第1课时解一元一次不等式组教案(优秀范文5篇)

时间:2019-05-12 20:47:35下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《第1课时解一元一次不等式组教案》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《第1课时解一元一次不等式组教案》。

第一篇:第1课时解一元一次不等式组教案

一元一次不等式组

一、教学三维目标

(一)、知识与能力

1.通过实例总结一元一次不等式组以及一元一次不等式组的解集的概念。

2.通过例题教会学生解一元一次不等式组,并教会学生通过在数轴上表示不等式的解集得到不等式组的解集,让学生感受数形结合的作用。

3.通过对例题的学习掌握解一元一次不等式组的方法及其应用。

(二)、过程与方法

1.创设情境,通过实例引导学生考虑多个不等式联合的解法。并总结一元一次不等式组的解与一元一次不等式的解之间的关系。2.通过对典型例题的分析加深对结一元一次不等式组的认识。

(三)、情感、态度与价值观

1.通过数轴的表示不等式组的解,渗透数形结合这一重要的思想方法。2.在解不等式组的过程中让学生体会数学解题的直观性和简洁性的数学美。

二、教学重、难点及教学突破

重点

1.一元一次不等式组的概念,会用数轴表示一元一次不等式组解集的情况。

2.一元一次不等式组的解法。

难点

灵活运用一元一次不等式组的知识解决问题。

教学突破:本节知识与前一节的知识联系比较紧密,在教学中要特别注意本节内容与一元一次不等式的知识的联系,让学生经历知识的拓展过程,并能通过数轴让学生直观地认识一元一次不等式组的解集,使其了解数形结合的作用。另外,在教学过程中加强对不等式组解集含义的讲述,让学生做到较深刻的理解,并熟练掌握用数轴表示不等式的解集,从而进一步引入利用观察法、归纳法即可掌握求不等式解集的办法。

三、教学过程:

(一).复习引入:

利用一元一次不等式解决实际问题的步骤及注意要点。

(二).新课探究:

1、通过多媒体图片引入一元一次不等式组的概念: 类似于方程组,把这两个一元一次不等式合起来,组成一个一元一次不等式组 2、进一步探究不等式组的解集:

概括:几个不等式的解集的公共部分,叫做由它们所组成的不等式组的解集。解一元一次不等式组,通常可以先分别求出不等式组中每一个不等式的解集,再求出它们的公共部分。利用数轴可以直观地帮助我们求出不等式组的解集。3、例题分析:

例1: 借助数轴,求下列不等式组的解集:

x-2(1)、 x3x-2(3)、 x3分析由课件展示

x-2(2)、

x3x-2(4)、

x3

3x12x1例2:解不等式组:(1)

2x8学生板演,教师对照多媒体点评

课堂练习:P48练习

(三)、探索与发现

一元一次不等式组的解集的确定规律:(1)、多媒体演练(2)、总结规律:

1.同大取大,2、.同小取小;

3、大小小大中间找,4、大大小小解不了。

(四)课堂练习:

1、快速填表:

不等式组 x20,x30,x20,x30,x20,x20,x30,x30,

解 得

解 集

2、能力拓展:

x21)、一元一次不等式组x-1的解集是_________ x12)、若关于x的不等式组3x27的解集是x3,则a的取值范围是

xa3)、若不等式组4)、若方程组x10无解,则m的取值范围是。

xm0xy3的解是负数,求a的取值范围。

x2ya3

(四)、课堂小结:不等组的解集的确定:

1、数形结合,借助数轴来确定解集。

2、利用规律:

1、同大取大,2、同小取小;

3、大小小大中间找,4、大大小小解不了。

(五)、课外作业:顶尖课课练P67——68习题。

第二篇:一元一次不等式组教案

一元一次不等式组教案

教学目标:

1、了解一元一次不等式组的概念,理解一元一次不等式组解集的意义,掌握求一元一次不等式组解集的常规方法;

2、经历知识的拓展过程,感受学习一元一次不等式的必要性;

3、逐步熟悉数形结合的思想方法,感受类比和化归思想。

4、通过利用数轴探求一元一次不等式组的解集,感受类比和化归的思想,积累数学学习的经验,体验数学学习的乐趣。

5、通过观察、类比、画图可以获得数学结论,渗透数形结合思想,鼓励学生积极参与数学问题的讨论,敢于发表自己的观点,学会分享别人的想法的结果,并重新审视自己的想法,能从交流中获益。教学重难点:

重点:一元一次不等式组的解集与解法。难点:一元一次不等式组解集的理解。教学过程:

呈现目标

目标一:创设情景,引出新知

(教科书第137页)现有两根木条a与b,a长10厘米,b长3厘米,如果再找一根木条c,用这三根木条钉成一个三角形木框,那么对木条c的长度有什么要求?

