第一篇:六年级数学教案—复习分数除法
六年级数学教案—复习分数除法
本课题教时数:1本教时为第1教时备课日期10月22日
教学目标
1、使学生进一步认识分数除法的意义、比的意义和基本性质及其应用,能比较熟练地求比值和把一个比化成简单的整数比。
2、使学生进一步掌握分数除法的计算法则,能正确地计算分数除法和分数除法与加、减法或乘法的混合运算。
教学重难点
能比较熟练地求比值和把一个比化成简单的整数比。
能正确地计算分数除法和分数除法与加、减法或乘法的混合运算。
教学准备
教学过程设计
教学内容
师生活动
备注
一、揭示课题
二、整理知识
三、组织练习
四、课堂小结
本单元我们学习了什么?你学习了哪些内容?
这节课我们先复习分数除法的有关概念和计算。
通过复习,大家要进一步掌握分数除法的意义、比的意义和
基本性质,以及这些概念的应用;进一步掌握分数除法的计算法则。要能比较熟练地求比值和正确地进行比的化简,能正确地计算分数除法,以及分数除法与分数加、减法或乘法的混合运算。
1、复习分数除法的意义
问:分数除法表示的意义是什么?
你能根据分数除法表示的意义,把2/155=2/3改写成两道除法算式吗?
指出:分数除法是已知两个数的积和其中一个因数,求另一个因数的运算。
2、复习分数除法计算法则
提问:我们在分数除法里,学过哪几种情况的计算?
分数除法计算的方法是怎样的?
3、笔算练习
做复习第2题
指出:在分数除法里,无论哪一种情况的计算,都要转化成乘法计算。
4、复习比的意义
问:什么叫比?比的各部分名称是什么?请你举个例子来说明。
比与除法、分数有什么联系?请你根据4:5来说明。
5、做复习第3题
6、复习比的基本性质
提问:化简比和求比值各是依据什么来做的?
1、做复习第5题
2、做复习第6题
3、做复习第7题
指出:有关分数除法的运算,只要按过去的运算顺序,计算时遇到除法计算,只要转化成乘法来计算。
4、做复习第8题
指出:根据求一个数和分数相乘可以表示求这个数的几分之几是多少,可以顺着题意列出方程来解答这样的文字题,也可以根据分数除法的意义列式解答。
这节课复习了什么内容?你进一步明确了哪些知识?
课后感受
教学效果较好,同学们所做的题目的正确率较高.
第二篇:人教版六年级数学教案:分数除法
人教版六年级数学教案:分数除法
教学目标:
1、能用方程解决有关的简单的分数实际问题,初步体会方程解决实际问题的重要模型
2、在解方程中,巩固分数除法的计算方法。
重难点:
1、能自觉用解方程解决简单的有关分数的实际问题。
2、正确进行分数除法计算。
学情分析:
分数除法运用问题历来是教学中的难点,尤其是在解决分数乘除法混合问题时,学生难以判断是用乘法还是用除法解答。为了突破这个难点,教材鼓励学生用方程解决简单的分数除法问题。因此教学时,我让已经养成预习习惯和预习方法的学生利用这幅主题图做充分预习,然后把所有信息设计成开放式,让学生根据信息大胆找到关系,提出问题,并出示探究指导鼓励学生独立解决问题,这样让学生思之有法,学之有据,并能养成良好的学习习惯,反馈时,学生会出现多种解决问题的策略,要适时引导,鼓励学生用方程解决此类问题。如果有学生选择用除法计算,要引领学生做好分析,可借助线段图的功能沥青思路。
课前预习作业:
1、读一读、想一想:P29
2、写一写、填一填:
操场上有()人参加活动; 跳绳的有()人;
踢毽子的有()人;打篮球的有()人;跑步的有(踢足球的有()人。
3、说一说、做一做:
感到认识模糊的与父母和同学说一说,试做名校。
4、质疑:
教学流程:)人;
一、创景激情:
同学们,你们喜欢课外活动么?你们都喜欢什么样的课外活动?你们的课外活动真是丰富多彩,在课外活动中也能发生数学故事那,今天就让我们这节课进行一次快乐的数学活动好么?(1分钟)
预习检测:5分钟
1、判断谁是整体1,说出个数量关系。
(1)书的价钱是钢笔价钱的2/5。
(2)一种书包打九折出售。
(3)参加跳绳的是操场上参加活动总人数的2/9。
2、解方程:
8x=4/75/8x=1/4
3、前面的填一填。
二、自主探究:
1、同学们观察很仔细,预习很认真,这些数量之间有什么关系么?
可能会出现:打篮球的人数是踢足球的4/9等等(随即板书)
2、根据这些数学信息,你还能提出哪些数学问题?
可能会出现:踢足球的有多少人?等等。(随即板书)
3、同学们你们想解决哪个问题?
选定探究问题,出示探究指导:
独立思考我能行:(3分钟)
要解决这个问题,要用到我们提供的哪些条件?
找到整体1,等量关系是什么?
自己尝试解决问题。
合作交流我最棒:
做完后与同座交流列式的根据是什么?(2分钟)
4、汇报交流
方程:求一个数的几分之几是多少用乘法。(提倡)
除法:可借助线段图理解。
5、探究其余问题。
6、总结方法:
分数应用不算难,掌握方法是关键;
是、占、比、与、相当于,后面数量看作1;
知一求几用乘法,知几求一用方程。
三、运用提高:
生活处处用分数:
1、某月双休日共有9天,是这个月总天数的3/10,这个月有多少天?
2、丑小鸭超市让利大酬宾,商品一律八折,一件衬衣现价40元,这件衬衣原价多少元?
四、小结升华:
通过这节课的活动,你有哪些收获?还有什么问题?
五、课尾小测。(10分钟)略
第三篇:六年级数学教案——分数整理复习
六年级数学教案——分数整理复习(2)
教学目的:
使学生进一步掌握用方程或算术方法解答已知一个数的几分之几是多少求这个数的应用题和稍复杂的分数乘除法应用题,提高学生解答分数应用题的能力.
教学重点:正确解答分数乘除法应用题
教学难点:分数乘除法应用题的联系与区别
教学过程:
一、推理训练
1、男生占全班人数的,女生占全班人数的()。
2、一堆煤,用去了,还剩下()。
3、今年比去年增产,今年相当于去年的()。
二、对比训练:
1、一步分数应用题
①张大爷养了200只鹅,500只鸭,鹅的只数与鸭的只数的几分之几?
②张大爷养了200只鹅,鹅的只数是鸭的只数的,养了多少只鹅?
③张大爷养了200只鹅,鸭的只数是鹅的只数的,养了多少只鸭?
(1)比较相同点和不同点
引导学生进行比较,使学生更清楚地认识到,在结构上,这三道应用题都含有同样的数量关系,即:鹅的只数,鸭的只数,鹅的只数是鸭的几分之几;不同的是已知和未知发生了变化。在解题思路上,都要弄清以谁作标准,正确判定把哪一种数量看作单位1;不同的是需要根据已知、未知的变化确定该用什么方法解答。
(2)比较完后,学生将三道题的解答过程写在练习本上。
2、出示题组:
①上海到汉口的水路长1125千米,一艘轮船从上每开往汉口,已经行了3/5,离汉口还有多少千米?
②一艘轮船从上海开往汉口,已经行了3/5,离汉口还有450千米,上海到汉口的水路长多少千米?
(1)学生自己画线段图,分析,解答。]
(2)对比:两题有什么异同?你是怎样分析的,如何区别的?
3、出示题组:
①停车场有8辆大客车,小汽车的辆数比大客车多1/6,小汽车有多少辆?
②停车场有8辆大客车,大客车的辆数比小汽车少1/7,小汽车有多少辆?
