《正比例函数》(第一课时)教案(合集5篇)

时间:2019-05-12 19:28:02下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《《正比例函数》(第一课时)教案》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《《正比例函数》(第一课时)教案》。

第一篇:《正比例函数》(第一课时)教案

巢湖市夏阁镇西峰初级中学

授课课程:正比例函数(第一课时)

授课教师:王峥峥

授课时间:

2015.5.12上午第三节

一、教学目标:

1、知识目标:知道正比例函数的概念,掌握正比例函数解析式特点,根据正比例函数的意义,判断两个相关联的量是不是成正比例。

2、能力目标:经历思考,探究过程,发展总结归纳能力,体验数形之

间联系,逐步学会利用数形结合思想分析解决有关思想。

3.情感态度:积极参与数学活动,对其产生好奇心和求知欲,形成合作交流的学习习惯。

二、教学重点:

理解正比例函数的意义以及解析式特点,能根据要求完成转化,解决问题。

三、教学难点:

正比例函数的判定和理解。

四、教学过程:

(一)情境探究:

1996年,鸟类研究者在芬兰给一只燕鸥(候鸟)套上标志环.4个月零1周(128天)后人们在25600千米外的澳大利亚发现了它.你能解答下面的问题吗?

(1)这只小鸟大约平均每天飞行多少千米?

(2)这只燕鸥的行程y(千米)与飞行时间x(天)之间有什么关系?

(3)这只燕鸥飞行1个半月(45天)的行程大约是多少千米?

(二)、探索新知:

1、下列问题中的变量对应规律可用怎样的函数表示?

(1)圆的周长L随半径r 大小变化而变化;

(2)铁的密度为7.8g/cm,铁块的质量m(单位g)随它的体积V(单位cm)大小变化而变化;

(3)每个练习本的厚度为0.5cm,一些练习本撂在一起的总厚度h(单位cm)随这些练习本的本数n的变化而变化;

(4)冷冻一个0℃物体,使它每分下降2℃,物体的温度T(单位:℃)随冷冻时间t(单位:分)的变化而变化。

ccc

2、认真观察以上出现的四个函数解析式,分别说出哪些是常数、自变量和函数 这些函数有什么共同点?

这些函数都是_____与_____积的形式,且自变量的指数都是______.3、归纳总结:

正比例函数定义:一般地,形如y=kx(k是____,k____0)的函数,叫做正比例函数,其中_____叫比例系数。

(三)、应用新知

练习1如果y是x的正比例函数,说出其中的比例系数,若不是请说出原因。

①y=3x ②y= 2/x ③y=x/2 ④yr2 判断下列各题中所指的两个量是否成正比例。

(是在括号内打“ √

”,不是在括号内打“ ×

”)练习

2、列式表示下列问题中的y与x的函数关系,说出它是正比例函数吗?为什么吗?

(1)圆周长C与半径r()cπr2(2)圆面积S与半径r()sπr2

(3)在匀速运动中的路程S与时间t()svt

(4)底面半径r为定长的圆锥的侧面积S与母线长l()sπrl(5)已知y=3x-2,y与x()

例:已知y与x成正比例,当x=4时,y=8,试求y与x的函数解析式 待定系数法求正比例函数解析式的一般步骤: 1.设所求的正比例函数解析式。

2.把已知的自变量的值和对应的函数值代入所设的解析式,得到以比例系数k为未知数的方程,解这个方程求出比例系数k。3.把k的值代入所设的解析式。必做题:

1.若一个正比例函数的比例系数是4,则它的解析式是__________.2.正比例函数y=kx中,当x=2时,y=10,则它的解析式是_________.3.已知正比例函数y=2x中,(1)若0< y <10,则x的取值范围为_________.(2)若-6< x <10,则y的取值范围为_________.应用新知:

例1(1)若y=5x3m2是正比例函数,m=。

(2)若y=(m2)xm3是正比例函数,m=

例2

已知△ABC的底边BC=8cm,当BC边上的高线从小到大变化时,△ABC的面积也随之变化。

(1)写出△ABC的面积y(cm2)与高线x的函数解析式,并指明它是什么函数;

(2)当x=7时,求出y的值。

例3

已知y与x-1成正比例,x=8时,y=6,写出y与x之间函数关系式,并分别求出x=4和x=-3时y的值。

必做题:(1)已知y与x+2 成正比例,当x=4时,y=12,那么当x=5时,y=______.(2)已知y=y1+y2,y1与x2成正比例,y2与x-2成正比例,当x=1时,y=0,当x=-3时,y=4,求x=3时,y的值。

(3)某学校准备添置一批篮球,已知所购篮球的总价y(元)与个数x(个)成正比例,当x=4(个)时,y=100(元)。(1)求正比例函数关系式及自变量的取值范围;(2)求当x=10(个)时,函数y的值;(3)求当y=500(元)时,自变量x的值。思考题:

