第一篇:上教版高二数学教案——共轭复数运算
共轭复数及其四则运算
教学目标:1.掌握共轭复数概念及其性质;
2.通过对共轭复数加法,乘法运算的证明进一步体会复数问题转化为实数问题的思想方法。
3.会运用四则运算及性质证明复数为实数。
教学重点:共轭复数的四则运算及性质 教学难点:合理利用共轭复数性质解决问题 教学过程:
一、复习引入
复习共轭复数的概念:实部相等,虚部互为相反数的两个复数称为共轭复数。即zabi.zabi(a,bR)
二、新课讲授
引例:z132i,z243i,计算z1z2和z1z2(学生计算)(提问学生)发现:z1z2z1z2
(教师提出问题)对任意的两个复数,是否具有上述性质?更一般的,对任意两个复数,上述性质对减法,乘法,除法是否也成立?(引出课题)共轭复数的四则运算:
z1z1(z20)(1)z1z2z1z
2(2)z1z2z1z2
(3)zz22(先验证(1),得出加法运算法则,类比让学生写出剑法,乘法,除法运算法则,再证明乘法法则)
验证(1)设z1a1bi1,z2a2b2i(a1,b1,a2,b2R),z1z2a1bi1a2b2i(a1a2)(b1b2)i(a1a2)(b1b2)i z1z2a1bi1a2b2ia1bi1a2b2i(a1a2)(b1b2)i
即z1z2z1z2
同样可得到其他性质的证明。
注:1.可把求复数的共轭复数作为一种运算,那么复数的四则运算法则实际上实现了四则运算与求共轭复数运算的交换。
2.共轭复数加法,乘法运算可推广到n个,如:
z1z2znz1z2zn
z1z2znz1z2zn
3.特别:①zn(z)n,nN,②kzkz(kR)
三、例题
例1:判断正误(1)zz是实数。(性质:zz2aR)(2)如果z1z2是实数,那么z1,z2互为共轭复数;(3)z为实数,则zz(即实数的共轭复数是它本身)(4)z为纯虚数,则zz;
(5)zz为纯虚数;
解:(1)正确。设zabi,(a,bR),则zzabiabi2aR(2)错误。因为只要z1,z2的虚部互为相反数即可。反例z12i,z23i(3)正确。设za,则za
(4)正确。设zbi,(b0),则zbiz
(5)错误。设zabi,(a,bR),当b0时为纯虚数,当b0时,zz2bi,zz0 共轭复数的一些重要性质:
(1)zzR
(2)zz为纯虚数或零
由例1中(3)(4)分别可得z为实数和纯虚数时z,z的关系,那么反过来z,z满足上述条件,能否得到z为实数和纯虚数。推导出两个重要性质:
(3)zRzz0
(4)z为纯虚数z0且zz0 例2:已知复数z满足z1,求证:z解:
法一:求出z1是实数。z1的虚部,利用复数是实数充要条件是虚部为零解决。z设zabi,(a,bR),11abi22(abi)(abi)2,∵z1ab
12zabiab1所以z2a为实数。
zz法二:提示学生zzz,让学生思考如何利用? 设zabi,(a,bR),zzz1
22所以z1zzzz2zz2a为实数。zzzz法三:利用复数为实数的另一个充要条件zz 只要证z11z zz1111zzzzzzzzzzzz0
zzzzzz所以z1是实数。z2比较:法一是复数问题的常规解法,把复数问题转化成实数运算来解决。
法二法三均灵活运用了zzz这一重要性质,法三同时还运用了复数为实数的充要条件,较注重技巧,起到简化运算的效果。变化:题目改为已知虚数z满足z法一:设zabi,(a,bR),1是实数,求证z1,可以怎么解决? z11abiab(abi)(abi)2(a)(b)i 22222zabiabababb1b0010即 为实数,∴b2,∵为虚数,∴z222ababza2b21,即z1
法二:z111为实数,则zz0 zzz11zz11zzzz(zz)(1)(zz)(12)0
zzzzzzzz为虚数,∴zz0,即11z20z1
z1为纯虚数。z1课后练习:若z为虚数,且z1,求证:
四、小结:
本节课学习了共轭复数四则运算以及有关共轭复数的一些性质,要知道判断一个复数是实数还是纯虚数我们可以有的一些手段,同时能利用性质和运算法则解决一些证明复数为实数的问题。
五、反思:
第二篇:七年级上数学教案:4.3.2角的比较和运算
4.3.2角的比较和运算(1)
教学目标
会用两种方法比较两角的大小 知道两角的和、差的意义 教学过程
一、板书课题,出示学习目标
二、先学
认真学习教材P134——135页上面的探究
如图所示,回答下列问题(1)∠AOC是哪两个角的和?(2)∠AOB是哪两个角的差?