③停车场有21辆小汽车,大客车的辆数比小汽车少1/7,大客车有多少辆
④停车场有21辆小汽车,小汽车的辆数比大客车多1/6,大客车有多少辆?
(1)学生独立画线段图,分析,解答。]
(2)对比:
1、2两题有什么异同?
3、4两题呢?你是怎样分析的,如何区别的?
(3)解答稍复杂的分数乘除法应用题有规律吗?规律是什么?
引导学生归纳出:
㈠分析分率句,判断单位1是哪个数量?
㈡画出线段图,找出量和率的对应关系。
㈢确定已知单位1用乘法,求单位1用除法或用方程解。
三、课堂练习:
1、第53页整理和复习的第4题(根据题目的条件应该确定把谁看作单位1?单位1已知还是未知?)
2、练习十三第4、5题,独立完成,集体订正。
四、作业:
练习十四的第6--10题
第四篇:六年级数学教案——分数整理和复习
六年级数学教案——分数整理和复习
复习目标:
1、使学生掌握分数乘法的计算方法,并能运用这个方法进行相关计算。
2、使学生能分辨清楚先乘后加减的运算顺序,并能熟练地应用乘法运算定律进行简便计算。
3、引导学生准确地找到单位1,并能熟练地解答一步和二步的乘法应用题。
复习重点:
引导学生找准单位1,分析应用题的数量关系。
复习难点:
让学生正确、独立地分析应用题的数量关系。
复习过程:
一、复习分数乘法
1、学生独立计算P26第1题,并思考式子的意义及计算法则。
2、分数乘法的意义
(1)分数乘整数的意义是什么?(表示几个相同加数的和或表示一个数的几倍是多少)
(2)一个数乘分数的意义是什么?(表示一个数的几分之几是多少)
3、分数乘法的计算法则
(1)分数乘整数:把能约分的先约分,然后把整数与分子相乘,分母不变。
(2)分数乘分数:同样把能约分的先约分,然后用分子乘分子,分母乘分母。
4、练习:练习七第1题。
二、复习计算及简便计算
1、复习乘加乘减的运算顺序:先算二级运算,再算一级运算,有括号的要先算小括号里面的,再算中括号里面的。
2、复习乘法的运算定律:
乘法交换律:ab=ba乘法结合律:(ab)c=a(bc)
乘法分配律:(a+b)c=ac+bc
3、观察P26第2题,说说这三题适合运用什么运算定律?为什么?然后学生独立完成。
4、练习:练习七第4题。
三、复习分数乘法应用题
1、复习解答分数乘法应用题的步骤:
(1)找到题目中的分率句,确定单位1。
(2)根据题目中的数量关系,求出所要求的部分量。
2、P26第3题
(1)读题,分别找到两道题的单位1,并说说这两道题有何不同?
(2)根据题意分析数量关系,然后列式计算,全班讲评。
3、练习:练习七第6题。
四、复习倒数
1、复习倒数的意义:乘积是1的两个数互为倒数。
2、互为倒数的两个数有什么特征?(分子、分母的位置刚好颠倒位置)1的倒数是多少?0有没有倒数?
3、复习写一个数的倒数的方法:交换原来分子和分母的位置(注意强调如果是整数要先把它写成分母为1的分数,然后在交换分子和分母的位置。)
4、练习:练习七第7题。
五、练习
练习七第2、3、5题(学生独立列式计算,指名板演,讲评时让学生说清是怎样思考的)
第五篇:《分数除法》数学教案
《分数除法》数学教案1
教学内容
复习分数除法的意义和计算
教材第46、第47页的内容。
教学目标
1.使学生进一步明确本单元的知识体系,加深对分数除法的意义和计算方法的理解。
2.熟练掌握分数除法的计算法则,提高灵活解题的.能力。
3.在整理知识体系的过程中,帮助学生掌握复习的方法。
重点难点
重点:概念和计算法则的整理。
难点:运用所学概念,灵活解决问题。
教具学具
练习题投影片。
教学过程
一、整理本单元的知识
1.课前布置作业,学生自己整理本单元的知识点。
2.展示学生的知识结构图。
二、复习分数除法的意义和计算法则
1.回忆。
分数除法可以分成几种情况,请你分别举例说说它们的意义和计算方法,小组讨论。
2.根据学生的汇报整理成下表。
三、课堂作业新设计
四、思维训练参考答案
《分数除法》数学教案2
教学目标:
能力目标:
培养学生动手动脑能力,以及解决实际问题的能力。
知识目标:
提高分数除法的计算速度和正确率,并能正确的计算,解决实际问题。
情感目标:
培养学生愿意交流合作,喜欢数学的情操,感受数学来源于生活,体验成功的欢乐。
教学重点:解决实际问题。
教学策略:在小组间交流合作的基础上,提高计算能力和计算速度。
教学准备:小黑板
教学过程:
一、导入新课。
同学们,我们数学是从生活中得出的经验和结晶,又服务于生活,那么我们的分数除法能解决什么问题呢,这节课我们就学习分数出发的应用。板书课题:分数除法(三)
二、实施目标。
1、出示题目:
跳绳的小朋友有6人,是操场上参加活动总人数的。操场上有多少人参加活动?
2、指名学生读题,并说出题目中分率的单位“1”的量是谁?知道不知道?
3、先让学生试着做一做。
4、交流作法。(根据学生做题情况导入方程的`方法)
5、教师指导学生用方程的方法解题。对用其它方法解答的同学,只要合理进行表扬。
6、渗透用算术法解答此题。
7、教师:只要单位“1”的量不知道,可以用两种方法解答题目,一种是方程;一种是算数法。
三、巩固目标
1、试一试第一题。
指名学生读题,独立解答。针对学生做题情况,进行辅导后进生。
指导学生分清两问的不同,认清乘法和除法的区别。
2、试一试第二题。
独立解答,全班订正。
四、课堂,教师和学生自评。
板书设计:
分数除法(三)
解:设操场上有x人参加活动。
X×=6
X×÷=6÷
X=6×
X=27
教学反思:
《分数除法》数学教案3
教材分析
理解并掌握分数除法的计算方法,会进行分数除法计算;理解比的意义,知道比与分数、除法的关系,并能类推出比的基本性质;能够正确地化简比和求比值。这为以后学习运用比的知识解决有关的实际问题打下基础。学习本节课学生能理解并掌握分数除法的计算方法,会进行分数除法计算。
学情分析
分数除法是本单元的第一课,也是非常要的一课,这节课的学习效果将直接影响到后面解决问题的学习。由于学生普遍基础较差,必须在理解分数除法的意义的基础上开始学习。学生分析问题解决问题的能力较差,因此,要培养学生在探索除分数以整数计算方法的过程中,进一步体会分数除法的意义,体会数学知识间的内在联系,发展分析、比较、抽象、概括的能力。
教学目标
1.通过具体的问题情境,探索并理解分数除法的计算方法。
2.能正确地进行分数除法的计算。
3.培养学生分析、推理能力。
教学重点和难点
教学重点:理解分数除法的意义,掌握分数除以整数的计算方法。
教学难点:分数除以整数计算法则的`推导过程。
教学过程
一、创设情景,教学分数除法的意义
1.以3盒水果糖的重量为问题为切入点,请你们列出算式并计算,看谁算的又快又好!
(1)每盒水果糖重100g,那么3盒有多重?
100×3=300(g)
(2)3盒水果糖重300g,那么每盒有多重?
300÷3=100(g)
(3)300g水果糖,每盒重100g,可以装几盒?
300÷ 100=3(盒)
2、师:我们一起来看一下这三个算式,观察一下这三个算式的已知数和得数,说一说它们都是已知什么,求什么的运算?这就是分数除法的意义。
讨论:分数除法的意义和整数除法的意义一样吗?
