,等各种情况,加深学生对零点存在性定理的理解.四.教学支持条件分析
本节教学目标的实现,需要借助计算机或者计算器,一方面是绘制函数图象,通过观察图象加深方程的根、函数零点以及同时函数图象与轴的交点的关系;另一方面,判断零点所在区间过程中,一些函数值的计算也必须借助计算机或计算器.五.教学过程设计
1.方程的根与相应函数图象的关系
复习总结一元二次方程与相应函数与轴的交点及其坐标的关系:
一元二次方程根的个数
图象与轴交点个数
图象与轴交点坐标
意图:回顾二次函数图象与轴的交点和相应方程的根的关系,为一般函数及相应方程关系作准备.问题
一、上述结论对其他函数成立吗?为什么?
在《几何画板》下展示如下函数的图象:、、、、,比较函数图象与轴的交点和相应方程的根的关系。
函数的图象与轴交点,即当,该方程有几个根,的图象与轴就有几个交点,且方程的根就是交点的横坐标.意图:通过各种函数,将结论推广到一般函数。
2.函数零点概念
对于函数,把使的实数叫做函数的零点.说明:函数零点不是一个点,而是具体的自变量的取值.3.方程的根与函数零点的关系
方程有实数根函数的图象与轴有交点函数有零点以上关系说明:函数与方程有着密切的联系,从而有些方程问题可以转化为函数问题来求解,同样,函数问题有时也可转化为方程问题.这正是函数与方程思想的基础.4.零点存在性定理 问题
二、观察图象(气温变化图)片段,根据该图象片段,将其补充成完整函数图象,并问:是否有某时刻的温度为0℃?为什么?(假设气温是连续变化的)
意图:通过类比得出零点存在性定理.给出零点存在性定理:如果函数在区间上的图象是连续不断一条曲线,并且有,那么,函数在区间内有零点.即存在,使得,这个c也就是方程的根.问题
三、不是连续函数结论还成立吗?请举例说明。
在《几何画板》下结合函数的图象说明。
问题
四、若,函数在区间在上一定没有零点吗?
问题
五、若,函数在区间在上只有一个零点吗?可能有几个?
问题
六、时,增加什么条件可确定函数在区间在上只有一个零点?
在《几何画板》下结合函数的图象说明问题四、五、六。
意图:通过四个问题使学生准确理解零点存在性定理.5.例题:求函数的零点的个数.问题
七、能否确定一个区间,使函数在该区间内有零点.问题
八、该函数有几个零点?为什么?
意图:通过例题分析,学会用零点存在性定理确定零点存在区间,并且结合函数性质,判断零点个数的方法.六.目标检测设计
1.已知函数f(x)的图象是连续不断的,且有如下对应值表,则函数在哪几个区间内有零点?为什么?
x
2 3 4 6 10
f(x)20-5.5-2 6
2.函数在区间[-5,6]上是否存在零点?若存在,有几个?
3.利用函数图象判断下列方程有几个根
(1)
(2)
4.指出下列函数零点所在的大致区间
(1)
(2)
最后,师生共同小结(略)
思考题:函数的零点在区间内有零点,如何求出这个零点?设计意图:为下一节二分法的学习做准备.
第五篇:方程的根与函数的零点教学设计
方程的根与函数的零点教学设计 教学内容与任务分析 本节课的内容选自《普通高中课程标准实验教科书》人教A版数学必修一第三章第一节3.1.1方程的根与函数的零点。本节课的主要内容为方程的根与函数零点之间的关系,连续函数在某区间上存在零点的判定方法,是以之前的函数图象、性质为基础,为之后学习用二分法其方程的近似解提供理论支持。学习者分析
学生已经学习了函数的图象及性质,会画基本的函数图象,能通过图象了解函数的性质,但学生对一些特殊的方程还不熟悉,解题可能会感到困难。教学重难点
教学重点:方程的根与函数零点之间的关系,连续函数在某区间上存在零点的判定方法 教学难点:函数的零点与方程的根的联系的理解,零点的判定 教学目标
知识与技能目标
(1)理解零点的定义
(2)方程的零点与函数的根的联系
(3)掌握连续函数在某区间上存在零点的判定方法 过程与方法目标
(1)在合作探究的过程中,体会从特殊到一般,数形结合,转化化归的数学思想(2)培养分析问题、解决问题的能力 情感态度与价值观目标
通过方程的根与函数零点的学习,产生数学学习兴趣 形成有序全面思考问题的意识 教学过程
问题引入,激发兴趣
师:提出问题1:求的实数根,画出函数的图象;并观察他们之间的联系?
【学情预设】学生能够解出方程的根,并从图象上能获得与方程的根的一些联系。【设计意图】通过学生熟悉的二次函数的图象和一元二次方程让学生观察方程和函数形式上的联系,从而得到方程实数根和函数图象之间的关系。组织探究,得出概念 1.方程的根与函数的零点
师:我们可以发现1,2既是的根,也是函数图象与x轴的交点横坐标。那现在我们来思考一下一般方程的情况。我们是如何去判断方程的个数的呢?是不是借助Δ,那大家通过小组合作一起来完成ppt上的这张表格。填表
Δ>0 Δ<0 Δ=0
方程实数根
函数图象与x轴的交点
【设计意图】通过合作填表的过程,让学生体会方程的根与函数图象的x轴的坐标的关系,通过对比教学,揭示知识点的联系。
师:从表格中我们可以得出这样的等价关系:
方程f(x)=0有实数根<==>函数y=f(x)的图象与x轴有交点
那我们再来思考一下,假如我们求出函数y=f(x)的图象与x轴的交点坐标为(x0,0),这个x0 是不是就是令y=0的x的值啊?
这个x0在方程中我们定义它为方程的根,那在函数中我们也给它一个定义,叫做函数的零点。师:现在老师给出函数零点的定义。对于函数y=f(x),我们把使f(x)=0的实数x叫做函数y=f(x)的零点。
那函数的零点他是不是一个点呢?
大家一起来再将概念缩一下句,实数x叫做零点,那说明零点时一个数。【设计意图】通过对概念中的关键进行提炼,加深对概念的理解。师:那现在我们又可以得出另一个等价关系:
函数y=f(x)的图象与x轴有交点<==>函数y=f(x)有零点 又因为这两个等价关系两两等价,因而可以得出 方程f(x)=0有实数根
<==>函数y=f(x)的图象与x轴有交点 <==>函数y=f(x)有零点
【设计意图】通过上述过程,让学生领会求方程f(x)=0的实数根,就是确定函数y=f(x)的零点这一关键。
2.零点的存在性探究 师:探究
【设计意图】通过层层递进的问题链,教师引导学生探索,归纳总结函数的零点存在性定理,培养归纳总结的能力。师:一般的,如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)*f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c?(a,b),使得f(c)=0,这个c也就是方程y=f(x)=0的根。
提问:仅满足f(a)·f(b)<0可以确定有零点吗? 引导学生构造反例:
【设计意图】通过反例,强调判定条件——图像是连续不断的一条曲线,加深 对概念的认知。巩固练习,提升能力 例1:
【设计意图】通过例题,对所学知识进行及时巩固,归纳小结,布置作业
学生自主对本节课的内容进行归纳总结 函数零点的定义 三个等价关系 零点的存在性定理
【设计意图】建立自主的知识体系,形成知识网络,加深对知识的巩固,培养总结归纳的能力。
布置分层作业:基础题和提高题
【设计意图】通过分层作业,注重学生的个体差异,因材施教,是每个层次的学生都有所进步。