(3)如果∠AOB=∠COD,则∠AOC与∠DOB的大小关系如何?
完成135页上面探究中的问题
三、后教 如图所示:
同学们能在上图中找到几个角?它们这间有何关系呢? 我们可以容易看出,∠AOC是∠AOB与∠BOC的和,记作∠AOC=∠AOB+∠BOC,而∠AOB是∠AOC与∠BOC的差,记作∠AOB=∠AOC-∠BOC,类似我们还有:∠AOC-∠AOB=∠BOC
四、课堂训练
例1 如图:∠AOB是哪两个角的和?∠DOC是哪两个角的和?
若∠AOB=∠COD,则还有哪两个角相等?
(独立完成,个别回答,教师点评)
例2 如图: AOB是一条直线,∠AOC=900,∠DOE=900,写出∠AOD、∠COD、∠AOC、∠AOB、∠BOD中某些角之间的两个等量关系。
(小组讨论,代表发言,学生点评)
例3.已知:一条射线OA,若从点O再引两条射线00OB、OC,使∠AOB=60,∠BOC=20,求∠AOC的度数?
(独立完成,个别回答,学生点评)
五、延伸拓展,巩固内化 1.如图所示:(1)∠COD=。
(2)如果∠AOB=∠COD,则∠AOC与∠BOD的大小关系如何?
六、布置作业、当堂反馈
1.如图所示:∠1:∠2:∠3:∠4=1:2:3:4,求∠
1、∠
2、∠
3、∠4的度数?
2.已知一条直线OA,若从点O再引两条射线OB和OC,使角AOB为60度,角BOC为20度,求角AOC的度数。
作业:《课本》 P139 1、2、3、4
第三篇:高二数学教案
不等式专题讲解
一、复习旧知
(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”.(2)求最值的条件“一正,二定,三取等”
(3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用.
二、新课讲解
重难点:不等式的应用
考 点: 不等式在函数最值中的应用 易混点: 不等式的运算 ◆【典型例题】
【例1】 解不等式:a1a x2解:原不等式可化为:(a1)x(2a)>0,x2即[(a-1)x+(2-a)](x-2)>0.当a>1时,原不等式与(x-若
a2)(x-2)>0同解.a1a2a2≥2,即0≤a<1时,原不等式无解;若<2,即a<0或a>1,于是a>1时原a1a1a2)∪(2,+∞).a1a2a2,2);若0<a<1,解集为(2,)a1a1不等式的解为(-∞,当a<1时,若a<0,解集为(综上所述:
当a>1时解集为(-∞,a2a2)∪(2,+∞); 当0<a<1时,解集为(2,); a1a1a2,2).a1当a=0时,解集为;当a<0时,解集为(【例2】 解关于x的不等式:log2x1log4[ax21]a0.
x1x101解:原不等式等价于ax210 ①,即x2.a2x1ax21xax2011x2由于a1,所以12,所以,上述不等式等价于
② aaxax201x2(1)当1a2时,不等式组②等价于 ax2或xa1a121此时,由于2a0,所以 2a.
aaa从而
21xa或x2. a33x(2)当a2时,不等式组②等价于所以
x,且x2. 22x
21x2(3)当a2时,不等式组②等价于 ax2或xa此时,由于2综上可知: 112,所以,2x2或xa. aa当1a2时,原不等式的解集为x2321xa或x2; a当a2时,原不等式的解集为xx,且x2;
1当a2时,原不等式的解集为x2x2或xa.