总结:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。
二、探究分数除法的计算方法
(1)引导参与,探究新知
师:我们已经知道了分数除法的意义,那么如何来计算呢?请同学们看黑板。
出示问题1。
请大家拿出一张操作纸,涂色表示出这张纸的4/5。
师:把一张纸的4/5平均分成2份,每份是这张纸的几分之几?怎样列式?
4/5÷2
请同学们通过涂一涂,算一算的方式来研究4/5÷2怎样计算。小组合作,汇报交流。
方法一:把4/5平均分成2份就是把4份平均分成2份,每份是2个1/5,也就是2/5。展示折纸和计算过程。
4/5÷2=4÷2/5=2/5
方法二:把一张纸的4/7平均分成2份,求每份是多少就是求4/5的1/2是多少,可以用乘法来做。展示折纸和计算过程。
4/5÷2=4/5×1/2=2/5
(2)质疑问难,理解新知
①师小结:有的是用分子除以整数,分母不变的方法算出结果2/5,有的是转化成分数乘法来做……那么在这些方法中,你最喜欢哪种?
②接下来就请你用自己喜欢的方法来解决这个问题:把一张纸的4/5平均分成3份,每份是这张纸的几分之几?先列式再用自己喜欢的方法计算。
③通过计算你们有什么发现?
生1、用第一种方法就不能做了。因为:上一题的时候,分子4是2的倍数,4÷2能得到整数商。而4÷3时,分子4不是3的整倍数,得不到整数商。所以不能用分子除以整数这种方法了。
生2:把除法转化成乘法来做……4/5÷3=4/5×1/3=4/15
能再讲讲这样做的道理吗?
师:“4/5÷3”表示把4/5平均分成3份,取其中的一份。
请同学们拿出第二张操作纸,你能把图中的4/5平均分成3份,并表示出其中的一份吗?
展示学生的分法
师(指着涂色部分):你所表示的这一部分是4/5的多少?
通过直观图理解4/5的1/3是4/15
(3)比较归纳,发现规律。
分数除以整数(0除外),等于分数乘这个整数的倒数。要注意的是:
结果最简。除号要变成乘号。
三、巩固练习
学生独立完成
四、课堂小结
1、分数除法的意义是什么?
2.分数除以整数的计算法则是什么?(学生总结)
五、作业布置
《分数除法》数学教案4
练习目标:
1在理解分数除法算理的基础上,正确熟练地进行分数除法的计算;
2运用所学的分数除法的知识,解决相应的实际问题.
练习过程:
一、基础知识练习:
1、计算:
⑴2/1328/943/1035/11522/232
⑵3/10223/242617/21518/9713/154
(学生独立计算,教师巡视指导,订正时让学生说一说是怎样计算的.)
2、通过计算下面的题,请你想一想,除数是整数和除数是分数的除法在计算上有什么相同的.地方?
引导学生小结:除以一个不等于0的数,等于H这个数的倒数.
二深入练习
1、计算下面各题,比较它们的计算方法.
5/6+2/35/6-2/35/62/35/62/3
2、
(让学生计算后分组讨论:你发现了什么规律?请你把你发现的规律完整地讲给大家听听。)
根据学生的回答,教师作如下板书:
一个数除以小于1的数,商大于被除数;
一个数除以1,商等于被除数;
一个数除以大于1的数,商小于被除数。
三、解决问题:
练习八第7至8题。
第7题学生独立解答。
第8题学生解答时提示学生需要先统一单位。
小结三道题的共同特点:都是求一个量里包含多少个另一个量,都用除法计算。
四、作业练习:
1、33页第5、9题。
2、一个商店用塑料袋包装120千克水果糖.如果每袋装1/4千克,这些水果糖可以装多少袋?
五、教学反思:
《分数除法》数学教案5
分数除法同分数乘法一样,都是小学阶段重要的数学内容,从过去的教学实践来看,这部分知识历来是学生数学学习的难点。原《大纲》的要求是:理解分数除法的意义;掌握分数除法计算法则;会计算分数除法;会口算简单的分数除法;会进行分数四则混合运算(不超过三步);会解答分数应用题(最多不超过两部)。《数学课程标准》关于分数除法的具体标准是:会进行分数除法运算和混合运算(以两步为主,不超过三步)。会解决有关分数的简单实际问题。《数学课程标准》与原《大纲》相比,分数除法计算方面的要求没有大的变化,只是把《大纲》中的混合运算的步数”不超过三步“改为”以两步为主,不超过三步“。变化较大的同分数乘法一样,仍然是淡化分数除法的意义,强调会进行分数除法计算和解决简单实际问题。本单元教材与传统教材相比,从编写思想、内容编排、教学方式等方面都有了较大的变化,主要有以下几个方面的特点:
一、结合具体情境理解分数除法的意义强化计算方法的掌握和应用。
从传统分数除法教材来看,主要有三个重点。第一,分数除法的意义;第二,分数除法法则。即:一个数除以分数,等于这个数乘以分数的倒数。第三,用方程或算术两种方法解决分数除法问题。从知识的建构上看,学生学习整数除法时对除法就是”平均分“已经非常熟悉,而现实生活中,又很难找到具体的事例来说明”一个数除以分数“的实际意义。所以,传统教材中选用”已知两个因数的积和其中一个因数,求另一个因数的运算“来说明分数除法的意义。这种乘除互逆关系是重要的数学结论,应该在学生乘除计算的知识背景下让学生认识。但是,现在用这个关系来定义分数除法意义的表述,对学生来说实在难于理解,再加上枯燥的看算式说意义的练习,使学生一开始接触分数除法就一头雾水。另外,这个分数除法的意义与”一个数除以分数,等于这个数乘以分数的倒数“这一分数除法的核心知识点又没有一点联系。所以,造成既增加学生的学习难度,又不利于学生掌握知识的情况。本着”降低难度,突出重点“的原则,本套教材首先不安排分数除法意义的内容。而是利用学生已有的整数除法意义的知识,通过现实的,学生能理解的具体事例,学习除法计算。明白为什么用除法?为什么这样算?如,为了解决”一个数除以分数,等于这个数乘分数的倒数“这一分数除法的核心知识点。教材首先安排了三组整数除法和分数乘法相对应口算练习,通过观察计算结果和算式的特点,让学生发现”甲数÷乙数=甲数×乙数的倒数“的规律。然后,选择学生生活中的现实问题,妈妈买来1/2张饼,把它平均分成3份,每份是整张大饼的几分之几?解决这个问题,学生自己的`知识和经验是把半张饼平均分成3份,列式是÷3。甲数÷乙数=甲数×乙数的倒数以及3的倒数是。在解决问题的过程中,借助直观图,把学生已有的知识和经验整合在一起,生成新的数学知识,分析除以一个数(0除外)等于分数乘这个数的倒数。这样设计分数除法法则的学习,首先删去了学生难于理解的计算方法推导的过程,另外,由整数除法和分数乘法的规律迁移到分数除法,是一个计算方法验证过程,也是计算方法形成和巩固的过程。在这里,删去的是次要的、过高的要求,强化的是学生扎扎实实进行分数除法计算最基本、最有价值的内容。同时,培养了学生自主建构知识的能力。
二、渗透数学建模思想,强化用方程解答分数除法问题。