1.下图表示江山到礼贤主要停靠站之间路程的千米数。一辆满载礼贤乘客的中巴车于上午8:00整从江山开往礼贤,已知中巴车行驶的路程S(千米)与时间t(分)成正比例(途中不停车),当t=4(分)时,S=2千米。问:(1)正比例函数的解析式;

(2)从8:30到8:40,该中巴车行驶在哪一段公路上;(3)从何时到何时,该车行使在淤头至礼贤这段公路上。

2、周末马老师提着篮子(篮子重0.5斤)到菜场买10斤鸡蛋,当马老师往篮子里捡称好的鸡蛋时,发觉比过去买10斤鸡蛋时个数少很多,于是他将鸡蛋装进篮子里再让摊主一起称,共10.55斤,即刻他要求摊主退一斤鸡蛋的钱,他是怎样知道摊主少称了大约1斤鸡蛋的呢?你能知道其中的原因吗? 练习3 ①已知函数y=(2m-1)x是正比例函数,m的取值范围。

②如果函数y=2x是正比例函数,求m的值。

③如果函数y=(2m-1)x +b 是正比例函数,求m、n 和 b的取值范围。

④ 如果函数y=(m-2)x

是正比例函数,则m的值是多少?

小结:

1、正比例函数的定义

2、求正比例函数解析式的两种方法:

作业:基础训练

第二篇:正比例函数(优质课教案)

11.2.1正比例函数教案

教 学 目 标

知识技能

1、理解正比例函数的概念及正比例函数图象特征。

2、知道正比例函数图象是直线,会画正比例函数的图象;进一步熟悉作函数图象的主要步骤。

数学思考

1、通过“燕鸥飞行路程问题”的探究和学习,体会函数模型的思想。

2、经历运用图形描述函数的过程,初步建立数形结合,体会函数的三种表示方法的相互转换。经历探索正比例函数图象形状的过程,体验“列表、描点、连线”的内涵。

问题解决

能从数学角度提出问题,运用y= kx中,x、y的关系等知识解决问题。

情感态度

1、结合描点作图培养学生认真细心严谨的学习态度和学习习惯。

2、培养学生积极参与数学活动,勇于探究数学现象和规律,形成良好的质疑和独立思考的习惯。

教学重点

探索正比例函数图形的形状,会画正比例函数图象

教学难点

正比例函数图象性质

教学过程安排

活动过程

活动内容和目的活动

1、问题引入

通过“燕鸥飞行路程问题”建立数学模型,理解行程与时间的对应函数关系,为导出正比例函数做铺垫。

活动

2、正比例函数概念的学习

通过若具体实例,概括归纳出一类有共性的函数关系表达式,导入正比例函数概念。

活动

3、画正比例函数的图象

通过师生共同活动,学会运用描点法画出正比例函数图象

活动

4、正比例函数图象特征的探究

通过对若干实例的观察分析、比较、概括归纳出正比例函数图象的特征。

活动

5、小结、布置作业

回顾和重现本节重点内容加深本节知识范围的理解,通过巩固性练习尝试运用本节知识解决问题。

教学过程设计

问题与情境

师生行为

设计意图

情境

1、问题

(1)你知道候鸟吗?它们在每年的迁徙中能飞多远?(2)燕鸥的飞行路程与时间之间有什么样的数量关系?

教师用课件展示问题。

让学生在地图上找出芬兰和澳大利亚,并将两处用直线连接,然后思考并解答课本上的问题。学生自主解决三个问题。

教师在学生得到结论的基础上提醒:这里用函数y=200x对燕鸥飞行路程进行了刻画,尽管只是近似的,但它反映了燕鸥的行程与时间的对应规律。

从具体情境入手,使学生认识到数学与现实问题总是密不可分的,人们的需要产生了数学。路程、速度与时间之间的关系学生较熟悉,当速度一定时,路程是时间的函数,用这些简单的实例不断从现实世界中抽象出数学模型,建立数学关系的方法。

情境

2、问题

(1)课本上有4 个实例,这些实际问题中的变量对应规律可用怎样的函数表示?这些函数有什么共同点?

教师出示四个实例问题的幻灯片,要求学生(1)能找出变量对应关系表达式(2)能说出表达式中的自变量、自变量的函数

学生自主探究,分组讨论;然后教师让各小组代表回答问题。师生互动对回答的问题进行分析评价。

教师引导学生观察分析上面的五个表达式的共性:都是常数与自变量乘积的形式。教师口述并在黑板上板书正比例函数的概念。

教师让学生看书,在定义处画上记号,并提出问题:这里为什么强调k 是常数,k≠0

通过这些实际问题使学生进一步加深对函数概念的理解,也为导出函数概念做好铺垫。

通过归纳、分析使学生明白正比例函数的特征、理解其解析式的特点

情境

3、问题

(1)我们知道了怎样用解析式表示正比函数能否用图象来表示它呢?(2)怎样在直角坐标系中画出正比例函数图象。

(3)观察、分析图象的特点

(4)巩固性练习画图象

学生在事先准备好的坐标纸上,用描点法画出y=2x和y=-2x的图象。教师用超级画板演示。

说明描点后先观察形状,再连线。对这个问题老师应关注

(1)组织学生一起对所画图象进行评价。(2)和学生一起简要总结主要步骤。(3)用画板演示,当x增大时,y也相应地增大。演示描更多个点的情况 学生讨论分析、比较y=2x与y=-2x图象的异同之处,填写所发现的规律

