第一篇:《指数函数》(第一课时)说课稿
一、教材分析
1.《指数函数》在教材中的地位、作用和特点
《指数函数》是人教版高中数学(必修)第一册第二章“函数”的第六节内容,是在学习了《指数》一节内容之后编排的。通过本节课的学习,既可以对指数和函数的概念等知识进一步巩固和深化,又可以为后面进一步学习对数、对数函数尤其是利用互为反函数的图象间的关系来研究对数函数的性质打下坚实的概念和图象基础,又因为《指数函数》是进入高中以后学生遇到的第一个系统研究的函数,对高中阶段研究对数函数、三角函数等完整的函数知识,初步培养函数的应用意识打下了良好的学习基础,所以《指数函数》不仅是本章《函数》的重点内容,也是高中学段的主要研究内容之一,有着不可替代的重要作用。
此外,《指数函数》的知识与我们的日常生产、生活和科学研究有着紧密的联系,尤其体现在细胞分裂、贷款利率的计算和考古中的年代测算等方面,因此学习这部分知识还有着广泛的现实意义。本节内容的特点之一是概念性强,特点之二是凸显了数学图形在研究函数性质时的重要作用。
2.教学目标、重点和难点
通过初中学段的学习和高中对集合、函数等知识的系统学习,学生对函数和图象的关系已经构建了一定的认知结构,主要体现在三个方面:
知识维度:对正比例函数、反比例函数、一次函数,二次函数等最简单的函数概念和性质已有了初步认识,能够从初中运动变化的角度认识函数初步转化到从集合与对应的观点来认识函数。
技能维度:学生对采用“描点法”描绘函数图象的方法已基本掌握,能够为研究《指数函数》的性质做好准备。
素质维度:由观察到抽象的数学活动过程已有一定的体会,已初步了解了数形结合的思想。
鉴于对学生已有的知识基础和认知能力的分析,根据《教学大纲》的要求,我确定本节课的教学目标、教学重点和难点如下:
(1)知识目标:①掌握指数函数的概念;②掌握指数函数的图象和性质;③能初步利用指数函数的概念解决实际问题;
(2)技能目标:①渗透数形结合的基本数学思想方法②培养学生观察、联想、类比、猜测、归纳的能力;
(3)情感目标:①体验从特殊到一般的学习规律,认识事物之间的普遍联系与相互转化,培养学生用联系的观点看问题②通过教学互动促进师生情感,激发学生的学习兴趣,提高学生抽象、概括、分析、综合的能力③领会数学科学的应用价值。
(4)教学重点:指数函数的图象和性质。
(5)教学难点:指数函数的图象性质与底数a的关系。
突破难点的关键:寻找新知生长点,建立新旧知识的联系,在理解概念的基础上充分结合图象,利用数形结合来扫清障碍。
二、教法设计
由于《指数函数》这节课的特殊地位,在本节课的教法设计中,我力图通过这一节课的教学达到不仅使学生初步理解并能简单应用指数函数的知识,更期望能引领学生掌握研究初等函数图象性质的一般思路和方法,为今后研究其它的函数做好准备,从而达到培养学生学习能力的目的,我根据自己对“诱思探究”教学模式和“情景式”教学模式的认识,将二者结合起来,主要突出了几个方面:
1.创设问题情景.按照指数函数的在生活中的实际背景给出两个实例,充分调动学生的学习兴趣,激发学生的探究心理,顺利引入课题,而这两个例子又恰好为研究指数函数中底数大于1和底数大于0小于1的图象做好了准备。
2.强化“指数函数”概念.引导学生结合指数的有关概念来归纳出指数函数的定义,并向学生指出指数函数的形式特点,请学生思考对于底数a是否需要限制,如不限制会有什么问题出现,这样避免了学生对于底数a范围分类的不清楚,也为研究指数函数的图象做了“分类讨论”的铺垫。
3.突出图象的作用.在数学学习过程中,图形始终使我们需要借助的重要辅助手段。一位数学家曾经说过“数离形时少直观,形离数时难入微”,而在研究指数函数的性质时,更是直接由图象观察得出性质,因此图象发挥了主要的作用。
4.注意数学与生活和实践的联系.数学的本质是来源于生活,服务于实践。在课堂教学的引入、例题的讲解和课外知识的拓展部分,都介绍了与指数函数息息相关的生活问题,力图使学生了解到数学的基础学科作用,培养学生的数学应用意识。
三、学法指导
本节课是在学习完“指数”的概念和运算后编排的,针对学生实际情况,我主要在以下几个方面做了尝试:
1.再现原有认知结构。在引入两个生活实例后,请学生回忆有关指数的概念,帮助学生再现原有认知结构,为理解指数函数的概念做好准备。
2.领会常见数学思想方法。在借助图象研究指数函数的性质时会遇到分类讨论、数形结合等基本数学思想方法,这些方法将会贯穿整个高中的数学学习。
3.在互相交流和自主探究中获得发展。在生活实例的课堂导入、指数函数的性质研究、例题与训练、课内小节等教学环节中都安排了学生的讨论、分组、交流等活动,让学生变被动的接受和记忆知识为在合作学习的乐趣中主动地建构新知识的框架和体系,从而完成知识的内化过程。
4.注意学习过程的循序渐进。在概念、图象、性质、应用、拓展的过程中按照先易后难的顺序层层递进,让学生感到有挑战、有收获,跳一跳,够得着,不同难度的题目设计将尽可能照顾到课堂学生的个体差异。
四、程序设计