从过去的经验看,分数除法应用问题的特点是”已知部分和所对应的分率,求整体“。实事求是地讲,这样的应用问题都是已发生的事物,是经过人为”加工“、”编造“的应用问题。这样的问题解决虽然在现实生活中应用较少,但在传统教材和教学中,一直是教材内容的重点和教学评价选题的焦点。众所周知,在很长时期内,分数除法问题要求用算术方法和方程两种方法解答,而用算术方法解答无论如何也找不到学生能够理解的、能够说明并理解数量关系的问题情境。所以,人们就用”已知部分和所对应的分率,求整体,用除法“的解题套路来解决问题。这样的学习,不利于学生理解问题中的数量关系,没有思维的条理性训练,有的只是死记硬背和机械的模仿训练。本教材有关分数除法问题的解决只采用列方程解答。这样设计的思考有以下几点:第一,有利于学生应用已有知识解决问题。即:把单位”1“看作χ,根据”求一个数的几分之几是多少,用乘法“找到题中的等量关系。第二,渗透数学建模的思想。方程是现实运算的一个有效的数学模型。结合分数除法问题的解决,通过一些典型事例,让学生经历分析问题(找等量关系)--列出方程表示--解方程等过程。这是《数学课程标准》提倡的数学建模思想的具体体现。
三、借助线段图分析数量关系,发挥其工具性。
线段图作为小学阶段数形结合,分析数量关系的工具,历来成为小学数学中的重要内容。传统教材和教学中,人们在关注用线段直观描述数量关系的同时,也把用线段图表示数量关系作为一般要求。即,把画线段表示题中的数量关系作为学习要求,增加了学习的难度。本套教材,只发挥线段图的工具性。即:借助线段图分析数量关系,不把画线段图表示数量关系作为学习要求。通过线段图来分析问题中的数学信息和数量关系,从而找出问题中隐含的等量关系。让学生在自主解决问题中,体会画图分析问题、解决问题的优越性和工具性。
本单元共安排5课时。主要内容包括:分数除以整数;一个数除以分数;简单的应用问题;混合运算。
本单元的教育目标是:
1、会进行简单的分数除法以及分数四则混合运算,能用方程解决有关分数除法的简单实际问题。
2、能借助线段图分析数量关系,在用方程解简单分数除法应用问题的过程中,能进行有条理的思考,并对结论的合理性作出有说服力的说明。
3、能够表达解决简单分数除法实际问题的过程,并尝试解释所得的结果。
4、体验画线段图分析问题的直观性和用方程解决问题时思维的条理性,认识到许多分数除法问题可以用方程的方法来解决。
●分数除法,安排4课时。
第1课时,分数除以整数。教材首先设计了三组有关系的口算题。如:20÷5,20×。通过计算20÷5=4,20×=4,发现它们的结果相同,进而得出:甲数÷乙数=甲数×乙数的倒数。接着,设计了”把张大饼平均分成3份,每份是这张大饼的几分之几?“的问题,探索分数除以整数的计算方法。教材以学生交流的形式呈现了学生计算和验证的过程。一是利用图示和已有的分数知识,推导出÷3==,二是直接利用发现的规律得出:÷3=×=。得到:分数除以一个数等于分数乘这个数的倒数。然后,在”试一试“,设计了分数除以整数的三道题,让学生应用上面的方法尝试计算。教学时,要给学生充分的口算和讨论规律的时间,然后,启发学生利用以前学过的除法的意义,倒数的知识,分数乘法的知识解决问题,说明结果的正确性。把分数除以整数计算方法的学习过程,变成知识扩展、方法验证的过程。
第2课时,一个数除以分数。教材贯彻在解决问题中学习计算的设计思路,选择了把消毒液分装在每瓶能装升的小瓶中的典型事例,设计了两个问题。(1)把2升消毒液分装在每瓶能装升的小瓶中,需要几个瓶子?学习整数除以分数的除法;(2)把升消毒液分装在每瓶能装升的小瓶中,需要几个瓶子?学习分数除以分数的计算方法。两个问题都呈现了算术和用方程解的两种方法。这节课的内容,计算方法是上节课的进一步拓展,根据题意列算式和方程是重点。教学中,首先要帮助学生理解题意,明白把2升消毒液倒入每瓶能装升的小瓶中,需要几个瓶子,就是求2升中有几个升。再鼓励学生用自己的方法试着解答。χ=2和χ=,除根据等式的基本性质解方程外,还可以利用倒数的知识,即两边直接乘的倒数来解决。如果学生只用方程两边同时除以的方法解答,教师就提出兔博士的问题”χ=2还可以怎样解?“启发学生用倒数的知识列方程χ×=2×解答。”试一试“中安排了三道除数是分数的式题,要给学生充分的试算和交流的时间,重点说一说自己是怎样想的。教师还可以引导学生讨论一下分数除以整数、分数除以分数有什么共同点,进一步巩固分数除法的计算方法。
第3课时,简单的已知一个数的几分之几是多少,求这个数的简单问题。教材选择了同学们开联欢会布置会场的事情,呈现了布置会场的情境图和”用的红气球占总数的“、”红气球有28个“等文字信息,以及”一共用了多少个气球?“的问题。通过兔博士的话,提出”把气球的总数看作单位‘1’,画出线段图分析一下的要求“,并呈现了线段图。教学时,要在学生了解数学信息和知道了要解决的问题后,师生共同画线段图来分析数量关系,找到等量关系式,再鼓励学生自己试着解答,并检验计算的结果。交流时,重点让学生说说是怎样想的、怎样解答的,用自己的方法解释计算结果的正确性。”试一试“中,安排了一个数的几分之几是两数和,求这个数的问题,鼓励学生画线段图并解答。
第4课时,稍复杂的”已知一个数的几分之几是多少,求这个数“的问题。教材首先选择了玩具厂计划生产碰碰车的事例,用图文结合的方式呈现了已经完成计划的,还要生产190辆等信息和”这批碰碰车有多少辆?“的问题。通过兔博士的话,提示画线段图来分析数量关系并呈现了完整的线段图。这是一道需要两步计算的分数除法的实际问题,可找到两组等量关系,列出两个方程解答。(1)计划生产的辆数-已经生产的辆数=还要生产的辆数,方程为:χ-χ=190。(2)计划生产的辆数×还剩下的几分之几(1-)=还要生产的辆数,方程为:χ(1-)=190。教学时,要充分利用线段图指导、帮助学生分析问题中的数学信息和数量关系,找到题中给出的等量关系,再鼓励学生用列方程的方法解答。
分数混合运算的顺序与整数一样,本节课的混合运算主要是根据分数除法的特点,解决运算过程中的方法问题。教材设计了三道分数混合运算式题,(1)题是除加混合运算,运算中要先算除法,并把除法变成乘除数的倒数。(2)题是乘除混合运算。运算时,把除法转化为乘除数的倒数后,可以有不同的约分方法。第一,直接在三个分数上约分;第二,把三个分数相乘写成分子乘分子,分母乘分母的式子,再约分。(3)是带小括号的除减混合运算。教学中,由于两步混合运算的顺序学生已经非常熟悉,所以,让学生说一说运算顺序,自己计算。在交流学生计算方法和结果的同时,掌握分数两步混合运算方法。
《分数除法》数学教案6
教学目标
1。使学生理解分数除法的意义与整数除法的意义相同,就是已知两个因数的积与其中一个因数,求另一个因数的运算。
2。掌握分数除以整数的计算法则,并能正确的进行计算。
3。培养学生分析能力、知识的迁移能力和语言表达能力。
教学重点
正确归纳出分数除以整数的计算法则,并能正确的.进行计算。
教学过程
一、复习引新
(一)说出下面各数的倒数。
0.3 6
(二)已知126×45=5670,直接说出5670÷45和5670÷126的得数,再说说你是怎样想的,根据是什么。(学生回答后教师总结:根据整数除法的意义,不用计算就能知道这两题的结果,谁还记得整数除法的意义是什么?已知两个因数的积与其中一个因数,求另一个因数的运算。)
(三)引新:同学们想不想知道分数除法的意义吗?分数除法如何计算呢?这节课我们就一起来
学习
分数除法。(板书课题:分数除法的意义和计算法则)
二、新授教学
(一).教学分数除法的意义(演示课件:分数除法的意义)
1.每人吃半块月饼,4个人一共吃多少块月饼?