学生独立练习在同一坐标系中画出 图象,让学生说明了这两个图象的异同之处

经历探索正比例函数图象形状的过程,体验“列表、描点、(观察形状)、连线”的内涵。

比较异同之处,为后面分析讨论正比例函数图象的特征作准备。

练习画出图象通过多个实例,使学生进一步分析研究后能领悟这一类图象的特点。

情境

4、问题

(1)从以上作图过程可以发现正比例函数的图象有什么特征。

(2)经过原点与(1,k)的直线是哪个函数的图象?

教师对画图过程进行巡回指导和个别辅导,学生画完图后请学生回答这两个图象的特点并与上面的特点相比较。教师用画板演示

学生在老师的引导下概括、归纳出正比例函数图象的特征。教师板书教科书25页上的正比例函数图象的特征。对于这个问题教师应重点关注(1)学生是否通过对正比例函数解析式观察分析,发现当k>0时函数y与自变量x同号;当k<0时函数y与自变量x异号。

(2)学生对正比例函数图象观察分析,知道其图象是一个随x增大而增大或减小的直线。学生讨论左边的问题。教师注意:(1)提醒学生从解析式入手,探究当x=0时或x=1时,y的值分别是几;(2)正比例函数的图象为什么一定过(0,0)和(1,k)这两点;(3)因为两点确定一条直线,因此,画正比例函数图象时,只须过原点和(1,k)画一条直线即可。

在多个实例的基础上,归纳得到正比例函数图象的性质,潜移默化地对学生进行了概括、归纳、比较、分析的思维方法的教育。这里通过对解析式和图象的分析,可使学生明白解析式和图象对正比例函数的刻画各有优势。

了解事物的特征就可以使解决问题来得更简捷一些,不断培养学生分析和解决问题的能力。这里同时让学生加深领会数形结合的思想。

(3)用你认为最简单的方法画出正比例函数图象(教科书26页练习)。

学生练习用“两点法”画图象,教师巡回辅导,并安排一名学生在黑板上画。教师应当关注:

(1)学生画图中是否采用的是“两点法”;

(2)这两点是否最简单(其中关键是对k的确认)。

完成当堂练习,巩固“两点法”画图象的方法。

情境5 问题

本节课学了哪些内容?你认为最重要的是什么?

布置作业

教科书习题11。2第1、2、6、7题。

学生稍作思考后分组讨论,让3~4名学生回答。教师应当关注:

(1)允许学生答案不同,回答结论的不同只会对学生学习更有帮助,应当鼓励;(2)最后应达到师生共同小结,明确正比例函数的概念、图象特征的效果

学生独立完成作业,(其中第7题可作为选作题)。教师批改后注意反馈。教师应关注:

(1)学生作图象的规范性;

(2)不同层次的学生在作业中反映出的问题应及时解决。

让学生参加小结并允许学生答案不同,可以增强学生学习的积极性和主动性,培养他们对所学知识的回顾思考习惯;通过小结也强调了本节课的重点,巩固了学习内容。

对作业中的问题要注意个体分析,布置作业要体现分层要求,有一定弹性。教学设计说明

本节内容是在学生学习了变量和函数的基本概念基础上进行的。学习了正比例函数在引入一次函数,有利于降低教学难度,使难点分散。学生在理解正比例函数概念、描点画函数图象、利用解析式和图象分析正比例函数性质时来得更加容易。

在教材处理方面,采取:“建立数学模型——导入正比例函数概念——画正比例函数图象——探究正比例函数性质——练习、小结”这样循序渐进的教学流程。

考虑到本节内容概念性较强,采取通过学生熟悉的行程问题来导入正比例函数的概念,学生易于接受。

在教学设计时,注重了学生的尝试和探究,如对正比例函数变量对应方式的辨析,自变量取值范围的讨论,学生列举正比例函数的实例的分析,四个小实例的探究,画图象时的动手尝试,小结时的自我概括和归纳等。

在教学时使学生的尝试和探究贯穿课堂全过程,同时重视教师的引导、指导和示范,如在概念出示时必要的板书,画图象时的示范,对关键之处的启发、点拨和讲解,还有教师与学生、学生与学生的互动等。这样有利于学生对概念的理解,也有利于培养学生的学习能力和学习习惯。