在设计本节课的教学过程中,本着遵循学生的认知规律、让学生去经历知识的形成与发展过程的原则,我设计了如下的教学程序,启发学生逐步发现和认识指数函数的图象和性质。
1.创设情景、导入新课
教师活动:①用电脑展示两个实例,第一个是计算机价格下降问题,第二个是生物中细胞分裂的例子,②将学生按奇数列、偶数列分组。
学生活动:①分别写出计算机价格y与经过月份x的关系式和细胞个数y与分裂次数x的关系式,并互相交流;②回忆指数的概念;③归纳指数函数的概念;④分析出对指数函数底数讨论的必要性以及分类的方法。
设计意图:通过生活实例激发学生的学习动机,扫清由概念不清而造成的知识障碍,培养学生思维的主动性,为突破难点做好准备;
2.启发诱导、探求新知
教师活动:①给出两个简单的指数函数并要求学生画它们的图象②在准备好的小黑板上规范地画出这两个指数函数的图象③板书指数函数的性质。
学生活动:①画出两个简单的指数函数图象②交流、讨论③归纳出研究函数性质涉及的方面④总结出指数函数的性质。
设计意图:让学生动手作简单的指数函数的图象对深刻理解本节课的内容有着一定的促进作用,在学生完成基本作图之后,教师再利用课前已列表、建立坐标系的小黑板展示准确的作图方法,达到进一步规范学生的作图习惯的目的,然后借助“函数作图器”用多媒体将指数函数的图象推广到一般情况,学生就会很自然的通过观察图象总结出指数函数的性质,同时对于底数的讨论也就变得顺理成章。
3.巩固新知、反馈回授
教师活动:①板书例1②板书例2第一问③介绍有关考古的拓展知识。
学生活动:①学习解题的规范步骤②完成例2的第二问、第三问③完成分组练习④扩展视野,体会数学的应用价值。
设计意图:本环节的设计目的是实现学生对指数函数知识的初步应用,完成学生学习的“实践―――认识―――再实践”过程,力求通过例题的讲授、规范的板书养成学生良好地解题习惯,起到教师的示范作用,通过例2的第二问、第三问巩固学生对指数函数性质的理解、实现会用指数函数的性质解决数学问题,通过三个分组练习实现教师的再指导和学生的渐进式提高。指数函数与贷款利率的计算、化学中半衰期的计算和考古技术的现代运用有紧密的联系,本环节介绍的“化学中的14C在考古中的应用”既开拓了学生的视野,又为下一步学习“计算分期付款的利率”等问题埋下伏笔。
4.归纳小结、深化目标
教师活动:①引导学生对课堂知识进行归纳,完成对分类讨论、数形结合等数学方法的归纳;②布置课后及拓展作业
学生活动:完成对指数函数的概念和性质的课内小结并通过课后作业进一步深化学习目标,有能力的同学完成网上调研并在下节课与同学交流我国在利用14C进行考古所取得的成果。
设计意图:教师在本环节引导学生对指数函数的知识进行梳理,深化知识与技能目标,并通过作业实现目标的巩固。
5.板书设计
考虑到板书在教学过程中发挥的功能,本节课我设计了由三个板块构成的板书,板面分配比例为2:1:1,第一大板块包含了两部分,一是指数函数的定义,二是课前准备的画有坐标系和表格的小黑板;第二板块书写了例1和例2的第一问;第三板块由学生完成例2的后两问、练习和课堂小结组成。
五、教学评价
教学评价的及时有效能调动课堂的气氛、感染学生的情绪,对课堂教学发挥着积极的推动作用,因此,我将教学评价将贯穿于本节课的每个教学环节中。例如情景导入的表达式评价、回忆指数知识的记忆评价、得出指数函数概念的归纳评价、作图时的准确性评价、解题时的规范性评价、小结时的表述性评价等。在学生交流、讨论、探究等环节注意启发学生完成知识互评、能力互评,通过多种评价方式让更多的学生获得学习的自信,在轻松融洽的课堂评价氛围中完成本节课的教学和学习任务。
当然教师会通过对学生作业的批改获得更全面的对学生知识掌握的评价和课堂效果的反思,并在后续的时间里修订课堂设计方案,达到预期的教学效果,实现学生的能力发展。以上是我对指数函数这节课的设计和思考,敬请批评指正!
第二篇:《指数函数》第一课时说课稿
《指数函数》第一课时说课稿
《指数函数》第一课时说课稿1
一、教材分析
1.《指数函数》在教材中的地位、作用和特点
2.教学目标、重点和难点
(1)知识目标:①掌握指数函数的概念;②掌握指数函数的图象和性质;③能初步利用指数函数的概念解决实际问题;
(2)技能目标:①渗透分类讨论、数形结合的基本数学思想方法②培养学生观察、联想、类比、猜测、归纳的能力;
(3)情感目标:①体验从特殊到一般的学习规律,认识事物之间的普遍联系与相互转化,培养学生用联系的观点看问题②通过教学互动促进师生情感,激发学生的学习兴趣,提高学生抽象、概括、分析、综合的能力③领会数学学科的`应用价值。
(4)教学重点:指数函数的图象和性质。
(5)教学难点:指数函数的图象性质与底数a的关系。
二、教法设计
1.创设问题情景.
2.强化“指数函数”概念.
3.突出图象的作用.
4.注意数学与生活和实践的联系.
三、学法指导
1.再现原有认知结构.
2.领会常见数学思想方法.
3.在互相交流和自主探究中获得发展.
4.注意学习过程的循序渐进.