教师提问:半块月饼用分数怎么表示?求4个人一共吃多少块月饼就是求几个?求4个是多少怎样列算式?
2.两块月饼,平均分给4人,每人分得多少块?怎样列式?
列式:2÷4
3.两块月饼,分给每人半块,可以分给几个人?
列式:
教师提问:说一说结果是多少?你是如何得出结果的?
4.组织学生讨论:分数除法的意义。
总结:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。
5.练习反馈。
1.出示例1.把米铁丝平均分成2段,每段长多少米(演示课件:分数除以整数)
(1)求每段长多少米怎样列算式?
(2)以小组为单位讨论一下得多少呢?
米平均分成2段就是要把6个米平均分成2份,每份是3个米是米。
(3)教师板书整理。
2.教师质疑:如果把米铁丝平均分成3段、6段怎样计算?
也可以这样想:把米铁丝平均分成3段,就是求米的是多少,列式是:
把米铁丝平均分成6段,就是求米的是多少,列式是:
3.教师继续质疑:如果把米铁丝平均分成4段每段长多少米?怎样计算?
为什么采用转化成分数乘法这种方法比较好呢?
组织学生观察在转变中,什么变了,什么没变?讨论分数除以整数的计算法则。
4.学生边概括教师边板书:分数除以整数(0除外)等于分数乘以这个整数的倒数。
三、巩固练习
(一)计算下面各题。
学生独立完成,教师巡视,进行个别辅导。
(二)求未知数
1.2.
(三)判断。
1.分数除法的意义与整数除法的意义相同。()
2.已知两个分数的积与其中一个分数,求另一个分数,用除法解答。()
(四)解答下面各题。
1.把平均分成4份,每份是多少?
2.什么数乘以6等于?
3.一个正方形的周长是米,它的边长是多少米?
四、课堂总结
这节课我们学习了哪些知识?分数除法的意义是什么?分数除以整数的计算法则是什么?还有什么问题?
五、课后作业
(一)计算下面各题。
(二)解下列方程。
六、板书设计
分数除法
《分数除法》数学教案7
教学目标
1.通过比较,进一步弄清求一个数的几分之几是多少的乘法应用题和相应的列方程解的应用题的数量关系之间的内在联系,解题思路,解题方法的联系和区别.
2.能正确熟练地解答稍复杂的分数应用题.
3.培养学生分析问题和解决问题的能力.
教学重点
明确分数乘、除法应用题的联系和区别.
教学难点
明确分数乘、除法应用题的联系和区别.
教学过程
一、启发谈话,激发兴趣.
在前边,我们已经学习了稍复杂的分数乘、除法应用题,这两类应用题在分析解答
时易混淆.这节课我们就来一起对这两类应用题进行比较.通过比较弄清它们之间的联系与区别.
二、学习新知
(一)出示例8的4个小题.
1.学校有20个足球,篮球比足球多 ,篮球有多少个?
2.学校有20个足球,足球比篮球多 ,篮球有多少个?
3.学校有20个足球,篮球比足球少 ,篮球有多少个?
4.学校有20个足球,足球比篮球少 ,篮球有多少个?
(二)学生试做.
1.第一题
解法(一)
解法(二)
2.第二题
解:设篮球有 个.
解法(一)
解法(二)
解法(三)
3.第三题
解法(一)
解法(二)
4.第四题
解:设篮球 个.
解法(一)
解法(二)
解法(三)
(三)比较区别
1.比较1、3题.
教师提问:这两道题中的第二个已知条件有什么不同?解题思路有什么相同的地方?有
什么不同的地方?
(1)观察讨论.
(2)全班交流.
(3)师生归纳.
这两道题都是把足球看作单位1,单位1的量是已知的,求篮球有多少个?
就是求一个数的几分之几是多少?用乘法计算,不同的是(1)题篮球比足球多 ,而第(3)题是篮球比足球少 ,计算进一个要加上多的'数,一个要减去少的个数.
2.比较2、4题
教师提问:这两道的第二个已知条件有什么不同?解题思路有什么相同的地方?有什么不同的地方?
(1)观察讨论.
(2)全班交流.
(3)师生归纳.
这两道题都是把篮球看作单位1,而且单位1的量者是未知的,因此要设单位1的量为 ,根据一个数乘以分数的意义找出等量关系列方程解答.熟练之后也可以直接列除法算式解答.
《分数除法》数学教案8
教学目标:
1、通过学习,学生能用方程的方法解答“已知一个数的几分之几是多少,求这个数”的分数应用题,并能掌握检验方法。
2、根据题意,能画线段图分析图意。
3、学习数学知识的应用过程,感受身边数学,体会学数学,用数学的乐趣,培养学生知识迁移能力。
教学过程:
一、巩固旧知,过渡引入
1、根据题意,判断谁是单位1,并写出各题的数量关系。
(1)故事书本的2/5等于连环画的'本数。
(2)梨重量的7/8是840千克。
(3)男生人数是全班人数的2/3 。
2、一个儿童体重35千克,他体内所含的水分占体重的4/5,他体内的水分有多少千克?
[这两组算题具有较强的针对性,与本课知识有联系,通过学习,为学习新知作过渡。]
二、学习新知
1、出示例1根据测定,成人体内的水分大约占体重的2/3,而儿童体内的水分约占体重的4/5 。我体内有28千克的水分,可是我的体重才是爸爸的7/15。小明的体重是多少千克?
(1)读题,找出已知条件和问题。
(2)根据题意与线段图理解题中的条件和问题。
(3)根据题意,启发学生:根据一个数乘分数的意义写出数量关系式。
体重× 4/5 =体内水分重量
师引导:这道题把哪个数量看作单位“1”,是已知的?还是未知的?该怎样求?能不能根据上面的等量关系式,设未知数χ,再列方程求出?