第三篇:11.2.1正比例函数教案

11.2.1正比例函数教案 教学目标

知识技能

1、理解正比例函数的概念及正比例函数图象特征。

2、知道正比例函数图象是直线,会画正比例函数的图象;进一步熟悉作函数图象的主要步骤。数学思考

1、通过“燕鸥飞行路程问题”的探究和学习,体会函数模型的思想。

2、经历运用图形描述函数的过程,初步建立数形结合,体会函数的三种表示方法的相互转换。经历探索正比例函数图象形状的过程,体验“列表、描点、连线”的内涵。问题解决

能从数学角度提出问题,运用y= kx中,x、y的关系等知识解决问题。情感态度

1、结合描点作图培养学生认真细心严谨的学习态度和学习习惯。

2、培养学生积极参与数学活动,勇于探究数学现象和规律,形成良好的质疑和独立思考的习惯。教学重点

探索正比例函数图形的形状,会画正比例函数图象 教学难点

正比例函数图象性质 教学过程安排 活动过程

活动内容和目的

活动

1、问题引入

通过“燕鸥飞行路程问题”建立数学模型,理解行程与时间的对应函数关系,为导出正比例函数做铺垫。

活动

2、正比例函数概念的学习

通过若具体实例,概括归纳出一类有共性的函数关系表达式,导入正比例函数概念。

活动

3、画正比例函数的图象

通过师生共同活动,学会运用描点法画出正比例函数图象

活动

4、正比例函数图象特征的探究

通过对若干实例的观察分析、比较、概括归纳出正比例函数图象的特征。

活动

5、小结、布置作业

回顾和重现本节重点内容加深本节知识范围的理解,通过巩固性练习尝试运用本节知识解决问题。教学过程设计 问题与情境

师生行为

设计意图 情境

1、问题

(1)

你知道候鸟吗?它们在每年的迁徙中能飞多远?(2)

燕鸥的飞行路程与时间之间有什么样的数量关系?

教师用课件展示问题。

让学生在地图上找出芬兰和澳大利亚,并将两处用直线连接,然后思考并解答课本上的问题。学生自主解决三个问题。

教师在学生得到结论的基础上提醒:这里用函数y=200x对燕鸥飞行路程进行了刻画,尽管只是近似的,但它反映了燕鸥的行程与时间的对应规律。

从具体情境入手,使学生认识到数学与现实问题总是密不可分的,人们的需要产生了数学。

路程、速度与时间之间的关系学生较熟悉,当速度一定时,路程是时间的函数,用这些简单的实例不断从现实世界中抽象出数学模型,建立数学关系的方法。

情境

2、问题

(1)课本上有4 个实例,这些实际问题中的变量对应规律可用怎样的函数表示?这些函数有什么共同点?

教师出示四个实例问题的幻灯片,要求学生(1)能找出变量对应关系表达式(2)能说出表达式中的自变量、自变量的函数

学生自主探究,分组讨论;然后教师让各小组代表回答问题。师生互动对回答的问题进行分析评价。教师引导学生观察分析上面的五个表达式的共性:都是常数与自变量乘积的形式。教师口述并在黑板上板书正比例函数的概念。

教师让学生看书,在定义处画上记号,并提出问题:这里为什么强调k 是常数,k≠0 通过这些实际问题使学生进一步加深对函数概念的理解,也为导出函数概念做好铺垫。

通过归纳、分析使学生明白正比例函数的特征、理解其解析式的特点

情境

3、问题

(1)

我们知道了怎样用解析式表示正比函数能否用图象来表示它呢?(2)

怎样在直角坐标系中画出正比例函数图象。(3)

观察、分析图象的特点(4)

巩固性练习画图象

学生在事先准备好的坐标纸上,用描点法画出y=2x和y=-2x的图象。教师用超级画板演示。

说明描点后先观察形状,再连线。对这个问题老师应关注

(1)

组织学生一起对所画图象进行评价。(2)

和学生一起简要总结主要步骤。

(3)

用画板演示,当x增大时,y也相应地增大。演示描更多个点的情况 学生讨论分析、比较y=2x与y=-2x图象的异同之处,填写所发现的规律

学生独立练习在同一坐标系中画出 图象,让学生说明了这两个图象的异同之处

经历探索正比例函数图象形状的过程,体验“列表、描点、(观察形状)、连线”的内涵。比较异同之处,为后面分析讨论正比例函数图象的特征作准备。

练习画出图象通过多个实例,使学生进一步分析研究后能领悟这一类图象的特点。

情境

4、问题

(1)

从以上作图过程可以发现正比例函数的图象有什么特征。

(2)

经过原点与(1,k)的直线是哪个函数的图象?