四、程序设计
1.创设情景、导入新课
2.启发诱导、探求新知
3.巩固新知、反馈回授
4.归纳小结、深化目标
5.板书设计
五、教学评价
通过多种评价方式让更多的学生获得学习的自信,在轻松融洽的课堂评价氛围中完成本节课的教学和学习任务。
《指数函数》第一课时说课稿2
一、教材分析
1.《指数函数》在教材中的地位、作用和特点
《指数函数》是人教版高中数学(必修)第一册第二章“函数”的第六节内容,是在学习了《指数》一节内容之后编排的。通过本节课的学习,既可以对指数和函数的概念等知识进一步巩固和深化,又可以为后面进一步学习对数、对数函数尤其是利用互为反函数的图象间的关系来研究对数函数的性质打下坚实的概念和图象基础,又因为《指数函数》是进入高中以后学生遇到的第一个系统研究的函数,对高中阶段研究对数函数、三角函数等完整的函数知识,初步培养函数的应用意识打下了良好的学习基础,所以《指数函数》不仅是本章《函数》的重点内容,也是高中学段的主要研究内容之一,有着不可替代的重要作用。
此外,《指数函数》的知识与我们的日常生产、生活和科学研究有着紧密的联系,尤其体现在细胞分裂、贷款利率的计算和考古中的年代测算等方面,因此学习这部分知识还有着广泛的现实意义。本节内容的特点之一是概念性强,特点之二是凸显了数学图形在研究函数性质时的重要作用。
2.教学目标、重点和难点
通过初中学段的学习和高中对集合、函数等知识的系统学习,学生对函数和图象的关系已经构建了一定的认知结构,主要体现在三个方面:
知识维度:对正比例函数、反比例函数、一次函数,二次函数等最简单的函数概念和性质已有了初步认识,能够从初中运动变化的角度认识函数初步转化到从集合与对应的观点来认识函数。
技能维度:学生对采用“描点法”描绘函数图象的方法已基本掌握,能够为研究《指数函数》的性质做好准备。
素质维度:由观察到抽象的数学活动过程已有一定的体会,已初步了解了数形结合的思想。
鉴于对学生已有的知识基础和认知能力的分析,根据《教学大纲》的要求,我确定本节课的教学目标、教学重点和难点如下:
(1)知识目标:①掌握指数函数的概念;②掌握指数函数的图象和性质;③能初步利用指数函数的概念解决实际问题;
(2)技能目标:①渗透数形结合的基本数学思想方法②培养学生观察、联想、类比、猜测、归纳的能力;
(3)情感目标:①体验从特殊到一般的学习规律,认识事物之间的普遍联系与相互转化,培养学生用联系的观点看问题②通过教学互动促进师生情感,激发学生的学习兴趣,提高学生抽象、概括、分析、综合的能力③领会数学科学的应用价值。
(4)教学重点:指数函数的图象和性质。
(5)教学难点:指数函数的图象性质与底数a的关系。
突破难点的关键:寻找新知生长点,建立新旧知识的联系,在理解概念的基础上充分结合图象,利用数形结合来扫清障碍。
二、教法设计
由于《指数函数》这节课的特殊地位,在本节课的教法设计中,我力图通过这一节课的教学达到不仅使学生初步理解并能简单应用指数函数的知识,更期望能引领学生掌握研究初等函数图象性质的一般思路和方法,为今后研究其它的函数做好准备,从而达到培养学生学习能力的目的,我根据自己对“诱思探究”教学模式和“情景式”教学模式的认识,将二者结合起来,主要突出了几个方面:
1.创设问题情景.按照指数函数的在生活中的实际背景给出两个实例,充分调动学生的学习兴趣,激发学生的探究心理,顺利引入课题,而这两个例子又恰好为研究指数函数中底数大于1和底数大于0小于1的图象做好了准备。
2.强化“指数函数”概念.引导学生结合指数的有关概念来归纳出指数函数的定义,并向学生指出指数函数的形式特点,请学生思考对于底数a是否需要限制,如不限制会有什么问题出现,这样避免了学生对于底数a范围分类的不清楚,也为研究指数函数的图象做了“分类讨论”的铺垫。
3.突出图象的作用.在数学学习过程中,图形始终使我们需要借助的重要辅助手段。一位数学家曾经说过“数离形时少直观,形离数时难入微”,而在研究指数函数的性质时,更是直接由图象观察得出性质,因此图象发挥了主要的作用。
4.注意数学与生活和实践的联系.数学的本质是来源于生活,服务于实践。在课堂教学的引入、例题的讲解和课外知识的拓展部分,都介绍了与指数函数息息相关的生活问题,力图使学生了解到数学的基础学科作用,培养学生的数学应用意识。
三、学法指导
本节课是在学习完“指数”的概念和运算后编排的,针对学生实际情况,我主要在以下几个方面做了尝试:
1.再现原有认知结构。在引入两个生活实例后,请学生回忆有关指数的概念,帮助学生再现原有认知结构,为理解指数函数的概念做好准备。
2.领会常见数学思想方法。在借助图象研究指数函数的性质时会遇到分类讨论、数形结合等基本数学思想方法,这些方法将会贯穿整个高中的数学学习。
3.在互相交流和自主探究中获得发展。在生活实例的课堂导入、指数函数的性质研究、例题与训练、课内小节等教学环节中都安排了学生的讨论、分组、交流等活动,让学生变被动的接受和记忆知识为在合作学习的乐趣中主动地建构新知识的框架和体系,从而完成知识的内化过程。
4.注意学习过程的循序渐进。在概念、图象、性质、应用、拓展的过程中按照先易后难的顺序层层递进,让学生感到有挑战、有收获,跳一跳,够得着,不同难度的题目设计将尽可能照顾到课堂学生的个体差异。
四、程序设计
在设计本节课的教学过程中,本着遵循学生的认知规律、让学生去经历知识的形成与发展过程的原则,我设计了如下的教学程序,启发学生逐步发现和认识指数函数的图象和性质。
1.创设情景、导入新课
教师活动:①用电脑展示两个实例,第一个是计算机价格下降问题,第二个是生物中细胞分裂的例子,②将学生按奇数列、偶数列分组。
学生活动:①分别写出计算机价格y与经过月份x的关系式和细胞个数y与分裂次数x的关系式,并互相交流;②回忆指数的概念;③归纳指数函数的概念;④分析出对指数函数底数讨论的必要性以及分类的方法。