(4)学生尝试练习方程解答,个别板演,教师点评。
(1)解:设这个儿童体重χ千克
(2)算术法:28÷4/5 χ× 4/5=28 χ=28÷4/5
χ=35答:这个儿童体重35千克。
《分数除法》数学教案9
教学目标:
使学生掌握分数与除法之间的关系,并能进行简单的应用;培养学生动手操作的能力和抽象,概括,归纳的能力。
教学重点:
分数的数感培养,以及与除法的联系。
教学难点:
抽象思维的培养。
教学过程:
一,铺垫复习,导入新知[课件1]
1,提问:A,7/8是什么数它表示什么
B,7÷8是什么运算它又表示什么
C,你发现7/8和7÷8之间有联系吗
2,揭示课题。
述:它们之间究竟有怎样的关系呢这节课我们就来研究“分数与除法的关系”。
板书课题:分数与除法的关系
二,探索新知,发展智能
1,教学P90 。例2:把1米长的钢管平均截成3段,每段长多少
提问:A,试一试,你有办法解决这个问题吗
板书:用除法计算:1÷……(米)
用分数表示:根据分数的意义,把1米平均分成3份,每份是1米的1/3,就
是1/3米。
B,这两种解法有什么联系吗
(从上面的解法中可以看出,它们表示的是同一段钢管的长度,所以1÷3和1/3是相等的关系。)
板书:1÷3= 1/3
C,从这个等式中,我们发现:当1÷3所得的商除不尽时,可以用什么数来
表示也就是说整数除法的商也可以用谁来表示
2,教学P90 。例3:把3块饼平均分给4个孩子,每个孩子分得多少块[课件3]
(1)分析:A,想想:若是把1块饼平均分给4个孩子,每个孩子分得多少怎么列式
B,同理,把3块饼平均分给4个孩子,每个孩子分得多少怎么列式3÷4的商能不能用分数来表示呢
板书:3÷4= 3/4
(2)操作检验(分组进行)
①把3个同样大小的圆看作3块饼,分一分,看每个孩子究竟能分得多少块饼
②反馈分法。
提问:A,请介绍一下你们是怎么分的
(第一种分法:把3块饼一块一块地分,每个孩子分得每个饼的1/4,共得3个1/4块,也就是3/4块。)
(第二种分法:把三块饼叠在一起分,每个孩子分得3块饼1/4的,拼起来相当于一块饼的`3/4,也就是3/4块。)
B,比较这两种分法,哪种简便些
※把5块饼平均分给8个孩子,每个孩子分得多少说一说自己的分法和想法。
3,小结提问:A,观察上面的学习,你获得了哪些知识
板书:被除数÷除数=除数/被除数
B,你能举几个用分数表示整数除法的商的例子吗
C,能不能用一个含有字母算式来表示所有的例子
板书:a÷b=b/a (b≠0)
D,b为什么不能等于0
4,看书P91深化。
反馈:说一说分数和除法之间和什么联系又有什么区别
板书:分数是一个数,除法是一种运算。
三,巩固练习[课件5]
1,用分数表示下面各式的商。
5÷8 24÷25 16÷49 7÷13 9÷9 c÷d
2,口算。
7÷13=()÷9= 1/2=÷()8/13=()÷()
3, 7/10表示把单位“1”平均分成()份,表示这样的()份的数。1÷21表示两个数(),还可以表示把()平均分成()份,表示这样的一份的数。
四,全课小结
当两个自然数相除不能整除时,它门的商可以用分数表示,由于除法是一种运算,而分数是一种数,因此,我们只能说被除数相当于分数的分子,除数相当于分数的分母。故此,分数与除法既有联系,又有区别。
在整数除法中零不能作除数,那么,分数的分母也不能是零。
五,家作
P93 。1,2,3
板书设计:分数与除法的关系
例2:1÷……(米)=1/3(米)例3:3÷4= 3/4
被除数÷除数=除数/被除数
a÷b=b/a (b≠0)
分数是一个数,除法是一种运算
《分数除法》数学教案10
教学目标
1.通过比较,进一步弄清求一个数的几分之几是多少的乘法应用题和相应的列方程解的应用题的数量关系之间的内在联系,解题思路,解题方法的联系和区别.
2.能正确熟练地解答稍复杂的分数应用题.
3.培养学生分析问题和解决问题的能力.
教学重点
明确分数乘、除法应用题的联系和区别.
教学难点
明确分数乘、除法应用题的联系和区别.
教学过程
一、启发谈话,激发兴趣.
在前边,我们已经学习了稍复杂的分数乘、除法应用题,这两类应用题在分析解答
时易混淆.这节课我们就来一起对这两类应用题进行比较.通过比较弄清它们之间的联系与区别.
二、学习新知
(一)出示例8的4个小题.
1.学校有20个足球,篮球比足球多 ,篮球有多少个?
2.学校有20个足球,足球比篮球多 ,篮球有多少个?
3.学校有20个足球,篮球比足球少 ,篮球有多少个?
4.学校有20个足球,足球比篮球少 ,篮球有多少个?
(二)学生试做.
(略)
(三)比较区别
1.比较1、3题.
教师提问:这两道题中的第二个已知条件有什么不同?解题思路有什么相同的地方?有
什么不同的地方?
(1)观察讨论.
(2)全班交流.
(3)师生归纳.
这两道题都是把足球看作单位1,单位1的量是已知的`,求篮球有多少个?
就是求一个数的几分之几是多少?用乘法计算,不同的是(1)题篮球比足球多 ,而第(3)题是篮球比足球少 ,计算进一个要加上多的数,一个要减去少的个数.
2.比较2、4题
教师提问:这两道的第二个已知条件有什么不同?解题思路有什么相同的地方?有什么不同的地方?
(1)观察讨论.
(2)全班交流.
(3)师生归纳.
这两道题都是把篮球看作单位1,而且单位1的量者是未知的,因此要设单位1的量为 ,根据一个数乘以分数的意义找出等量关系列方程解答.熟练之后也可以直接列除法算式解答.
三、巩固练习.
(一)请你根据算式补充不同的条件.
学校有苹果树30棵,________________,桃树有多少棵,
(二)分析下面的数量关系,并列出算式或方程.
1.校园里有柳树60棵,杨树比柳树多 ,杨树有多少棵?
2.校园里有柳树60棵,杨树比柳树少 ,杨树有多少棵?
3.校园里的杨树比柳树多 ,杨树有25棵,柳树有多少棵?
4.校园里的柳树比杨树少 ,杨树有25棵,柳树有多少棵?
四、归纳总结.
今天我们通过对分数乘、除法应用题进行比较,找到了它们之间的联系和区别,这些对于我们正确解答分数应用题有很大帮助,大家一定要掌握好.
《分数除法》数学教案11
一、教学内容
苏教版小学数学第十一册第33—38页“分数除法”例1—例4。
二、简要分析
本节课是学生刚刚学过“分数乘法”和“倒数”这一概念的基础上进行教学。学生已有的知识还有“商不变的规律”。本课例就是教者引导学生运用已有的知识或经验,去探索获取新知识,形成和发展新知识结构,同时发展学生的智力和能力。大胆的改革教材,进行知识的组块教学,勇于实践,缩短“分数除法计算法则”教时的一个例子。
三、教学过程
(一)复习旧知,作好铺垫,导入新课。
1、说出下列各数的倒数(出示卡片)
2、6、—、—、0.5、1—、0.7
2、用投影打出:下面两题简便计算的根据是什么?
12÷25=(12×4)÷(25×4)=48÷100=0.48
11÷125=(11×8)÷(125×8)=88÷1000=0.088
[简析:商不变规律的应用,为后面学习新知作出充分准备。]
3、用投影分A、B组分别出示:下列算式中,哪些算式你一眼就能看了它的商?
A组:78÷10.35÷1136÷721.8÷9
B组:—÷1—÷1—÷218÷——÷1
—÷——÷—4—÷2——÷0.7
[简析:这两组有趣习题的练习,有利于调动学生的学习激情,学生很快说出除数是1的算式,一眼就看出商是几。当学生看出除数为1时,计算就最为简便。(这里为学习新知作了重要的铺垫)一看就知道商是几(即被除数)]
师:接着问B组题中是些什么算式,生答师板书“分数除法”算,今天就来研究“分数除法”的计算法则。
(二)指导探索,在新旧知识的衔接上教师加以点拔导学。
(1)请大家列出B组算式中除数不是1的算式。
—÷218÷——÷——÷—
4—÷2— —÷0.7
(2)先来研究前四道算式,这四道算式中除数都不是1,你能想办法将这除数变为1,而商不变吗?