a【例3】 解关于x的不等式:4logaxlogax2a0,a1 解:原不等式等价于
4logax02logax42logax4logx20 2alogx3或logx0logx3logx0aaaa24logxlogx2aa3logax4,∴当a1时,原不等式的解集为xa3xa4
当0a1时,原不等式的解集为xa4xa3
【例4】 已知f(x)是定义在[-1,1]上的奇函数,且f(1)=1,若m、n∈[-1,1],m+n≠0时f(m)f(n)>0.mn
(1)用定义证明f(x)在[-1,1]上是增函数;(2)解不等式:f(x+
11)<f(); 2x1(3)若f(x)≤t2-2at+1对所有x∈[-1,1],a∈[-1,1]恒成立,求实数t的取值范围.解:(1)证明:任取x1<x2,且x1,x2∈[-1,1],则f(x1)-f(x2)=f(x1)+f(-x2)=∵-1≤x1<x2≤1,∴x1+(-x2)≠0,由已知f(x1)f(x2)>0,又 x1-x2<0,x1x2f(x1)f(x2)·(x1-x2)
x1x2∴f(x1)-f(x2)<0,即f(x)在[-1,1]上为增函数.(2)解:∵f(x)在[-1,1]上为增函数,11x12131
解得:{x|-≤x<-1,x∈R} ∴1x1211x2x1(3)解:由(1)可知f(x)在[-1,1]上为增函数,且f(1)=1,故对x∈[-1,1],恒有f(x)≤1,所以要f(x)≤t2-2at+1对所有x∈[-1,1],a∈[-1,1]恒成立,即要t2-2at+1≥1成立,故t2-2at≥0,记g(a)=t2-2at,对a∈[-1,1],g(a)≥0,只需g(a)在[-1,1]上的最小值大于等于0,g(-1)≥0,g(1)≥0,解得,t≤-2或t=0或t≥2.∴t的取值范围是:{t|t≤-2或t=0或t≥2}.家庭作业
姓名__________年纪__________日期_________得分_____________ 1.不等式|ax1|a(aR)的解集是
(D)x1}
a
(A){x|x
(B){x|x1} 2a
(C){x|111} x}
(D){x|x0或0x2aa2a2.当x(1,2)时,不等式(x1)2logax恒成立,则a的取值范围是(B)
(A)[2,)
(B)(1,2)
(C)(1,2]
(D)(0,1)
3.不等式logx1(2x3)logx1(x2)成立的一个充分但不必要条件是
(B)
(A)x2
(B)x4
(C)1x2
(D)x1 4.三个数log1124,20.,20.2的大小关系是
(B)
(A)log10.22220.1
(B)log11220.20.244
(C)20.120.2log1.224
(D)20.1log12420
5.若全集IR,Axx10,Bxx22lgx则AB是(B)A.2 B.1
C.
D.xx1
6.下列命题中,正确的是(C)A.若x2x,则x0
B.若x0,则x2x C.若x0,则x2x
D.若x2x,则x0
7.若a,b是任意实数,且ab,则(D)ab A.a2b2 B.ba1
C.lgab0
D.1122
8.设0ab且ab1,则下列四数中最大的是(A)A.a2b2
B.2ab
C.a
D.9.不等式a2x22a2x40对xR恒成立,则a的取值范围为(D A.,22, B.,22, C.2,2 D.2,2
10.不等式0.52lg|x|1的解集是(B)A.1,1 B.1,00,1 C.