教师对画图过程进行巡回指导和个别辅导,学生画完图后请学生回答这两个图象的特点并与上面的特点相比较。

教师用画板演示

学生在老师的引导下概括、归纳出正比例函数图象的特征。教师板书教科书25页上的正比例函数图象的特征。

对于这个问题教师应重点关注

(1)

学生是否通过对正比例函数解析式观察分析,发现当k>0时函数y与自变量x同号;当k<0时函数y与自变量x异号。

(2)

学生对正比例函数图象观察分析,知道其图象是一个随x增大而增大或减小的直线。学生讨论左边的问题。教师注意:(1)提醒学生从解析式入手,探究当x=0时或x=1时,y的值分别是几;(2)正比例函数的图象为什么一定过(0,0)和(1,k)这两点;(3)因为两点确定一条直线,因此,画正比例函数图象时,只须过原点和(1,k)画一条直线即可。

在多个实例的基础上,归纳得到正比例函数图象的性质,潜移默化地对学生进行了概括、归纳、比较、分析的思维方法的教育。

这里通过对解析式和图象的分析,可使学生明白解析式和图象对正比例函数的刻画各有优势。

了解事物的特征就可以使解决问题来得更简捷一些,不断培养学生分析和解决问题的能力。这里同时让学生加深领会数形结合的思想。

(3)

用你认为最简单的方法画出正比例函数图象(教科书26页练习)。

学生练习用“两点法”画图象,教师巡回辅导,并安排一名学生在黑板上画。教师应当关注:

(1)

学生画图中是否采用的是“两点法”;

(2)

这两点是否最简单(其中关键是对k的确认)。

完成当堂练习,巩固“两点法”画图象的方法。

情境5 问题

本节课学了哪些内容?你认为最重要的是什么?

布置作业

教科书习题11。2第1、2、6、7题。

学生稍作思考后分组讨论,让3~4名学生回答。

教师应当关注:

(1)

允许学生答案不同,回答结论的不同只会对学生学习更有帮助,应当鼓励;(2)

最后应达到师生共同小结,明确正比例函数的概念、图象特征的效果

学生独立完成作业,(其中第7题可作为选作题)。

第四篇:二次函数教案(第一课时)

21.4 二次函数的应用

第1课时 二次函数的应用(1)教学目标:

【知识与技能】

经历探究图形的最大面积问题的过程,进一步获得利用数学方法解决实际问题的经验.【过程与方法】

经历探索问题的过程,获得利用数学方法解决实际问题的经验,感受数学模型和数学应用的价值,通过观察、比较、推理、交流等过程,发展获得一些研究问题与合作交流的方法与经验.【情感态度】

通过动手做及同学之间的合作与交流,让学生积累经验,发展学习动力.【教学重点】

会根据不同的情况,利用二次函数解决生活中的实际问题.【教学难点】

从几何背景及实际情景中抽象出函数模型.教学过程:

一、情景导入,初步认知

问题:某开发商计划开发一块三角形土地,它的底边长100米,高80米.开发商要沿着底边修一座底面是矩形的大楼,这座大楼地基的最大面积是多少?

二、思考探究,获取新知

探究:在第21.1节的问题中,要使围成的水面面积最大,则它的边长应是多少米?它的最大面积是多少平方米?

根据题意,可得,S=x(20-x)问题:①这是一个什么函数?

②要求最大面积,就是求 的最大值.③你会求S的最大值吗? 将这个函数的表达式配方,得 S=-(x-10)2+100(0<x<20)这个函数的图象是一条开口向下抛物线中的一段,如图,它的顶点坐标是(10,100),所以,当x=10时,函数取最大值,即 S最大值=100(m2)此时,另一边长=20-10=10(m)答:当围成的矩形水面边长都为10m时,它的面积是最大为100m2.你能总结此类题目的解题步骤吗?

【归纳结论】在一些涉及到变量的最大值或最小值的应用问题中,可以考虑利用二次函数最值方面的性质去解决.其步骤为:

第一步设自变量; 第二步建立函数的解析式; 第三步确定自变量的取值范围;

第四步根据顶点坐标公式或配方法求出最大值或最小值(在自变量的取值范围内).三、运用新知,深化理解

1.教材P37例2.2.求下列函数的最大值或最小值.(1)y=2x2-3x-5;(2)y=-x2-3x+4.【分析】由于函数y=2x2-3x-5和y=-x2-3x+4的自变量x的取值范围是全体实数,所以只要确定它们的图象有最高点或最低点,就可以确定函数有最大值或最小值.(让学生自主完成)

3.要用总长为20m的铁栏杆,一面靠墙,围成一个矩形的花圃,怎样围法才能使围成的花圃的面积最大?

【分析】先写出函数关系式,再求出函数的最大值.解:设矩形的宽AB为xm,则矩形的长BC为(20-2x)m,由于x>0,且20-2x>0,所以0<x<10.围成的花圃面积y与x的函数关系式是y=x(20-2x),即y=-2x2+20x.配方得y=-2(x-5)+50 所以当x=5时,函数取得最大值,最大值y=50.因为x=5时,满足0<x<10,这时20-2x=10.所以应围成宽5m,长10m的矩形,才能使围成的花圃的面积最大.四、师生互动、课堂小结

先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.2五.布置作业:教材“习题21.4”中第1、2题.教学反思:在教学中一定要注意学生易错地方:学生往往列出表达式后不根据背景写出自变量的范围;求最值时,只知代入顶点坐标公式,不考虑自变量范围.