设计意图:通过生活实例激发学生的学习动机,,扫清由概念不清而造成的知识障碍,培养学生思维的主动性, 为突破难点做好准备;
2.启发诱导、探求新知
教师活动:①给出两个简单的指数函数并要求学生画它们的图象②在准备好的小黑板上规范地画出这两个指数函数的图象③板书指数函数的性质。
学生活动:①画出两个简单的指数函数图象②交流、讨论③归纳出研究函数性质涉及的方面④总结出指数函数的性质。
设计意图:让学生动手作简单的指数函数的图象对深刻理解本节课的内容有着一定的促进作用,在学生完成基本作图之后,教师再利用课前已列表、建立坐标系的小黑板展示准确的作图方法,达到进一步规范学生的作图习惯的目的,然后借助“函数作图器”用多媒体将指数函数的图象推广到一般情况,学生就会很自然的通过观察图象总结出指数函数的性质,同时对于底数的讨论也就变得顺理成章。
3.巩固新知、反馈回授
教师活动:①板书例1②板书例2第一问③介绍有关考古的拓展知识。
学生活动:①学习解题的'规范步骤②完成例2的第二问、第三问③完成分组练习④扩展视野,体会数学的应用价值。
设计意图:本环节的设计目的是实现学生对指数函数知识的初步应用,完成学生学习的“实践认识再实践”过程,力求通过例题的讲授、规范的板书养成学生良好地解题习惯,起到教师的示范作用,通过例2的第二问、第三问巩固学生对指数函数性质的理解、实现会用指数函数的性质解决数学问题,通过三个分组练习实现教师的再指导和学生的渐进式提高。指数函数与贷款利率的计算、化学中半衰期的计算和考古技术的现代运用有紧密的联系,本环节介绍的“化学中的14C在考古中的应用”既开拓了学生的视野,又为下一步学习“计算分期付款的利率”等问题埋下伏笔。
4.归纳小结、深化目标
教师活动:
①引导学生对课堂知识进行归纳,完成对分类讨论、数形结合等数学方法的归纳;
②布置课后及拓展作业
学生活动:完成对指数函数的概念和性质的课内小结并通过课后作业进一步深化学习目标,有能力的同学完成网上调研并在下节课与同学交流我国在利用14C进行考古所取得的成果。
设计意图:教师在本环节引导学生对指数函数的知识进行梳理,深化知识与技能目标,并通过作业实现目标的巩固。
5.板书设计
考虑到板书在教学过程中发挥的功能,本节课我设计了由三个板块构成的板书,板面分配比例为2:1:1,第一大板块包含了两部分,一是指数函数的定义,二是课前准备的画有坐标系和表格的小黑板;第二板块书写了例1和例2的第一问;第三板块由学生完成例2的后两问、练习和课堂小结组成。
五、教学评价
教学评价的及时有效能调动课堂的气氛、感染学生的情绪,对课堂教学发挥着积极的推动作用,因此,我将教学评价将贯穿于本节课的每个教学环节中。例如情景导入的表达式评价、回忆指数知识的记忆评价、得出指数函数概念的归纳评价、作图时的准确性评价、解题时的规范性评价、小结时的表述性评价等。在学生交流、讨论、探究等环节注意启发学生完成知识互评、能力互评,通过多种评价方式让更多的学生获得学习的自信,在轻松融洽的课堂评价氛围中完成本节课的教学和学习任务。
当然教师会通过对学生作业的批改获得更全面的对学生知识掌握的评价和课堂效果的反思,并在后续的时间里修订课堂设计方案,达到预期的教学效果,实现学生的能力发展。以上是我对指数函数这节课的设计和思考,敬请批评指正!
《指数函数》第一课时说课稿3
一、教材分析
1. 《指数函数》在教材中的地位和作用
《指数函数》是苏教版中专数学国家审定教材第一册第三章《几个基本初等函数》第三节的内容,是在学习了《幂函数》一节内容之后编排的。通过本节课的学习,既可以对指数的概念和幂函数的概念等知识进一步巩固和深化,又可以为后面进一步学习对数、对数函数打下坚实的基础,对中专阶段研究对数函数、三角函数等完整的函数知识,初步培养函数的应用意识打下了良好的基础,所以《指数函数》不仅是本章的重点内容,也是中专学段的主要研究内容之一,有着不可替代的重要作用。
此外,《指数函数》的知识与我们的日常生活、生产和科学研究有着紧密的联系,尤其体现在细胞分裂、贷款利率的计算等方面,因此学习这部分知识还有着广泛的现实意义。本节内容的特点之一是概念性强,特点之二是凸显了图象在研究函数性质时的重要作用。
2.课时安排:两课时
二、学情及目标
通过初中学段的学习和中专对集合、函数等知识的系统学习,学生对函数和图象的关系已经构建了一定的认知结构,主要体现在三个方面:
知识方面:学生对正比例函数、反比例函数、一次函数,二次函数等函数概念和性质已有了初步认识,从幂函数的学习中了解了学习函数的基本步骤。
技能方面:学生对采用“描点法”作函数图象的方法已大致掌握,能够为研究《指数函数》做好准备。
素质方面:由观察到抽象的数学活动过程有初步了解,在数形结合、分类讨论等思想方面还有待提高
鉴于对学生已有的知识基础和认知能力的分析,根据《教学大纲》的要求,我确定本节课的教学目标、教学重点和难点如下:
(1)知识目标:①掌握指数函数的概念;②掌握指数函数的图象
(2)技能目标:①渗透数形结合和分类讨论的思想方法②培养学生观察、类比、猜测、归纳的能力
(3)情感目标:①体验从特殊到一般的学习规律,认识事物之间的普遍联系与相互转化,培养学生用联系的观点看问题②通过教学互动促进师生情感,激发学生的学习兴趣,提高学生抽象、概括、分析、综合的能力③让学生感受数学的对称美、和谐美。
(4)教学重点:指数函数的概念和图象
(5)教学难点:取适当的点作图
确定依据:幂函数和指数函数的一般形式学生容易混淆,并且学生作图的精确度还有待提高
突破难点的.关键:结合二次函数、幂函数等取点的方法,再次强调间隔适当、数值大小合适、对称
三、教法分析