D.,1122,
11.解不等式:a2x1ax2ax2(a0)解:∵ ax2+ax2=(a2+1a2)ax,变形原不等式,得
a2x(a21xx1a2)a10,即(aa2)(axa2)0)
(1)当0 < a < 1时,a2
(2)当a>1时,a2
(3)当a=1时,a21a21a21a2,则a2 < ax < a-2,∵-2 < x < 2,则a-2 < ax < a2,∴-2 12.解不等式logx3x111 解:由x10且x0,x1,得x1,原不等式等价于3x11x 3x1x1 而x1;9x1x22x1 整理,x27x1002x5 ∴2x5为所求。 数列的极限 教学目的:1.理解数列极限的概念; 2.会根据数列极限的定义,由数列的通项公式考察数列的极限。教学重点:会判断一些简单数列的极限 教学难点:数列极限概念的理解 授课类型:新授课 教学过程: 一、复习引入: 1.战国时代哲学家庄周所著的《庄子·天下篇》引用过一句话:“一尺之棰,日取其半,万世不竭”,也就是说一根长为一尺的木棒,每天截去一半,这样的过程可以无限地进行下去。可以求出第n天剩余的木棒长度an 二、讲解新课: 数列极限的定义: 一般地,如果当项数n无限增大时,无穷数列an的项an无限趋近于某个常数A(即.....,那么A叫做数列an的极限,或叫做数列an收敛于A。记作anA无限趋近于0)(尺);分析变化趋势(从数和形两个角度分析)2nlimanA,读作“当n趋向于无穷大时,an的极限等于A”。 n“n”表示“n趋向于无穷大”,即n无限增大的意思。 理解:数列的极限是直观描述方式的定义,只是对数列变化趋势的定性说明,而不是定量化的定义。“随着项数n的无限增大,数列的项an无限地趋近于某个常数A”的意义有两个方面:一方面,数列的项an趋近于A是在无限过程中进行的,即随着n的增大an越来越趋近于A(即极限与数列前面的有限项无关);另一方面,an不是一般地接近于A,而是“无限”地趋近于A,即anA随n的增大而无限地趋近于0。注:(1)limanA等价为limanA0 nn (2)“无限趋近于”不能用“越来越接近”代替。 三、讲解范例: 例1:判断下列数列是否有极限,若有,写出极限;若没有,说明理由。 111,; 23n1111,()n,(2),39273(1)1,,(3)2,4,6,(4); ,2n,; 3927,,2483,()n,2;(5)2,2,2,(6)a,a,a,2,;(变化:4,16,4100,2,2,2,),a 分析:判断是否有极限的方法可通过直观判断,画图像,列表等方法。 10 nn1n(2)当n趋向于无穷大时,数列的项无限的趋近于0,即lim()0 n3解:(1)当n趋向于无穷大时,数列的项无限的趋近于0,所以lim(3)当n趋向于无穷大时,2n的值越来越大,不可能无限趋近于一个常数,所以an2n极限不存在。 (4)当n趋向于无穷大时,()的绝对值越来越大,不可能无限趋近于一个常数,所以无极限。 (5)∵2(2)0,∴lim(2)0 n32n(6)无极限,因为有限项。注:几个重要极限:(1)lim10;(2)limCC(C是常数) nnnnn(3)limq0(q1) 2n1有没有极限,并说明理由。n2n11112,得an2,又lim0,所以liman20 解:由annnnnnn例2:判断an即liman2 n注:此类题目前可以通过转化为考察anA是否无限趋近于零来解决,学习了极限四则运算后过程将更简便。 四、课堂练习: 书P38/1,2,P39/1,2 1、请写出若干个符合下列条件的数列:(1)极限为零且数列的每一项都大于零;(2)极限为零且数列的每一项都小于零; (3)极限为零且数列的项在正数和负数之间交替变化。 11n111n1(1)n(1)n},{n}等。