第五篇:《正比例函数》教学反思

《正比例函数》教学反思

《正比例函数》教学反思1

在当前的初中数学教学中,教师除了重视数学知识的传授,越来越多的老师开始关注数学知识和学生的实际生活的联系。使学生对生活中的数学从熟视无睹,缺乏兴趣,慢慢过渡到约束学解决生活中的问题。数学家严士健先生说过,数学教学应结合日常生活及其他领域中的问题,举出更好的例子、更好的问题,以使学生体验数学与生活的联系,训练学生应用数学分析问题解决问题的能力。因此在本节课中,我收集了生活中的一些实际应用的例子,引导学生用数学的眼光从生活中捕捉数学问题,主动地运用数学知识分析生活现象,自主地解决生活中的.实际问题。把数学教学与学生的生活体验相联系,把数学问题与生活情境相结合,让数学生活化,生活数学化。课后教研组进行了评课,给我提出了很多意见和建议。

首先在整体安排上,本节课有两个主要内容:函数与正比例函数,但是我在课的设计上,偏重于函数的教学。我的理解在于要先把函数的概念理解透彻,有助于学生对于正比例函数的理解。而课本对函数的概念的全面描述在下一单元中,本节课中只是在问题中针对某两个变量进行渗透。结合同事们的建议,我改变了整体构思,在不同的生活实例中,和学生一起理解变量、函数,为后一节中函数定义的建立奠定基础。

在习题的安排上,原来我只设计了正比例函数相关的练习,忽略了函数的内容,经过大家的提醒,我才意识到我的设计的前后不一致性,在此又添加了适当的函数关系的判断练习,加深同学们对函数的理解。

这节课的教学,学生兴致很高,课堂小结时有学生说:“函数在生活中很有用,不仅要好好学,还要学会怎样用” 。

《正比例函数》教学反思2

这节课的教学内容是《正比例函数》,函数是中学教学中非常重要的内容,正比例函数是一次函数特例,是学生第一次涉及到一个具体的函数的学习,也是初中数学中的一种最简单最基本的函数,是后面学习一次函数的基础。

今天的教学重点是正比例函数的一般形式,以及利用正比例函数的一般形式求函数解析式,课前安排学生预习课本,完成思考中的问题。课上又安排了五分钟让学生自学做检测题,本节课第一个任务是学习正比例函数的一般形式,第二个主要任务是学用待定系数法求函数的解析式,我给出的例1是让学生找出哪些是正比例函数,例2是让学生求函数解析式,进而讲用待定系数法求函数解析式。待定系数法求函数解析式是初中数学中求解析式的一个重要方法,学生初次学习掌握的情况一般,程度好的.学生基本能掌握了,一般的学生就有点吃力了,特别是我给的最后一个练习,好多程度一般的同学做起来有点吃力,之后还要加强练习这类题型。

总之,这节课大部分同学能掌握正比例函数的一般形式,,,但要是全部同学学会还有待努力提高.

《正比例函数》教学反思3

借“课内比教学,课外访万家”大型的活动平台,我参加了本次的教学比武活动,我上的课题是《正比例函数》内容多概念强,所以调动好每一位学生的学习主动性,积极地参与教学的每一个环节,努力地探索解决问题的方法,大胆地发表自己的观点,使他们真正成为学习的主人是上好本节课的关键。下面我就正比例函数这节课谈谈我的.课后反思:

好的方面:

1.本节课的设计体现了以教师为主导、学生为主体,以知识为载体、以培养学生的思维能力为重点的教学思想。以探究任务引导学生,营造思维的空间,在知识经历的发现过程中,培养学生分类、探究、合作、归纳的能力。

2.教学过程中,为学生创造了轻松,和谐的课堂氛围,用自己的情感去感染学生,鼓励学生,及时评价学生的回答,使得学生能够畅所欲言,主动积极地学习,学生思维活跃,课堂气氛较好。

3.创造性使用教材,通过具有吸引力的现实生活中的问题情景,激发学生好奇心和主动学习的欲望,并初步体会数学建模的思想,结合具体的教学内容采用“问题情境---函数解析式---函数图象---从图象中获取信息---解决问题”的过程,体验数学知识在实际生活中的广泛应用。

4.始终以学生为主体,在学生体验探索学习的过程中,适时有效地给予引导和帮助,引发好奇心和求知欲,使学生主动参与学习,逐步提高学习数学的兴趣和自信,关注学生的学习效果。

5.进行问题设计是本节课的一个关键。课堂中,巧妙设计问题,引导学生探究并得出结论,是一个不断提出问题,不断解决问题的思维过程,我更表现出耐心细致的启发,我运用了“让学生学会观察,学会探究,在观察中发现新问题,在探究中领会新知识”的教学理念,采取了引导式的方式,充分让学生体验作正比例函数图象,从图象中观察并归纳正比例函数图象的性质,渗透从特殊到一般的数学思想。

不足之处:

1.每个环节的时间未把握均衡,导致函数图像的性质归纳与练习这两部分的时间很仓促,性质的强化练习过少

2.教学语言不够精辟,对学生的思维应减少干扰,尽量让学生来说。

3.对学生的评价应更多元化,合理使用不同类型的评价,用语上要准确而全面,找出学生的亮点,给出肯定,这就需要教师随机应变。

4.由于条件原因,应该在本节课使用实物投影,将学生作图成果展示给全体学生。 感想:

总之,在教学过程中,让学生通过自主、探究、合作学习来主动发现结论,实现师生互动,通过这样的教学实践才能取得良好的教学效果,教师不仅要教给学生知识,还要让学生学会学习,“授之以鱼不若授之以渔”。

不足之处请老师们多多批评、指正,谢谢!