由于《指数函数》这节课的特殊地位,在本节课的教法设计中,我力图通过这一节课的教学达到不仅使学生初步理解指数函数的知识,更期望能引领学生掌握研究初等函数的一般思路和方法,为今后研究其它的函数做好准备,从而达到培养学生学习能力的目的,主要突出了以下几个方面:
1.创设情景.由指数函数在生活中的实际应用给出两个实例,充分调动学生的学习兴趣,激发学生的探究心理,顺利引入课题,而这两个例子又恰好为研究指数函数中底数大于1和底数大于0小于1的图象做好了准备。
2.类比及分类讨论的应用.引导学生结合幂函数的一般形式来归纳出指数函数的概念,并向学生指出指数函数的形式特点,请学生思考对于底数a是否需要限制,如不限制会有什么问题出现,这样避免了学生对于底数a范围分类的不清楚,也为研究指数函数的图象做了“分类讨论”的铺垫。
3.突出图象的作用.在数学学习过程中,图形始终使我们需要借助的重要辅助手段。华罗庚曾经说过“数离形时少直观,形离数时难入微”,在研究指数函数的性质时,更是直接由图象观察得出性质,因此图象发挥了主要的作用。
4.注意数学与生活和实践的联系.数学的本质是来源于生活,服务于实践。在课堂教学的引入、课外知识的拓展等部分,都介绍了与指数函数息息相关的生活问题,力图使学生了解到数学的基础学科作用,培养学生的数学应用意识。
四、学法分析
本节课是在学习完幂函数的概念和性质之后编排的,针对学生实际情况,我主要在以下几个方面做了尝试:
1.再现原有认知结构。在引入两个生活实例后,请学生回忆有关幂函数的概念,帮助学生再现原有认知结构,为理解指数函数的概念做好准备。
2.领会常见数学思想方法。在研究底数的限制时会遇到分类讨论等基本数学思想方法,这些方法将会贯穿整个中专的数学学习。
3.在互相交流和自主探究中获得发展。在生活实例的课堂导入、例题与训练、课内小节等教学环节中都安排了学生的讨论、分组、交流等活动,让学生变被动的接受和记忆知识为在合作学习的乐趣中主动地建构新知识的框架和体系,从而完成知识的内化过程。
4.注意学习过程的循序渐进。在概念、图象、性质、应用、拓展的过程中按照先易后难的顺序层层递进,让学生感到有挑战、有收获,跳一跳,够得着,不同难度的题目设计将尽可能照顾到课堂学生的个体差异。
五、程序设计
在设计本节课的教学过程中,本着遵循学生的认知规律、让学生去经历知识的形成与发展过程的原则,我设计了如下的教学程序
1.知识的回顾及新课的导入
教师活动:①回顾研究幂函数的一般步骤,并请学生回答幂函数的相关知识②用电脑展示两个实例,第一个是生物中细胞分裂的例子,第二个是机器价值的折旧率问题③引导学生进行类比④分析出对指数函数底数讨论的必要性以及分类的方法。
学生活动:①回忆幂函数的概念及图象和性质②分别写出细胞个数y与分裂次数x的关系式和机器价值y与经过年数x的关系式,并互相交流③比较幂函数的一般形式和上述两个式子,归纳指数函数的一般形式④根据底数分类讨论的结果,试着写出指数函数的定义域和值域
设计意图:通过回顾幂函数的知识,再现研究函数的基本步骤;通过生活实例激发学生的学习兴趣,通过类比扫清由概念不清而造成的知识障碍,培养学生思维的主动性,为突破难点做好准备。
2.启发诱导、探求新知
教师活动:①作图步骤回顾②给出两个简单指数函数,多媒体演示取点和作图,强调虚线、点、函数图象的先后顺序
学生活动:①回忆画函数图象的步骤②注意取点的间隔及大小③观察作图过程以及图象的形状和底数的关系
设计意图:使学生对作图步骤加深印象,对取点的合适度有更深刻的理解,使用多媒体画图以增加学生练习的时间,强调作图过程的规范性,培养学生良好的作图习惯
3.巩固新知、反馈回授
教师活动:①多媒体演示练习1②给出两个指数函数,要求学生对照例题作图并指导取点③请一名学生板演作图,对其作图步骤和图象精确度进行点评④引导学生对底数和图象形状的关系进行归纳
学生活动:①口答练习1②在草稿纸上画出两个指数函数的图象③观察图象形状和底数并互相交流,最后得出两者的关系
设计意图:加深学生对指数函数一般形式的印象以及和幂函数一般形式的区别;让学生动手作简单的指数函数的图象,能够进一步规范学生的作图习惯,也能让学生通过作图发现底数和图象形状的关系,对深刻理解本小节的内容有着一定的促进作用。
4.归纳小结、深化目标
教师活动:①引导学生对课堂知识进行归纳,完成对分类讨论、数形结合等数学方法的归纳;②布置课后及拓展作业
学生活动:完成对指数函数的概念和图象基本形状的课内小结并通过课后作业进一步深化学习目标,有能力的同学完成网上调研并在下节课与同学交流我国在利用14C进行考古所取得的成果。
设计意图:教师在本环节引导学生对指数函数的知识进行梳理,深化知识与技能目标,并通过作业实现目标的巩固。
5.板书设计
本节课以多媒体为主,同时考虑到板书在教学过程中发挥的作用,我设计了由两个板块构成的板书,板面分配比例为1:2,第一板块包含三个部分,一是指数函数的一般形式,二是定义域和值域,三是作图的基本步骤;第二板块留给学生板演练习2
六、教学评价
教学评价的及时有效能调动课堂的气氛、感染学生的情绪,对课堂教学发挥着积极的推动作用,因此,我将教学评价将贯穿于本节课的每个教学环节中。例如回忆幂函数知识的记忆评价、情景导入的表达式评价、得出指数函数一般形式的归纳评价、作图时取点准确性和图象精确度的评价、小结时的表述性评价等。在学生交流、讨论、探究等环节注意启发学生完成知识互评、能力互评,通过多种评价方式让更多的学生获得学习的自信,在轻松融洽的课堂评价氛围中完成本节课的教学和学习任务。
当然教师会通过对学生作业的批改获得更全面的对学生知识掌握的评价和课堂效果的反思,并在后续的时间里修订课堂设计方案,达到预期的教学效果,实现学生的能力发展。以上是我对指数函数这节课的设计和思考,敬请批评指正!