解:(1){},{n},{2}等;(2){},{n},{2}等;(3){ n3nn3nn22、判断下列命题的真假: (1)若无穷数列an有极限为A,那么有anA; (2)若无穷数列an的极限为A,bn的极限为B,且对任意nN,都有anbn,那 么AB; (3)若无穷数列an的极限为A,bn的极限为B,且AB,那么必定有anbn。 五、小结 :本节学习了数列的极限的定义,是直观定义(描述性定义),它是培养了我们直觉思维能力、观察分析问题的能力,要着重注意“无限趋近于”的含义,同时要能够判断简单的无穷数列的极限是否存在的问题。 六、课后作业:练习册7.7(A)/1,2,3,4,5,6,7 七、课后反思: 冀教版二年级上数学教案 第一单元:测量 测量单元,数学安排4课时。第一课时:1—3页 第二课时:4—5页,第三课时:6页,第4课时:7页“量一量实践活动”。 测量这一单元,主要是让学生结合生活实际,经历用不同方式测量物体长度的过程,在测量活动中体会建立度量单位的重要性。在实践活动中,体会米、厘米的含义,知道分米,了解厘米,分米,米之间的关系。会恰当地选择长度单位测量物体长度;在测量活动中培养学生初步的估测意识和习惯,获得与同伴合作解决测量问题的体验,体会测量与日常生活的密切联系,激发学生 参与数学活动的积极性。 第一课时 教学目标: 1、经历用不同方法测量物体长度的过程,体会建立统一长度单位的重要性。 2、体会厘米的含义,会用厘米长度单位测量物体长度。 3、在测量、交流活动中,体会测量在生活中的简单应用,培养学生初步的测量意识和能力。教学重点: 体会厘米的含义,会用厘米作长度单位测量物品的长度。教学过程: 第二课时 教学目标: 1、在实际测量的过程中,认识长度单位“米”。 2、体会米的含义,知道厘米、米之间的关系;能以米、厘米为单位正确测量物体的长度。 3、进一步体会测量在生活中的简单应用,发展学生初步的空间感。教学重点: 认识长度单位“米”。能以米、厘米为单位正确测量物体的长度。教学难点; 知道厘米、米之间的关系。教学过程: 第三课时 教学目标: 1、经历小组合作探索厘米、米、分米之间关系的过程。 2、知道分米,知道1米=10分米、1分米=10厘米。 3、在于同学合作的学习活动中,获得与同伴解决问题的经验。了解长度单位在日常生活中的广泛应用。激发参加与数学活动的积极性。教学重点: 知道1米=10 分米 1分米=10厘米 教学难点: 探索厘米、米、分米之间关系的过程。 第二单元 百以内的加法和减法 (二)教育目标: 1、经历自主探索两数加、减两位数计算方法的过程,体验算法的多样化。能正确地计算100以内数的加法和减法以及连加、连减、加减混合运算。会选择自己喜欢的方法进行计算。 2、经历自主进行简单加、减法估算的过程,培养初步的估算意识。会进行100以内加、减法估算。 3、能运用100以内加减的技能解决简单问题,学会简单的数学思考。 4、能积极参与生动直观的数学活动,能与他人交流自己的算法和思考过程,在活动中获得成功的体验。感受数学与生活的密切联系和广泛应用。教材说明: 本单元是在学生学习了100以内简单加、减法的计算方法的基础上学习的。主要内容有两位数加两位数,两位数减两位数,加减混合的计算,以及百以内加、减法及其混合运算的复习。两位数加两位数安排了四课时。第1课时,为两位数加两位数的不进位加法,先呈现了付有数学信息的情境图,要求学生列式并自己试着算一算,介绍了笔算加法;第2课时为两位数加两位数的进位加法,设计了摆一摆,算一算的数学活动,先呈现的是竖式,然后才呈现的是算法多样化;第3课时为两位数加两位数的估算及复习,结合加收旧电池,进行估算的练习,在验证估算结果的过程中复习计算方法;第4课时为运用两位数加两位数的知识解决实际问题,教材安排了设计乘车方案的内容,情境的设计具有开放性,图中蕴涵着丰富的数学信息。教学时,要引导 学生根据发现的信息,设计不同的乘车方案,并能分辨出哪一种乘车方案最合理。 