《正比例函数》教学反思4

这节课是正比例函数的第一课时,它的设计和教学很关键。我把目标定为以下三点:使学生经历从实例中认识成正比例关系的过程,初步理解正比例函数的概念,学会根据正比例函数的概念判断两个量是不是成正比例。让学生在认识成正比例的关系的过程中,初步体会数量之间相依互变的关系,感受有效表示数量关系及其变化规律的不一样的数学模型,进一步培养观察和发现的能力。让学生进一步体会数学和实际生活的`密切联系,增强从生活现象中探索数学知识和规律的意识。

但是这节课有几个问题没处理好:课前作业布置的不够到位;引例没有处理好;讨论环节把握不好; 小结及作业布置有点仓促;在学生找不到那些量成正比例时,应该让学生讨论,每个正比例关系都应该让学生互相说一说,这样或许会理解更深入。

总之,在钻研教材上还要多下功夫,多探索。

《正比例函数》教学反思5

《正比例函数》课堂上,让学生自己观察,自己比较分析,自己归纳,来发现正比例量的特征,并常试抽象概括正比例的意义,提高学生分析,判断、概括、推理能力。突破了难点,基本上达到了教学目标。下面,谈一下我对这节课的个人看法:

一、注重数学和生活的联系,课堂灵活开放。

老师从生活中的例子“买了一些苹果,已经吃了一部分,你想知道什么?”入手,引出数学的关联的量上,然后让学生从生活中找出相关联的量,让学生明白数学和生活密切相关。从“人的体重与门的高度”还有“我们班的总人数,满意的人数和不满意的人数是否成正比例?为什么?”,无不体现了数学知识运用与生活的特点,课堂设计灵活开放,锻炼了学生的分散思维。

二、如花微笑,温暖学生。

这节课上,赵老师从开始到结束,脸上都洋溢着迷人的微笑。微笑让学生感到温暖,身心放松,创造了和谐的教学课堂。我想在课堂微笑很容易做到,但难的是微笑一节课,不管是引导学生发言,讲授新知识,还是针对练习?我想赵老师是达到了教学思想的很高境界。

三、用问题引领学生,突出学生的主体地位。

“如果已知正方形的边长,你能想到什么?”“你能用具体的数字说明它们之间的`关系吗?”“请同学们挑选其中的一个表格认真观察,说说你发现了什么?”“如果把5个表格进行分类,你该怎么办?”每到关键的部分,老师并不着急告诉学生答案,而是用思考性的问题引着学生积极思考,最后由学生自己一点一点总结出来,让学生深刻理解知识点,从而达到突破重难点的目的。

《正比例函数》教学反思6

《正比例函数》是中学教学中非常重要的内容,是学生第一次学习数形结合,正比例函数是一次函数的特例,是学生第一次涉及到一个具体的函数的学习和研究,也是初中数学中的一种简单最基本的函数,是后面学习一次函数的基础。

本节课中,我收集了生活中的一些实际应用的.例子,引导学生用数学的眼光从生活中捕捉数学问题,主动地运用数学知识分析生活现象,自主地解决生活中的实际问题。

在教师的情景诱导下使学生快速进入到本节课内容当中,通过问题式的探究,使学生自己研究和小组的探索、讨论来解决问题,再通过学生的展示、教师的点拨、总结进行知识归纳,然后老师再出变式练习,检测学生在本节课还有哪些方面的问题,以及使学生能力得到进一步提升。最后让学生总结本节课学到了什么,还有那些困惑。整堂课学生发现,探索,质疑,实践,归纳,练习,环环相扣,严谨有序,通过练习检测学生学习情况,效果良好。不足之处教师讲解引导多,没有真正把课堂给学生。

《正比例函数》教学反思7

一次函数与正比例函数作为函数中最简单、应用最为广泛的函数,本节课我力图通过问题情境的创设,例题的设计,学生活动的安排,使学生能深刻地感受到数学与生活的联系。

本节课开始以教师乘车从渭南到故市这一问题情境,拉近了师生的距离,同时能使学生感受到生活处处可见函数的影子。由于小组之间有一个竞争机制在里面(评选出本节课的最佳合作小组),在探究活动中,学生探究的积极性相对比较高,参与率高,达到了学生积极参与的目的。在选题中,由于选题典型且由易到难,逐层递进,有利于学生的思考。本节课力求让所有学生积极参与,因此在各小组得分差距很大的情况下(3、6小组尚无得分),我采取了激励措施,将较易的题留给他们,并对回答对的同学掌声鼓励,极大地调动了这两个小组同学的积极性。对于学习目标的呈现也有利于学生学完本节课之后对自己的检测、对照、小结,当堂目标检测学生完成也相对较好。总体上,本节课体现了以学生为主体,以问题为载体,以小组活动为核心展开,教师的亲和力也拉近了师生之间的距离,及时鼓励评价学生,课前语和结束语激励学生学知识学做人。