第三篇:指数函数及其性质(第一课时)
2.1.2指数函数及其性质(第一课时)
学习目标
①通过实际问题了解指数函数的实际背景,理解指数函数的概念和意义,能准确作出指数函数的图象,并能根据图象理解和掌握指数函数的性质.②在学习的过程中体会研究体会指数函数及其性质的方法,了解具体到一般的讨论方法及数形结合的思想;培养学生观察问题,分析问题的能力.学习过程
一、课前准备
自学教材P54-56,完成学案
二、问题导学
探究一:在下列的关系式中,哪些不是指数函数,为什么?(1)
(2)
(3)
(5)
(6)
(7)
(8)
(>1,且)1.指数函数的定义
一般地,函数
叫做指数函数(其中),是自变量,函数的定义域为
准确理解指数函数的概念要注意以下几点: ⑴指数函数解析式(>0且≠1)的结构特征:
①底数:大于零且不等于1的常数
②指数:变量x ③系数:1 ⑵为什么规定底数大于零且不等于1 ①
②若<0,如在实数范围内的函数值不存在.③若=1, 是一个常量,没有研究的意义,只有满足的形式才能称为指数函数,而象,不符合的的形式,所以不是指数函数。
探究二:指数函数的图象和性质
研究方法:
画出函数图象,结合图象研究函数性质.
研究内容:定义域、值域、特殊点、单调性、最大(小)值、奇偶性.
1、观察下图在同一坐标系画出的y=2x和y=的图象,体会指数函数图象的特征.-1
讨论:
(1)函数?y=2x和y=的图象有何关系?如何由y=2x的图象画出y=?的图象?
(2)根据两个函数的图象的特征,归纳出这两个指数函数的性质.? 变底数为?3和 后呢?(研究内容:定义域、值域、特殊点、单调性、最大(小)值、奇偶性)
(3)y=2x和y=的图象关于轴对称,所以这两个函数是偶函数,对吗?
试试:必过定点
;
满足,则的取值范围是
探究三:根据图象归纳指数函数的性质.观察用电脑软件画出的函数图象.说明:1 y=
y=
y= 5
y=3
问题:1:从画出的图象中,你能发现函数的图象与底数间有什么样的规律.从图上看(>1)与(0<<1)两函数图象的特征.问题2:完成下表 图象特征 函数性质
>1 0<<1 >1 0<<1
向轴正负方向无限延伸
图象关于原点和轴不对称
函数图象都在轴上方
函数图象都过定点(0,1)=1
自左向右,图象逐渐上升 自左向右,图象逐渐下降 增函数 减函数
在第一象限内的图 象纵坐标都大于1 在第一象限内的图 象纵坐标都小于1 >0,1 >0,1
在第二象限内的图 象纵坐标都小于1 在第二象限内的图 象纵坐标都大于1 <0,1 <0,问题3:利用函数的单调性,结合图象还可以看出:(1)在(>0且≠1)值域是(2)若
(3)对于指数函数(>0且≠1),总有(4)当>1时,若<,则<; 根据上例归纳指数函数的性质.? >1 0<<1 图象
性质
定义域
值域
过定点,即x=
时,y=
函数值的变化
当>0时,当<0时,当>0时,当<0时,单调性
在R上是
函数 在R上是
函数
三、典型例题:
例1:函数是指数函数,求的值
例2:已知指数函数(>0且≠1)的图象过点(3,π),求
体会:要求出指数函数,需要几个条件? 例3:求下列函数的定义域与值域:(1)
(2)
例4: 当
四、归纳小结
1、理解指数函数
2、解题利用指数函数的图象,可有利于清晰地分析题目,培养数型结合与分类讨论的数学思想.学习评价
※ 自我评价 你完成本节导学案的情况为().A.很好
B.较好
C.一般
D.较差
五、课堂检测
1.判断下列函数是否是指数函数
2.函数的定义域和值域依次分别是
()A.{}和{}
B.{}和{} C.{}和{}
D.{}和{} 3.函数的图像必经过点
()A.(0,1)
B.(1,1)
C.(2,3)
D.(2,4)4.下列函数中,值域为R+的是()
A、y=5
B、y=()1-x
C、y=
D、y= 5.在某种细菌培养过程中,每30分钟分裂一次(一个分裂为两个),经过4个小时,这种细菌由一个可繁殖成()
A、8
B、16
C、256
D、32 6.若函数是奇函数,则为__________.7..已知当其值域为时,求的取值范围。
8.? 求函数?y=的定义域和值域,并讨论函数的单调性、奇偶性.