两位数减两位数也安排了四课时。第1课时为两位数减两位数的不退位减法,呈现了北京申奥的情境,计算北京比多伦多多得多少票,列式后让学生用自己的方法试着算一算,并呈现了减法的竖式计算方法;第2课时为两位数减两位数的退位减法,教材是以摆一摆,算一算的数学活动引导学生探索两位数减两位数的退位减法的计算方法,先呈现了竖式,然后才讨论算法的多样化;第3课时为两位数减两位数的估算及复习,以小明还有多少张邮票的情境图引导学生进行估算,在检验枯算结果准确性时复习了计算方法;第4课时为运用所学知识解决简单实际问题,在猜猜看的活动中,感受数学学习的乐趣,体验数学在生活中的应用。 加减混合安排了三课时。第1课时为三个数连加的计算,教材设计了小红和小玲进行拍球比赛,每人拍了三次,计算每个人拍球的总数的数学情境,引导学生自主探索三个数连加的估算、计算过程,并体验算法多样化;第2课时三个数连减的计算,设计了一百元买两件物品还剩多少元的情境,引导学生在选择合适的数学信息解决实际问题的过程中,学习连减的计算方法;第3课时为三个数的加减混合计算,设计了松鼠采松果的情境图,引导学生学习理解加减混合运算的顺序及计算方法。 单元最后安排了复习,对学过的加、减法及混合运算进行整理和综合练习。“套圈游戏”是一节玩中学数学的实践活动的内容。以小组为单位做套圈游戏,每人投三次,分别记录每人套中的分数。在活动中让学生体验到数学的广泛应用和用数表示事物的合理性,能够根据实验活动中得到的数据,提出问题并解决问题。 第一课时 教学目标 2 经历自主探索两位数加两位数不进位加法的计算过程。体验算法的多样化。3 会正确的计算不进位的两位数加两位数。4 在用自己的方法进行计算的过程中,提高学习数学的兴趣。 第二课时 教学目标: 1、在摆一摆、算一算的数学活动中,经历探索两位数加两数进位加法的计算过程,进一步体验算法的多样化。 2、会用竖式计算两位数加两位数的进位加法,会选择自己喜欢的计算方法。 3、在用多种方法计算的过程中,获得良好的体验,提高学习数学的信息。 教学过程: 第三课时 教学目标: 1、经历自主进行简单加法估计的过程。 2、能比较熟练的计算两位数加两位数的进位加法。能发现加法计算中的错误,并及时改正。 3、培养估算的意识,初步体验估算在生活和计算中的应用。教学过程: 第四课时 教学目标: 1、经历用学过的知识解决简单实际问题的过程。 2、综合运用两位数加两位数的知识解决简单问题,会进行简单的数学思考。 3、能与他人交流自己解决和思考问题的过程,丰富用数学解决问题的活动经验。 第五课时 教学目标: 1、经历自主探索两位数减两位数不退位的计算过程,体验算法的多样化。 2、会正确的计算两位数减两位数不退位的减法。 3、激发学生爱祖国情感和为祖国的强盛而努力学习的信息。 第六课时 教学目标: 1、再摆一摆、算一算的数学活动中,经历探索两位数减两数退位减法的计算方法的过程,进一步体验算法的多样化。 2、会用竖式计算两位数减两位数的退位减法,会选择自己欢的计算方法。 3、在用多种方法计算的过程中,获得良好的体验,增强学习数学的信息。 第七课时 教学目标: 1、经历自主进行简单减法估算的过程。 2、能比较熟练的计算两位数减两位数的退位减法。能发现减法计算中的错误,并及时改正。 3、培养估算的意识,体验估算在生活和计算中的应用。教学重点: 第八课时 教学目标: 1、结合具体情境经历自主探索三个数连加的估算,计算过程,体验算法法多样化。 2、能正确的计算100以内的书的连加,学会灵活的进行计算中的错误。 3、在与学生交流各自算法的过程中,增强学好数学的自信心。教学过程: 第九课时 教学目标: 1、结合具体情境经历自主探索三个数连加的估算,计算过程,体验算法法多样化。 2、能正确的计算100以内的书的连加,学会灵活的进行计算中的错误。 