本节课的不足之处:

1、本节课放的还不够开,可能是由于课堂容量较大,担心任务是否能按时完成,因而部分题没有留充分思考、交流的空间,显得处理问题有些着急。

2、小组的合作学习尚且还处于形式化倾向,学生小组间的对学、群学体现不明显。

今后需要做的`:

1、尽可能放手学生,留给学生充分的思考交流的空间,使学生能在知识的生成上获得发展。

2、加强小组间的实质性合作,尽可能做到对学、群学相结合,实现兵教兵、兵练兵,使学生真正成为课堂的主人,知识的主人。

3、小组展示中尽可能让学生小组成员都积极参与,培养他们的团体意识。

《正比例函数》教学反思8

函数是中学教学中非常重要的内容,是学生第一次学习数形结合,正比例函数是一次函数特例,是学生第一次涉及到一个具体的函数的学习和研究,也是初中数学中的一种简单最基本的函数,是后面学习一次函数的基础。

今天的教学重点是正比例函数的定义和特点,学生在完成目标导学时,较好地完成课本中的问题,合作探究讨论也比较热烈,效果较好。

关于发展观察、分析、归纳、概括等数学思维能力的反思。

从课堂教学的现场情况看,本节课有四个环节蕴含着观察、分析、比较、归纳、概括等数学思维的活动。下面分别加以分析:

第一个环节是正比例函数概念的形成过程。通过对不同的函数解析式的观察、分析,再加上反例的映衬(对比),学生发现了正比例函数解析表达式的基本结构:一个常量与自变量的.积(y=kx)。因此,在这一环节,教师给学生提供了自己发现和解决问题的机会,较好地发展了学生的思维能力。

“自主探究”是当前课程改革积极倡导的学习方式。但是,在日常教学中,我们发现,面对一个新的问题,学生常常不知道从哪里着手解决问题,特别是新知识的探究过程。追其根源,主要是缺乏探究问题的基本策略。如果能够通过本节内容的学习使学生了解函数学习的基本程序和策略,那么,在今后学习一次函数、反比例函数、二次函数等函数的时候,或许无需教师提醒学生就知道如何探究了。

理论上说:“没有教不会的学生,只有不会教的老师。”但对大面积的小学就已经对学习绝望的孩子我真的心有余而力不足。我只能尽我最大的努力让更多的孩子能跟的上,不要对数学绝望。

下载《正比例函数》(第一课时)教案(合集5篇)word格式文档
下载《正比例函数》(第一课时)教案(合集5篇).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    《正比例函数》教学反思

    《正比例函数》教学反思 《正比例函数》教学反思1 “正比例好处”的教学,是在学生掌握了比例的好处和基本性质的基础上进行教学的,着重使学生理解正比例的好处。正、反比例知......

    《正比例函数》教学反思

    《正比例函数》教学反思 《正比例函数》教学反思1 在当前的初中数学教学中,教师除了重视数学知识的传授,越来越多的老师开始关注数学知识和学生的实际生活的联系。使学生对生......

    正比例函数教学设计

    19..1 东兴镇中学赵晗《2正比例函数》教学设计 《19.2.1 正比例函数》教学设计 教材分析 1.认识正比例函数的意义,掌握正比例函数解析式的特点及正确的表示方法. 2.在学习了函......

    正比例函数教学设计

    正比例函数教学设计 涞水四中 陈凤荣 教学目标 1、知识与技能 ①理解正比例函数的概念及正比例函数图象特征。 ②知道正比例函数图象是直线,会画正比例函数的图象;进一步熟悉......

    正比例函数教学反思

    这节课的教学内容是《正比例函数》,函数是中学教学中非常重要的内容,正比例函数是一次函数特例,是学生第一次涉及到一个具体的函数的学习,也是初中数学中的一种最简单最基本的函......

    二次函数学案第一课时

    21.1 二次函数学案(一) 一、本节目标 1、使学生理解二次函数的概念 2、能表示简单变量之间的二次函数关系 3、能确定实际问题中的自变量的取值范围 二、学习过程 (一)复习回顾 1、什......

    正比例函数的教学反思[精选合集]

    《正比例函数》,函数是中学教学中非常重要的内容,正比例函数是一次函数特例,是学生第一次涉及到一个具体的函数的学习,下面是小编收集整理的正比例函数的教学反思,欢迎阅读参......

    正比例函数评课稿5篇

    正比例函数评课稿八年级上册的《正比例函数》,分别由刘老师和吴英老师主讲,风格各异,两节示范课下来,我的收获良多。首先是刘老师的课,刘老师能根据本课的重点与难点精心设计教学......