第四篇:指数函数说课稿
指数函数说课稿
巨野县职业教育中心学校 徐龙勇
我说课的课题是:指数函数。我将尝试运用新课标的理念指导本节课的教学。新课标指出,学生是教学的主体,教师的教要应本着从学生的认知规律出发,以学生活动为主线,在原有知识的基础上,建构新的知识体系。我将以此为基础从教材分析,教学目标分析,教法学法分析和教学过程分析这几个方面加以说明。
一、教材分析
本节课是新教材第一册第四章第二节。在此之前,学生已掌握了函数的一般性质和简单的指数运算,这为过渡到本节课的学习起到一个铺垫的作用,同时这节课也为今后进一步熟悉函数的性质和作用,研究对数函数以及等比数列的性质打下坚实的基础。因此,本节课的内容十分重要,它对知识起到承上启下的作用。
二、教学目标分析
新课标指出教学目标应包括知识目标、能力目标和情感目标这三个方面,而这三维目标又应是紧密联系的一个有机整体,学生学会知识与技能的过程也同时成为学生学会学习,形成正确的价值观的过程。以此为指导我制定了以下的教学目标:
1、知识目标(直接性目标):理解指数函数的定义,掌握指数函数的图像、性质及其简单应用。
2、能力目标(发展性目标):通过教学培养学生观察、分析、归纳等思维能力,体会数形结合和分类讨论思想以及从特殊到一般等学习数学的方法,增强识图用图的能力。
3、情感目标(可持续性目标): 通过学习,使学生学会认识事物的特殊性与一般性之间的关系,构建和谐的课堂氛围,培养学生勇于提问,善于探索的思维品质。
三、教学的重点和难点
本着课程标准,在吃透教材的基础上,我确定了如下的重点和难点。指数函数的图像、性质及其运用作为教学重点,本节课的难点是指数函数性质的应用。
下面为了突出重点,突破难点,完成既定的教学目标,我再从教法和学法上谈一谈
四、教法学法分析
1、教法分析
本节课我采用引导发现式的教学方法并充分利用多媒体辅助教学。通过教师在教学过程中的点拨,启发学生通过主动观察、主动思考、动手操作、自主探究来达到对知识的发现和接受。
2、学法分析
本节课所面对的是高中一年级的学生,这个年龄段的学生思维活跃,求知欲强,但在思维习惯上还有待教师引导,本节课从学生原有的知识和能力出发,教师将带领学生创设疑问,通过合作交流、共同探索来寻求解决问题的方法。四 教学过程分析
根据新课标的理念,我把整个的教学过程分为五个阶段,即:创设情境,形成概念发现问题,探求新知 置作业,提高升华
1、创设情境,形成概念
在本节课的开始,我设计了一个游戏情境,学生分组,通过动手折纸,观察对折的次数与所得的层数之间的关系。此时教师给出指数函数的定义,即形如 ≠1)定义域为R 的函数称为指数函数。
设计意图:在学生动手操作的过程中激发学生学习热情和探索新知的欲望,而且能够增强课堂的趣味性。
教师将引导学生探究为什么定义中规定a>0且a≠1呢?对a的范围的具体分析,有利于学生对指数函数一般形式的掌握。然后设计一个针对性的小练习,有利于学生对指数函数概念的掌握。
此时教师把问题引向深入,我们要研究一个函数,光有定义是远远不够的,还要对一个函数的图像和性质进行进一步的研究。教师带领学生进入下一个环节——发现问题,探求新知。
2、发现问题,探求新知
在这个环节中我设置了以下三个问题:
(1)怎样得到指数函数的图像?(2)指数函数图像的特点(3)通过图像,你能发现指数函数的那些性质?以这三个问题为载体,带领学生进入本节课的发现问题,探求新知阶段。这也是本节课的重点环节。
(1)函数图像
强化训练,巩固双基小结归纳,拓展深化
布
(a>0且a我把全班的学生分成四个小组,分别完成 的图像。通过前面知识的学习,学生可以较快的通过描点法将图像画出,最后教师在多媒体上将这四个图像给予展示,这样做既避免了学生在画图过程中占用过多时间又让学生体会到了合作交流的乐趣。此时教师组织学生讨论,并引导学生观察图像的特点,得出a>1和0 我将给出表格,引导学生根据图像填写。让学生充分感受以图像为基础研究函数的性质这一重要的数学思想。即数形结合。 通过前面两个环节,学生已基本掌握了本节课指数函数的相关知识,此时我将带领学生体验运用新知识去解决问题的乐趣,进入本节课的下一个环节——当堂训练,共同提高。 3、当堂训练,巩固双基 例1:比较下列各题中两值的大小 (1)1.72.5 , 17;(2)0.8, 0.8;—— 同底指数幂比较大小 同底数幂比大小,构造指数函数,利用函数单调性 3-01-02(3)与(4)与——不同底但可化同底 (2)) 例2:已知下列不等式, 比较 (3)的大小 :(l)(且 ——本例题诣在对知识的逆用,建立学生的函数思想及分类讨论思想。 4、小结归纳,拓展深化 将本堂课的内容归纳成一个表格形式,便于学生通过对比掌握。为了便于学生记忆,教师把指数函数的性质变成一句精彩的口诀 5、布置作业,提高升华 将作业分为必做题和选作题两个部分,必做题面向全体,注重知识反馈,选作题更注重知识的延伸性和连贯性,可让让有能力的同学去探求。 以上五个环节环环相扣,层层深入,并充分体现教师与学生的交流互动,在教师的整体调控下,学生通过动手操作,动眼观察,动脑思考,层层递进,学生亲身经历了知识的形成和发展过程,以问题为驱动,使学生对知识的理解逐步深入。 《指数函数习题课(第一课时)》教学设计 浙师大2003级数学教育硕士 陈 辉 (绍兴市职教中心 312000) 背景功能 本课题是学生学习了指数函数的概念及其有关性质的基础上提出来的,学生学习了指数函数的概念及其有关性质后,完全有条件、有能力去思考本课题,本课题以趣味性问题作引导,以案例、探究为教学的主线,让学生从中感悟数学的思维与方法。把生活中的数学通过概括与抽象,变成数学问题再加以研究,充分说明数学来源于实践。 教学目标 知识目标:进一步掌握指数函数的定义及其性质,并会初步运用性质解题。 能力目标:培养学生观察、分析与推理、从特殊到一般的探究能力。 情感目标:渗透数学思想和文化,激发学生学习兴趣和热情,获得积极的情感体验。 教学重点 含指数的函数的定义域,值域;指数函数单调性的应用 教学难点 含参数的定义域的求法。 教学方法 启发、引导、探究、讲解、演练相结合。 教学设计 一、趣题引路 (播放动画) 师:同学们!在动画中你看到了什么?听到了什么声音? 生:闪电! 师:闪电!非常正确!