3、在与学生交流各自算法的过程中,增强学好数学的自信心。教学过程: 第九课时 教学目标: 1、结合具体情境,学习、理解加减混合运算的顺序。 2、掌握100以内数加减混合运算的计算方法,并能正确计算。 3、在解决简单问题的过程中,体会数学与生活的密切联系。教学准备:动画或图片 第十一课时 教学目标: 1、通过复习,对本单元所学习知识进行回顾与整理,加深对所学内容的理解和掌握; 2、能熟练地计算两位数加减及100以内连加、连减、加减混合运算。 3、能发现并提出数学问题的过程,能用所学知识解决简单的生活问题,体会数学与生活的密切联系。 教学准备:课件 第十二课时 教学目标: 1、经历在游戏中学数学的全过程,感受学习的乐趣和数学的应用,激发学生学好数学的信心。 2、能比较熟练地计算100以内的两位数加减两位数; 3、会把游戏中的数学信息进行整理,能根据游戏中的信息提出并解决简单问题。 教学准备:带有分数的几种小动物、套圈儿、统计表、小红花 课题:百以内数的连加 教学内容:冀教版《数学》二年级上册第24、25页。 教学目标: 1、结合具体情境,经历自主探索三个数连加的估算、计算的过程,体验算法多样化,学会灵活地进行计算。 2、能正确的计算100以内数的连加。 3、在于同学交流各自算法的过程中,增强学好数学的自信心。 教学准备:奥运录像片段或相应的故事图片。学习方式:自主探索与小组合作相结合,活动探究。 课题:百以内数的连减 教学内容:冀教版《数学》二年级上册第 教学目标: 26、27页。 1、在选择合适的信息解决简单问题的过程中,学习连减的计算方法。经历自主探索 三个数连减的计算过程。 2、会用连减的计算方法,灵活的进行计算,能正确地进行100以内的连减计算。 3、培养学生选择信息,应用所学知识解决问题的能力感受数学与日常生活的密切联系。 教学准备:带有商品价格的小商品。 课题:百以内数的加减混合运算 教学内容:冀教版《数学》二年级上册第28、29页。 教学目标: 1、结合具体情境,学习、理解加减混合运算的顺序。 2、掌握100以内数加减混合运算的计算方法,并能正确计算。 3、在解决简单问题的过程中,体会数学与生活的密切联系。 教学准备:动画或图片 27 课题:百以内的加法和减法复习 教学内容:冀教版《数学》二年级上册第30、32页。 教学目标: 1、通过复习,对本单元所学习知识进行回顾与整理,加深对所学内容的理解和掌握; 2、能熟练地计算两位数加减及100以内连加、连减、加减混合运算。 3、能发现并提出数学问题的过程,能用所学知识解决简单的生活问题,体会数学与生活的密切联系。 31 课题:实践活动――套圈游戏 教学内容:冀教版《数学》二年级上册第33页。 教学目标: 1、经历在游戏中学数学的全过程,感受学习的乐趣和数学的应用,激发学生学好数学的信心。 2、能比较熟练地计算100以内的两位数加减两位数; 3、会把游戏中的数学信息进行整理,能根据游戏中的信息提出并解决简单问题。教学准备:带有分数的几种小动物、套圈儿、统计表、小红花 第五单元《角的认识》 课题 《角的认识》第一课时 教学内容:冀教版《数学》二年级上册第56-58页。 教学目标: 1、通过操作,使学生经历直观认识角的过程。 2、,知道角有一个顶点、两条边,会用纸折或会画大小不同的角。 3、能在长方形、三角形等图形中找到角,激发学生对角的好奇心。35 教师准备:实物投影、四根小棒、活动角、红领巾、折扇、表盘等。 37 第六单元 表内除法 (一)课题 认识除法(第一课时) 教学内容:冀教版《数学》二年级上册第62、63页。 教学目标: 1、通过操作活动,引导学生经历由任意分到平均分的过程,体会了解平均分的含义。 2、能够根据要求把一些具体物品平均分,并知道每一份是多少。 3、鼓励学生积极参与数学活动,并主动与他人交流分的方法。 