第一篇:高一数学教案:3.2.1对数及其运算(二)
学而思教育·学习改变命运 思考成就未来!
高考网www.xiexiebang.com
3.2.1对数及其运算
(二)教学目标:理解对数的运算性质,掌握对数的运算法则 教学重点:掌握对数的运算法则 教学过程:
1、复习:(1)、对数的概念,(2)、对数的性质,(3)、对数恒等式
2、推导对数运算法则:
logaMNlogMNaMlogaN
logalogaMlogaN logaM
logaM3例子:
1、求下列各式的值:
2、计算:计算:
3、用logax,logay,logaz表示下列各式:
解
(注意(3)的第二步不要丢掉小括号.)
4、学而思教育·学习改变命运 思考成就未来!
高考网www.xiexiebang.com
5、课堂练习:教材第107页 练习A、B 小结:本节课学习了对数的运算性质 课后作业:P114习题3—2A,4、6
第二篇:高一数学教案:3.2.1对数及其运算(一)
学而思教育·学习改变命运 思考成就未来!
高考网www.xiexiebang.com
3.2.1对数及其运算
(一)教学目标:理解对数的概念、常用对数的概念,通过阅读材料,了解对数的发展历史及其对简化运算的作用
教学重点:理解对数的概念、常用对数的概念.教学过程:
1、对数的概念: 复习已经学习过的运算
指出:加法、减法,乘法、除法均为互逆运算,指数运算与对数运算也为互逆运算:
若
(a0,a1)
2、对数的性质
(1)零和负数没有对数,即(2)1的对数为0,即log10(3)底数的对数为1,即logaa1
3、对数恒等式:alogaN,则 叫做以 为底 的对数。记作:logaNb中N必须大于零;
N
4、常用对数:以10为底的对数叫做常用对数,记为:log10NlgN
5、例子:
(1)将下列指数式写成对数式
562 2641 6337
()a13m5.73
(2)将下列对数式写成指数式
log1164
2log21287 log327a
lg0.012 学而思教育·学习改变命运 思考成就未来!
高考网www.xiexiebang.com(3)用计算器求值
lg2004 lg0.0168 lg370.125 lg1.732
课堂练习:教材第104页 练习A、B
小结:本节课学习了对数的概念、常用对数的概念,通过阅读材料,了解对数的发展历史及其对简化运算的作用 课后作业:P114习题3—2A,1
第三篇:人教新课标版(B)高一必修一3.2.1对数及其运算教案
精品文档 你我共享
人教新课标版(B)高一必修一3.2.1对数及其运算(1)教案
教学目标:理解对数的概念、常用对数的概念,通过阅读材料,了解对数的发展历史及其对简化运算的作用
教学重点:理解对数的概念、常用对数的概念.教学过程:
1、对数的概念:
复习已经学习过的运算
指出:加法、减法,乘法、除法均为互逆运算,指数运算与对数运算也为互逆运算:
若
(a0,a1)
2、对数的性质
(1)零和负数没有对数,即(2)1的对数为0,即log10(3)底数的对数为1,即logaa1
3、对数恒等式:aaN
4、常用对数:以10为底的对数叫做常用对数,记为:log10NlgN
5、例子:
(1)将下列指数式写成对数式
5625 4logN,则 叫做以 为底 的对数。记作:logaNb中N必须大于零; 64a
337
1m
()5.73 26(2)将下列对数式写成指数式
log1164
2log21287 log327a lg0.012
(3)用计算器求值 lg2004
lg0.0168 lg370.125 lg1.732
课堂练习:教材第104页 练习A、B
小结:本节课学习了对数的概念、常用对数的概念,通过阅读材料,了解对数的发展历史及其对简化运算的作用
知识改变命运
精品文档 你我共享
沁园春·雪北国风光,千里冰封,万里雪飘。望长城内外,惟余莽莽; 大河上下,顿失滔滔。
山舞银蛇,原驰蜡象,欲与天公试比高。
须晴日,看红装素裹,分外妖娆。江山如此多娇,引无数英雄竞折腰。惜秦皇汉武,略输文采; 唐宗宋祖,稍逊风骚。
一代天骄,成吉思汗,只识弯弓射大雕。
俱往矣,数风流人物,还看今朝。课后作业:P114习题3—2A, 1
克
知识改变命运
第四篇:人教新课标版(B)高一必修一3.2.1对数及其运算教案
人教新课标版(B)高一必修一3.2.1对数及其运算(1)教案
教学目标:理解对数的概念、常用对数的概念,通过阅读材料,了解对数的发展历史及其对简化运算的作用
教学重点:理解对数的概念、常用对数的概念.教学过程:
1、对数的概念:
复习已经学习过的运算
指出:加法、减法,乘法、除法均为互逆运算,指数运算与对数运算也为互逆运算:
若
(a0,a1)
2、对数的性质
(1)零和负数没有对数,即(2)1的对数为0,即log10(3)底数的对数为1,即log3、对数恒等式:aloga,则 叫做以 为底 的对数。记作:logaNb中N必须大于零;
aa1
NN
104、常用对数:以10为底的对数叫做常用对数,记为:log5、例子:
(1)将下列指数式写成对数式
5462 26NlgN
164
3a37
()31m5.73
(2)将下列对数式写成指数式
log12164
log21287
log327a
lg0.012
(3)用计算器求值 lg2004
lg0.0168 lg370.125 lg1.732
课堂练习:教材第104页 练习A、B
小结:本节课学习了对数的概念、常用对数的概念,通过阅读材料,了解对数的发展历史及其对简化运算的作用
课后作业:P114习题3—2A,1
www.xiexiebang.com
第五篇:高一数学对数的运算法则
课题 对数的运算法则
教学目标
1.理解并掌握对数性质及运算法则,能初步运用对数的性质和运算法则解题.