(教科书第135页第10题)求不等式5x-1>3(x+1)与 x-1<7-x的解集的公共部分。目标二:解法探讨

数形结合 解下列不等式组: 2x-1>x+1 X+8<4x-1

2x+3≥x+11 -1<2-x

目标三:归纳总结

反馈矫正 解下列不等式组(1)

3x-15>0 7x-2<8x(2)

3x-1 ≤x-2-3x+4>x-2

(3)

5x-4≤2x+5 7+2x≤6+3x

(4)

1-2x>4-x 3x-4>3

归纳解一元一次不等式组的步骤:(1)求出各个不等式的解集;(2)把各不等式的解集在数轴上表示出来;(3)找出各不等式解集的公共部分。第141页9.3第1 题中,体会不等式组与解集的对应关系 X<4

x>4

x<4

x>4 X<2

x>2

x>2

x<2 X<2

x>4

2<x<4

无解

教师推荐解不等式组口决:同大取大,同小取小,大小小大中间夹,小小大大无解答。目标四:巩固提高

知识拓展 《完全解读》第230页

已知∣a-2∣+(b+3)=0,求-2<a(x-3)-b(x-2)+4<2的解集。求不等式10(x+1)+x≤21的不正整数解。

探究合作

小组学习:各学习小组围绕目标

一、目标二进行探究,合作归纳解一元一次不等式组的基本步聚;

教师引导:(1)什么是不等式组?

(2)不等式组的解题步骤是怎样的?你是依以前学习的哪些旧知识猜想并验证的?

展示点评

分组展示:学生讲解的基本思路是:本题解题步骤,本小组同学错误原因,易错点分析,知识拓展等。

教师点评:教师推荐解不等式组口决。

巩固提高

教师点评:本题共用了哪些知识点?怎样综合运用这些知识点的性质解决这类题目。

第三篇:《一元一次不等式》教学设计(第1课时)

一、内容和内容解析

(一)内容

一元一次不等式的概念及解法

(二)内容解析

在初中阶段,不等式位于一次方程(组)之后,它是进一步探究现实世界数量关系的重要内容,不等式的研究从最简单的一元一次不等式开始,一元一次不等式及其相关概念是本章的基础知识,解任何一个代数不等式(组)最终都要化归为解一元一次不等式,因此解一元一次不等式是一项基本技能.另外,不等式解集在数轴上表示从形的角度描述了不等式的解集,并为解不等式组做了准备,本节内容是进一步学习其它不等式(组)的基础.解一元一次不等式与解一元一次方程在本质上是相同的,即依据不等式的性质,逐步将不等式化为xa或x

二、目标和目标的解析

(一)目标

(1)了解一元一次不等式的概念,掌握一元一次不等式的解法;

(2)在依据不等式的性质探究一元一次不等式的解法的过程中,加深对化归思想的体会.(二)目标解析

达到目标(1)的标志是:学生能说出一元一次不等式的特征,会解一元一次不等式,并能在数轴上表示出解集.达到目标(2)的标志是:学生能通过类比解一元一次方程的过程,获得解一元一次不等式的思路,即依据不等式的性质,将一元一次不等式逐步化简为xa或x

三、教学问题诊断分析

通过前面的学习,学生已掌握一元一次方程概念及解法,对解一元一次方程的化归思想有所体会但还不够深刻.因此,运用化归思想把形式复杂的不等式转化为xa或x

本节课的教学难点为:解一元一次不等式步骤的确定.四、教学过程设计

(一)引导观察

形成概念

问题 : 观察下面的不等式,它们有哪些共同特征?

x-726

3x2x+1 x50

-4x3

学生回答,教师可以引导学生从不等式中未知数的个数和次数两个方面去观察不等式的特点,并与一元一次方程的定义类比.师生共同归纳获得:含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式.设计意图:引导学生通过观察给出不等式,归纳出它们的共同特征,进而得到一元一次不等式的定义,培养学生观察、归纳的能力.(二)通过类比 研究解法

练习:利用不等式的性质解不等式x-726

学生尝试独立完成练习

教师结合解题过程,指出:由x-726可得到x26+7,也就是说解不等式和解方程一样,也可以移项,即把不等式一边的某项变号后移到另一边,而不改变不等号的方向.设计意图:通过解简单的一元一次不等式,让学生回忆利用解方程的过程,教师通过简化练习中的解题步骤,让学生明确不等式和解方程一样可以移项,为下面类比解方程形成解不等式的步骤作好准备.设问1:解一元一次方程的依据和一般步骤是什么?