课题 认识除法(第二课时) 教学内容:冀教版《数学》二年级上册第64、教学目标: 65页。 1、经历把平均分的结果抽象为除法表示的过程,初步体会除法的意义。 2、认识除号,会读、写除法算式,会根据具体情境写出除法算式。 3、鼓励学生积极参与数学学习活动,初步体验除法在日常生活中的简单应用。 44 课题 认识除法(第三课时) 教学内容:冀教版《数学》二年级上册第66、67页。教学目标: 1、在具体情境中进一步理解除法的意义 2、认识除法各部分的名称,能根据具体情境和问题写出除法算式。 3、鼓励学生积极参与数学学习活动,体验数学学习的快乐,增强学习数学的信心。教学准备:教学课件或投影片,学具花片等 47 课题 认识除法(第四课时)教学内容:冀教版《数学》二年级上册第68、69页。 教学目标: 1、结合具体情境和问题,进一步理解乘法和除法的意义。 2、能根据具体情境和问题,写出乘法算式或除法算式。 第七单元 统 计 课题:统计天气情况(案例一) 教学内容:冀教版《数学》二年级上册第78、79页。 教学目标: 1、使学生经历简单数据的收集、整理、描述、分析的过程,了解统计的意义。 2、会用自己的方法收集和整理数据,并能把数据记录在统计表和象形统计图中。 3、通过对天气情况的整理,体验不同的统计方法,感受数学与日常生活的密切联 50 系。 52 课题:统计天气情况(案例二) 教学内容:冀教版《数学》二年级上册第78、79页。教学目标: 1、使学生经历简单数据的收集、整理、描述、分析的过程,了解统计的意义。 2、会用自己的方法收集和整理数据,并能把数据记录在统计表和象形统计图中。 3、通过对天气情况的整理,体验不同的统计方法,感受数学与日常生活的密切联系。 56 59 课题:调查你最喜欢的儿童节目 教学内容:冀教版《数学》二年级上册第80--81页。 1、经历把来自现实生活中的数据进行收集、整理的过程,进一步了解统计的意义。 2、会用画“正”字的方法收集和整理数据,并能把数据记录在统计表中,根据整理的数据,提出并回答简单的问题。 3、过通过对现实生活中有关事例的调查,体验数学与生活的密切联系,养成良好的学习和生活习惯。 61 课题:观察年历 教学内容:冀教版《数学》二年级上册第82--84页。教学目标: 1、经历现实生活中数据的收集、整理和分析的过程,初步认识简单的复式统计表。 2、会用简单的方法收集数据,并能将数据按要求进行整理,记录在复式统计表中。 3、通过对现实生活中有关事例的调查统计,感受数学与生活的密切联系,激发学生学习数学的兴趣。 64 66 课题:摸球游戏 教学内容:冀教版《数学》二年级上册第85页“摸球游戏”。教学目标: 1、经历猜测、实验、推理等活动过程,初步体验有些事件的发生是确定的,有些则是不确定的。 2、在实验、推理活动过程中,能进行简单是、有条理的思考。 3、在实践活动中获得良好的情感体验,感受学习数学的乐趣。学习准备: 两个箱子(分别标上号码),1号箱子里放3个黄色乒乓球和3个白色乒乓球,2号箱子里放6个黄色乒乓球,拍一张小商店货架上有琳琅满目的商品的照片,67 68 第八单元 时、分、秒 课题:时分的认识 (一)教学内容:冀教版《数学》二年级上册第86-89页。教学目标: 1、结合熟悉的事物和情境,经历认识时和分的过程。 2、了解时刻的含义,知道1小时和1分钟的时间,结合具体事例和实践活动,感受1小时、1分钟的时间。 3、认识时间与生活的密切联系,培养学生遵守时间、珍惜时间的良好习惯。教学准备:课件或挂图,钟表或模型,每小组准备一个小钟表。 荐荐小初学二 数数 学学 教教 案案案 [1000(800 [1000 字字 ])荐生活中的数学教字] 荐人教版初一上数学教案(全册)[1500字] 荐工程数学教案(500字)第四篇:上教版高二数学教案——7.7数列的极限1
第五篇:冀教版二年级上数学教案