2.通过法则的探究与推导,培养学生从特殊到一般的概括思想,渗透化归思想及逻辑思维能力.
3.通过法则探究,激发学生学习的积极性.培养大胆探索,实事求是的科学精神.
教学重点,难点
重点是对数的运算法则及推导和应用
难点是法则的探究与证明.
教学方法
引导发现法
教学用具
投影仪
教学过程
引入新课
我们前面学习了对数的概念,那么什么叫对数呢?通过下面的题目来回答这个问题.
如果看到
这个式子会有何联想?
由学生回答(1)(2)(3)(4).
也就要求学生以后看到对数符号能联想四件事.从式子中,可以总结出从概念上讲,对数与指数就是一码事,从运算上讲它们互为逆运算的关系.既然是一种运算,自然就应有相应的运算法则,所以我们今天重点研究对数的运算法则.
二.对数的运算法则(板书)
对数与指数是互为逆运算的,自然应把握两者的关系及已知的指数运算法则来探求对数的运算法则,所以我们有必要先回顾一下指数的运算法则.
由学生回答后教师可用投影仪打出让学生看: .
然后直接提出课题:若
,,是否成立?
由学生讨论并举出实例说明其不成立(如可以举而),教师在肯定结论的正确性的同时再提出
可提示学生利用刚才的反例,把,而32=5改写成 应为
,还可以让学生再找几个例子,.之后让学生大胆说出发现有什么规律?
由学生回答应有 成立.
现在它只是一个猜想,要保证其对任意怎么证呢?你学过哪些与之相关的证明依据呢?
都成立,需要给出相应的证明,学生经过思考后找出可以利用对数概念,性质及与指数的关系,再找学生提出证明的基本思路,即对数问题先化成指数问题,再利用指数运算法则求解.找学生试说证明过程,教师可适当提示,然后板书.
证明:设
则
,由指数运算法则
得,即 .(板书)
法则出来以后,要求学生能 从以下几方面去认识:
公式成立的条件是什么?(由学生指出.注意是每个真数都大于零,每个对数式都有意义为使用前提条件).
(2)能用文字语言叙述这条法则:两个正数的积的对数等于这两个正数的对数的和.
(3)若真数是三个正数,结果会怎样?很容易可得
.
(条件同前)
(4)能否利用法则完成下面的运算:
例1:计算
(1)(2)(3)
由学生口答答案后,总结法则从左到右使用运算的级别降低了,从右到左运算是升级运算,要求运算从双向把握.然后提出新问题:
.
可由学生说出证明.
证明:设
则
.得到大家认可后,再让学生完成,由指数运算法则得
.
教师在肯定其证明过程的同时,提出是否还有其它的证明方法?能否用上刚才的结论?
有的学生可能会提出把 看成 再用法则,但无法解决 计算问题,再引导学生如何回避 的问题.经思考可以得到如下证法
.或证明如下
,再移项可得证.以上两种证明方法都体现了化归的思想,而且后面的证法中使用的拆分技巧“化减为加”也是会经常用到的.最后板书法则2,并让学生用文字语言叙述法则2.(两个正数的商的对数等于这两个正数的对数的差)
请学生完成下面的计算
(1)
(2).
计算后再提出刚才没有解决的问题即改为
下:
设 则,并将其一般化
学生在说出结论的同时就可给出证明如
.教师还可让学生思考是否还有其它证明方法,可在课下研究.
将三条法则写在一起,用投影仪打出,并与指数的法则进行对比.然后要求学生从以下几个方面认识法则了解法则的由来.(怎么证)
掌握法则的内容.(用符号语言和文字语言叙述)
法则使用的条件.(使每一个对数都有意义)
法则的功能.(要求能正反使用)
三.巩固练习
例2.计算
(1)(2)(3)
(4)
解答略(5)(6)
对学生的解答进行点评.
例3.已知
,用
的式子表示
(1)(2)(3).
由学生上黑板写出求解过程.
四.小结
1.运算法则的内容
2.运算法则的推导与证明
3.运算法则的使用
五.作业略
六.板书设计
教案点评:
教学设计中,教师特别注重组织学生开展活动,让学生的兴趣在了解深究任务中产生,让学生的思考在分析真实数据中形成,让学生的理解在集体讨论中加深,让学生的学习在合作探究活动中进行.当然在活动过程前后的独立思考以及在此基础上的集体讨论也属于探索活动的有机组成部分,经过独立思考,多种多样的方案、不同的推测结论、各具特色的陈述理由才会形成集体讨论,才会热烈而富有启发性.而在实施时,教师考虑到学时的限制,把有些活动的思考与讨论作为作业预先或者事后布置给学生(如本节作业).让学生有充分思考、组织和表达的机会,其合作及交流的形式可以是多样的.