[评析:此时学生的学习情绪积极性高,纷纷欲试,是学习新知识的最佳时机。]
师:下面分学习小组进行讨论。
(3)交流。
学生甲:以—÷2为例,除数是2,将2×—除数变为1,要使商不变,被除数—也要乘以—。
学生乙:以18÷—为例,除数是—,将—×—除数变为1,要使商不变,被除数18也要乘以—。
[评析:此题是倒数的概念和商不变规律同时应用,运用旧知,用得巧。]
(教师根据学生的回答,作好下列板书)
—÷2=(—×—)÷(2×—)18÷—=(18×—)÷(—×—)
=—×—÷1=18×—÷1
=—×— =18×—
(三)引导学生观察、比较、类推,得出结论。
师问:这里我们是应用的什么进行变化的?(商不变的规律)
(教者把上面板书用虚线框起)让学生观察比较。
—÷2=—×—18÷—=18×—
问:这两个等式的前后发生了什么变化?他们变化有什么共同点?(分学习小组讨论)
生汇报:除号变成了乘号,除数变成了它的倒数。
分数除法算式变成了分数乘法算式。
师小结:你们观察得真仔细,将分数除法转化为分数乘法来做,今后到中学里学习还可用到“转化”这一重要思想把未知的转化成已知,去探索知识,为人类服务。
练习:用复合投影片打出:
将下列除法算式转化为乘法算式(学生边回答边出示下排转化的式子)
—÷— —÷— —÷612÷—
=—×—=—×4 =—×—=12×—
[评析:抓住时机,练重点难点,强化新知。]
6、讨论、比较、类推,概括方法。
问:在刚才的练习中,你认为有什么规律?
(生答:被除数不变,除号变成了乘号,同时除数变成了它的倒数。)
师问:如果这些被除数作为甲数,除数作为乙数,你能用一句话概括一下它的规律吗?
生答师板书:甲数除以乙数,等于甲数乘以乙数的倒数。这就是分数除法的计算法则。(看书第38页)
引导学生讨论:为什么乙数要加上零除外?
(四)利用法则,练习重点,巩固新知。
1、—÷3=—×———=12÷—=12×———=
—÷—=—×———=—÷—=——————
2、计算。(并指名板书,注意书写格式)
—÷3—÷——÷36÷—
3÷——÷——÷— —÷—
3、改错。
(1)9÷—=9÷—=—=10—(2)—÷5=—×—=—
(3)—÷—=—×—=—
4、判断。
(1)1÷—=—÷1(2)a÷b=a×—
[评析:改错题、判断题的设计,进一步强化了计算法则。]
(五)作业练习,熟记法则。
1、练习八第3题的`前4题
第6题的前4题
2、校对答案。(说出过程,强化法则的应用)
思考题:计算(1)4—÷2—(2)—÷0.7
[评析:这里是知识结构的完整,知识点的引伸。]
(六)总结。
1、今天我们一起研究了什么内容?
2、你有哪些收获?
3、计算过程中应注意什么问题?
四、教后评析
本节课教者利用旧知识的学习作铺垫,运用知识的迁移规律,对分数除法法则进行整体教学,利用观察、比较、类推等方法缩短了教学课时数,打破了原教材的束缚,学生的学习积极性高,发展了学生的智力,受到良好的教学效果。
1、恰当地调整了教材,进行知识的组块教学,挖掘了教材(知识)本身的潜在因素,利用旧知,通过师生的对话、教师的点拔,为学生主动探索、自己发现方法概括法则创造条件,有利于学生掌握、研究教学问题的思维方法,打破了一例一题传统的教学模式,体现了现代小学数学教育的特点。
2、抓住知识间的内在联系,在知识连接点衔接处精心设计习题、提问,让学生主动探索问题。
3、重视学生素质的培养,注重面向全体学生、全员参与,注重发展学生的思维,培养能力和方法指导,从铺垫(全员练习)→新课(转化除数、变除为乘、试做、比较、类推、概括法则)→巩固新知(填空、计算、改错、判断)→作业练习→思考题引伸拓展→总结整个过程,充分体现了“以教师为主导、学生为主体、训练为主线”的教学原则。
《分数除法》数学教案12
教学要求:
1、使学生认识分数除法应用题的特点,能根据应用题的特点理解解题思路和解题方法,学会解答已知一个数的几分之几是多少求这个数的应用题。
2、进一步培养学生自主探索问题解决的能力和分析、推理和判断等思维能力,提高解答应用题的能力。
教学重难点:
分数除法应用题的特点及解题思路和解题方法。
教学过程:
一:复习
1、根据条件说出把哪个数量看作单位1。
(1)棉田的面积占全村耕地面积的2/5。
(2)小军的体重是爸爸体重的3/8。
(3)故事书的本数占图书总数的1/3。
(4)汽车速度相当于飞机速度的1/5。
2、找单位1,并说出数量关系式。
(1)白兔的只数占总只数的2/5。
(2)甲数正好是乙数的3/8。
(3)男生人数的1/3恰好和女生同样多。
3、一个儿童体重35千克,他体内所含水分占体重的4/5,他体内的水分有多少千克?
集体订正时,让学生分析数量关系,说出把哪个数量看作单位1,并说出解答这个问题的数量关系式,即:体重4/5=体内水分的重量。同学们都能正确分析和解答分数乘法应用题,分数除法应用题又如何解答呢?今天这节课我们就一起来研究。(板书课题:分数除法应用题)
二、新授
1、教学例1。一个儿童体内所含的水分有28千克,占体重的4/5。这个儿童体重有多少千克?
(1)指名读题,说出已知条件和问题。
(2)共同画图表示题中的条件和问题。
(3)分析数量关系式
提问:根据水份占体重的4/5,可以得到什么数量关系式?
学生回答后,教师说明:例1和复习题的第二个已知条件相同,因此单位1相同,数量关系式也相同,都是把体重看作单位1,数量关系式是:体重4/5=体内水分的重量。
根据学生的回答,把线段图进一步完善。
提问:根据题目的条件,我们已经找到了这一题的数量关系式:体重4/5=体内水分的重量。现在已知体内水分的重量,要求儿童体重有多少千克,可以用什么方法解答?(引导学生说出用方程解答。)
让学生试列方程,并说出方程表示的意义。
让学生把方程解完,并写上答案。
出示教材的检验,提问:要检验儿童的体重是不是正确,应该怎样做?(用求出的'体重乘4/5,看看是不是等于水分的千克数。)
2、比较。
提问:我们再把例1与复习题比较,看看这两题有什么相同的地方,有什么不同的地方?
根据学生的回答,帮助学生整理出:
(1)看作单位1的数量相同,数量关系式相同。
(2)复习题单位1的量已知,用乘法计算;
例1单位1的量未知,可以用方程解答。
(3)因为它们的数量关系式相同,所以这两种题目的解题思路是一致的,都是先找出把哪个数量看作单位1,根据单位1是已知还是未知,再确定是用乘法解还是方程解。
三、巩固练习
1、做书P34做一做
要求学生先按照题目中的想说出想的过程,说出数量关系式,再列方程解答。订正时要说一说是按照什么来列方程的。
2、做练习九第1题。
先让学生找出把哪个数量看作单位1,说出数量关系式,再列方程解答。
四、小测:(略)
五、小结:这节课我们研究了什么问题?解答分数应用题的关键是什么?单位1已知用什么方法解答?未知呢?