现在我们都知道闪电就是电,你能说出世界上第一个发现“闪电就是电”的人是谁吗? 生:富兰克林! 师:对!美国著名的科学家,避雷针的发明人,本杰明·富兰克林(Franklin·B,1706~1790)。一生为科学和民主革命而工作,他死后留下的财产只有一千美元。令人惊讶的是,他竟留下了一份分配上百万美元财产的遗嘱!这份有趣的遗嘱是这样写的:(投影) “„„一千美元赠给波士顿的居民,如果他们接受了这一千美元,那么这笔钱应该托付给一些挑选出来的公民,他们得把这钱按每年5%的利率借给一些年轻的手工业者去生息。这款子过了100年增加到131000美元。我希望,那时候用100000美元来建立一所公共建筑物,剩下的31000美元拿去继续生息100年„„” 师:作为科学家与政治家的富兰克林,留下区区的1000美元,竟立了富翁般的遗嘱,莫非昏了头脑?!让我们按照富兰克林非凡的设想实际计算一下。请看下表: 时间 第1年始 第1年末 第2年末 „ 第100年末 „ 第n年末 记号 f(0)f(1)f(2)„ f(100)„ f(n) 遗产数(英镑)a0=1000 a0(1+5%)a0(1+5%)2 „ a0(1+5%)100 „ a0(1+5%)n 从而得到函数 f(n)= a0(1+5%)n 师:上式是什么函数的特例? 生:是函数y=ax当a=1.05时的特例。 师:在数学上形如y=ax的函数称为什么函数? 生:指数函数! (板书标题) 师:其中a有哪些约定? 生:为大于0且不等于1的常量! (通过历史上的有趣故事来做复习铺垫,同时进行数学史教育,凸现人文气息。通过复习,培育和预热“指数函数”概念与性质的最近发展区,激发和点燃学生学习的兴趣和热情) 二、知识回顾 师:通过实例进一步说明了学习指数函数的重要性,趁热打铁,回顾一下指数函数的有关知识点。(多媒体显示知识点,并让学生回答) 师:指数函数的定义是什么? 生1:函数y=ax(a>0且a≠1)叫做指数函数。 师:指数函数y=ax(a>0且a≠1)的图象和性质怎样呢? 生2: a>1 0 Y O X Y O X (1)定义域:R (2)值域:(0,+∞) (3)过点(0,1),即x=0时,y=1 (4)函数在 R上是增函数(4)函数在 R上是减函数 (通过让学生自己填表完成,做到师生互动,充分保障学生的主体地位) 三、架桥铺路 师:刚才两位同学回答得很好!指数函数是我们高中数学中的重要内容之一,它的用途十分广泛,现在让我们再来看上面的问题,观察故事中y=1.05n值的变化,同学们!你能算出当n=100时,y100=? 生:131.501 257 9(用计算器) 师:这意味着,上面的故事中,在头一个100年末富兰克林的财产应当增加到 f(100)=1000×131.501257 9=131501.2579(美元) 可见富兰克林的遗嘱在科学上是站得住脚的! 师:微薄的资金,合理的利率,在神奇的指数效应下,可以变得令人瞠目结舌。这就是富兰克林出色的遗嘱给人的启示! 师:根据有关资料显示,当时美国政府还有遗产税的政策,政策规定:在当事人死亡后若干年内必须每年缴纳一定数量的遗产税。 并且发现所缴纳的遗产税y与年份n(规定当事人去世那一年n=1)有以下有趣的计算公式:y= a0(1+5%)n·un,(其中a0为遗产,un=,n∈N*)。 请同学们思考一下,按照上述政策,在当事人死后需缴纳遗产税多少年? 生:需要5年! 师:如何得到的? 生:依据题意只需y>0,即64–2n >0,也就是64>2n,26>2n,由y=2x在R上增函数得n<6且n∈N*,故需缴纳遗产税5年。 师:上述问题的解决用到了指数函数的有关知识,其实质是在实际背景下求含指数的函数的定义域,解不等式时又用到指数函数的单调性。如果我们将un抽象出来,将n的取值 范围拓展到全体实数,情况有将怎样呢? 请同学们思考以下案例。 四、案例探究 案例 求函数 的定义域与值域。 (模拟科学研究的程式,从数学的实际问题出发,通过观察、总结和抽象,确立研究的对象,使学生认识到数学源于生活实际) 师:要使函数有意义,必须满足什么条件? 生:必须满足64-2x≥0 师:这个不等式如何解? 生:先化为26≥2x,再利用指数函数的单调性得到x≤6! 师:对! 教师边讲边板书过程如下: 解:要使函数有意义,必须64-2x≥0,即x≤6。所以定义域(-∞,6] 师:值域又该如何考虑呢? 生1:值域为[0,+∞) 师:其他同学有没有不同意见? 生2:值域应该为[0.8)! 师:为什么? 生2:∵2x≥0,∴0≤64-2x<64,故值域为[0.8) 师:完全正确!请坐下! 师:函数的定义域是使函数解析式有意义的自变量x的取值集合;而值域则是在定义域的制约下的函数值的集合。同学们!一定要注意定义域对值域的制约作用! 变式:求函数的定义域与值域。 解析:要使函数有意义,必须2x–64≥0,即x≥6。所以定义域为[6,+∞]。 ∵2x-64≥0,∴ 值域为[0,+∞],探究一:求函数(a>0且a≠1)的定义域与值域 (分小组讨论,借此培养学生间的团结合作精神) 师:在解不等式的时候要注意什么? 生:分类讨论! 师:对!当底数是字母的时候,要进行讨论,那么分哪几种情况呢? 生:分a>1与0 解析:要使函数有意义,必须;即ax ≤1。 当a>1时x≤0; 当0 ∴当a>1时定义域为(-∞,0);当0 ∵ax>0 ∴0≤1-ax<1 ∴值域为[0,1] 变式:若改成,其余条件不变,则又该如何? 解析:要使函数式有意义,必须ax-1≥0, 即ax≥a0 当a>1时,由y=ax为增函数得,x≥0,∴定义域为[0,+∞]; 当0 (探究一是对底数作了改变,逐步推进,从特殊到一般,有效地将难点分解突破) 探究二:求函数 的定义域与值域 解析:要使函数式有意义,必须 即 由y=2x为增函数得x2+2x≤0,∴定义域为[-2,0]; 师:∵-2≤x≤0, ∴-1≤x2+2x≤0 ∴值域为[0,] 师:这里求函数值域的方法是从里到外逐步推进,在求值域时要注意定义域对值域的制约作用。 (从幂指数的角度对案例进行逐步推进,从而进一步培养学生探究问题的能力) 探究三:求函数()的定义域。 解析:要使函数式有意义,必须 即 当a>1时,由y=ax为增函数得x2+2x≤1,∴定义域为 ;第五篇:指数函数习题课(第一课时)教学设计