六、布置作业
练习九第2题
教后反思:学生在已学过的分数乘法应用题的基础上,能找出关键句,并根据关键句说出相对的数量关系式。为孩子创造做数学的机会,通过让学生积极参与知识的形成过程,让学生运用已有的知识经验,从不同的角度,用不同方法获取新知识,在不同程度上都得到发展。使学生不但知其然,还知其所以然。同时又使学生的观察力、想象力、思维能力和创新能力得到培养和发展,在学会的过程中达到会学的目的。
再根据题目的条件判断单位1的量,是已知的就乘法计算;单位1的量是未知的就用方程来解答;并学会了怎样验算。教学中不仅要重视知识的最终获得,更要重视学生获取知识的探究过程。结论仅是一个终结点,而探究结论、揭示结论的过程则是由无数个点组成的线、面、体,在探究的过程中,只有让学生动手做数学,学生很可能获得超出结论自身的价值的若干倍的数学知识。
小测:列出数量关系式,并列式解答。
1、六年一班有三好学生9人,正好占全班人数的1/5,全班有多少人?(用方程解)
2、一瓶油吃了3/5,正好是300克,这瓶油重多少克?(用方程)
小测:列出数量关系式,并列式解答。
1、六年一班有三好学生9人,正好占全班人数的1/5,全班有多少人?(用方程解)
2、一瓶油吃了3/5,正好是300克,这瓶油重多少克?(用方程)
《分数除法》数学教案13
一、复习引新
1.说出下面各数的倒数。
0.36
2.已知12645=5670,直接说出567045和5670126的得数,再说说你是怎样想的,根据是什么。(学生回答后教师总结:根据整数除法的意义,不用计算就能知道这两题的结果,谁还记得整数除法的意义是什么?已知两个因数的积与其中一个因数,求另一个因数的运算。)
3.引新:同学们想不想知道分数除法的意义吗?分数除法如何计算呢?这节课我们就一起来学习分数除法。(出示课题)
二、新授教学
(一).教学分数除法的意义(课件一下载)
①每人吃半块月饼,4个人一共吃多少块月饼?
半块月饼用分数怎么表示?求4个人一共吃多少块月饼就是求几个?求4个是多少怎样列算式?
②两块月饼,平均分给4人,每人分得多少块?怎样列式?
列式:24
③两块月饼,分给每人半块,可以分给几个人?
列式后,说一说结果是多少?你是如何得出结果的.?
④组织学生讨论:分数除法的意义。
总结:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。
⑤练习反馈。
根据:,写出,(二).教学分数除以整数
1.出示例1、把米铁丝平均分成2段,每段长多少米(课件二下载)
①求每段长多少米怎样列算式?②以小组为单位讨论一下得多少呢?
米平均分成2段就是要把6个米平均分成2份,每份是3个米是米。
③、教师板书整理。
(米)
2.教师质疑:如果把米铁丝平均分成3段、6段怎样计算?
也可以这样想:把米铁丝平均分成3段,就是求米的是多少,列式是:把米铁丝平均分成6段,就是求米的是多少,列式是:3.教师继续质疑:如果把米铁丝平均分成4段每段长多少米?怎样计算?(米)
为什么采用转化成分数乘法这种方法比较好呢?
组织学生观察在转变中,什么变了,什么没变?讨论分数除以整数的计算法则。
4.学生边概括教师边板书:分数除以整数(0除外)等于分数乘以这个整数的倒数。
三、巩固练习
1.计算下面各题:
学生独立完成,教师巡视,进行个别辅导。
2.请同学求未知数①②3.判断。
①分数除法的意义与整数除法的意义相同。()
②已知两个分数的积与其中一个分数,求另一个分数,用除法解答。()
③()
④()
⑤()
4.解答下面各题。
①把平均分成4份,每份是多少?
②什么数乘以6等于?
③一个正方形的周长是米,它的边长是多少米?
四、课堂总结
这节课我们学习了哪些知识?分数除法的意义是什么?分数除以整数的计算法则是什么?还有什么问题?
五、课后作业
练习七1、2、3、4
六、板书设计
《分数除法》数学教案14
教学目标:
1、通过教学,使学生在理解分数除法意义及掌握分数乘法应用题解题思路的基础上,掌握已知一个数的几分之几是多少求这个数的稍复杂分数除法应用题的解题思路和方法,能比较熟练地解答一些简单的实际问题。
2、通过教学,培养并提高学生的分析、判断、探索能力及初步的逻辑思维能力。
教学重点:弄清单位1的量,会分析题中的数量关系。
教学难点:分析题中的数量关系。
教学过程:
一、复习
小红家买来一袋大米,重40千克,吃了,还剩多少千克?
1、指定一学生口述题目的条件和问题,其他学生画出线段图。
2、学生独立解答。
3、集体订正。提问学生说一说两种方法解题的过程。
4、小结:解答分数应用题的关键是找准单位1,如果单位1的具体数量是已知的,要求单位1的几分之几是多少,就可以根据分数乘法的意义,直接用乘法计算。
二、新授
1、教学补充例题:小红家买来一袋大米,吃了,还剩15千克。买来大米多少千克?
(1)吃了是什么意思?应该把哪个数量看作单位1?
(2)引导学生理解题意,画出线段图。
(3)引导学生根据线段图,分析数量关系式:买来大米的重量-吃了的重量=剩下的重量
(4)指名列出方程。解:设买来大米X千克。x-x=15
2、教学例2
(1)出示例题,理解题意。
(2)比航模组多是什么意思?引导学生说出:是把航模组的人数看作单位1,美术组少的人数占航模组的
(2)学生试画出线段图。
(3)根据线段图,结合题中的分率句,列出数量关系式:
航模小组人数+美术小组比航模小组多的人数=美术小组人数
(4)根据等量关系式解答问题。解:设航模小组有人。
三、小结
1、今天我们学习的这两道应用题,它们有什么共同点?(今天我们学习的这两道应用题,题里的`单位1都是未知的数量,都可以列方程来解,这样顺着题意列出方程思考起来比较方便。)
2、用方程解答稍复杂的分数应用题的关键是什么?(关键是找准单位1,再按照题意找出数量间的相等关系列出方程)
四、练习
练习十第4、12、14题。
教学追记:
本堂课,我吸取上节课对线段图不够重视导致学生解题困难的教训,在基本了解题意之后,就和全班学生一起画出相关的线段图,引导学生看懂线段图,在此基础上再列出数量关系式。由于有了上节课的模式,再加上本节课我对线段图比较重视,因而学生在列数量关系式时顺利多了。
《分数除法》数学教案15
教学目标
1、能用方程解决有关的简单的分数实际问题,初步体会方程解决实际问题的重要模型
2、在解方程中,巩固分数除法的计算方法
教学重点
能用解方程解决简单的有关分数的实际问题
教学难点
巩固分数除法的计算方法
教具准备
挂图
教师指导与教学过程
学生学习活动过程
设计意图
一、创设情境,引入新知
1、出示主题图
让学生大胆地提出问题:操场上有多少人参加活动?
2、解决问题
鼓励学生用方程解决问题
3、选择用除法计算借助线段图的'动能理清思路
板书:
二、尝试解决
1、试一试第1题
板书:
解:设踢足球的有x人。
4/9x=4x=9
或4÷4/9=9
2、试一试,第1题(2)板书:
学生仔细观察情境图后,提出问题
学生独立解决问题,可能会出现多种解决问题的策略让学生用方程和除法计算两种方法,板演在黑板上
全班进行交流
学生可以列方程解决,也可以用分数除法解决
集体纠正
学生独立解方程
捐名板演
然后进行全班交流
集体纠正
充分利用主题图,让学生大胆地提出问题
引领学生做好分析理清思路
鼓励学生独立完成,引导学生讲清解题的思路
巩固学生用方程计算的方法
教师指导与教学过程
学生学习活动过程
设计意图
9×1/3=3(人)
三、练一练
1、解方程:
1/5x=73/4x=4
5/8x=1/123/8x=1
2、解决问题
让学生先弄清“八折8/10,可利用方程法解,术法作基本要求”
3、解决练一练,第3、题
板书:
解:设妈妈的身高是xcm15/16x=150
X=160或
150×15/16x=160
解:设鹅的孵化期是x天
14/15x=28或x=30
28÷14/15或x=30天
的意思,即现价是原价也可用算术法解,算术法作基本要求
学生独立解决
或用算术法解决问题
然后进行全班交流纠正
引导学会寻找有用的数字信息
结合鸡、鸭、鹅孵化期的长短为学生创设运用分数乘除法解决问题
板书设计: 分数除法(二)
解:设操场上有X人参加活动
x×2/9=6
x=6÷2/9
x=6×9/2
x=27