学生回忆解一元一次方程的依据是等式的性质.一般步骤是:去分母,去括号,移项,合并同类项,系数化为1.设问2:解一元一次不等式能否采用类似的步骤?

学生讨论解一元一次不等式是否可以采用类似的步骤,教师再指出:利用不等式的性质,采取与解一元一次方程类似的步骤,就可以求出一元一次不等式的解集.设计意图:通过回忆解一元一次方程的依据和一般步骤,让学生思考解一元一次不等式能否采用同样步骤,从而获得解一元一次不等式的思路.(三)例题讲解 规范步骤

例:解下列不等式,并在数轴上表示解集(1)2(1+x)3(2)

设问(1):解一元一次不等式的目标是什么?

学生在教师问题的引导下,思考如何将一元一次不等式变形为最简形式.设问(2):你能类比解一元一次方程的步骤,解第(1)小题吗?

由学生独立完成,老师评讲

设问(3)对比不等式与2(1+x)3的两边,它们在形式上有什么不同?

设问(4):怎样将不等式变形,使变形后的不等式不含分母?

小组合作交流,老师点拨

设问(5):你能说出解一元一次不等式的基本步骤吗?

学生回答,教师总结:去分母,去括号,移项,合并同类项,系数化为1.设问(6):对比第(1)小题和第(2)小题的解题过程,系数化为1时应注意些什么?

学生回答,教师再强调:要看未知数系数的符号,若未知数的系数是正数,则不等号的方向不变,若是负数,则不等号的方向要改变.设计意图:通过解具体的一元一次不等式,引导学生明确解不等式以化归思想为指导,比较原不等式与目标形式(xa或x

(四)辨别异同 深化认识

设问1:解一元一次不等式和解一元一次方程有哪些相同和不同处?

学生在教师的引导下将解一元一次不等式的过程与解一元一次方程的过程进行比较,思考二者的相同和不同处.相同之处:基本步骤相同:去分母、去括号、移项、合并同类项、系数化为1.基本思想相同:都是运用化归思想,都要变为最简形式.不同之处:解法依据不同:解不等式是依据不等式的性质,解方程依据等式的性质.最简形式不同:解一元一次不等式:最简形式是xa或x

设计意图:在归纳出一元一次不等式的解法之后,引导学生对比一元一次方程的解法,思考二者的异同,加深对一元一次不等式解法的理解,体会化归思想和类比思想.设问2: 解一元一次不等式每一步变形的依据是什么?

学生作答,教师再引导学生体会结合例题的解题过程思考每一步变形的依据.设计意图:通过具体操作,归纳出解一元一次不等式的基本步骤及每一步变形的依据,提高学生的总结、归纳能力.(五)练习巩固 形成能力

练习:解一元一次不等式x并把它的解集,在数轴上表示出来.学生独立解不等式,老师点评

设计意图:学生独立按照解集一元一次不等式的步骤解不等式,学以致用.(六)归纳小结 反思提高

教师和学生一起回顾本节课的学习主要内容,并请学生回答以下问题:

(1)怎样解一元一次不等式?解一元一次不等式和解一元一次方程有哪些相同和不同处?

(2)解一元一次不等式运用了哪些数学思想?

设计意图:通过问题引导学生再次回顾本节课,从数学知识,数学思想方法等层面,提升对本节课所研究内容的认识.(七)布置作业,课外反馈

教科书习题9.2第1,2,3题

设计意图:通过课后作业,教师及时了解学生对本节课知识的掌握情况,以便对教学进度和方法进行适当的调整.五、目标检测设计

1.解不等式

(1)-8x3(2)-x-(3)3x-74x-4

设计意图:本题主要考查学生解一元一次不等式时将系数化1和移项的准确性.2.解下列不等式,并分别把它们的解集在数轴上表示

(1)3(x+2)-15-2(x-2)(2)-2

设计意图:本题主要考查学生解一元一次不等式,并在数轴上表示解集的能力.

第四篇:解一元一次不等式练习题

1、判断下列式子是否一元一次不等式:(是的打√,否的打╳)

(1)7>4(2)3x ≥ 2x+1(3)20(4)x+y>1(5)x2+3>2xx1、解下列的一元一次不等式(并在数轴上表示出来,自己画数轴)

(1)x-5<0(2)x+3 ≥ 4(3)3x > 2x+1(4)-2x+3 >-3x+1

(1)2x > 1(2)–2x ≤ 1(3)2x >-1(4)22x2(5)x2(6)x2 33

(1)2(x+3)<7(2)3x-2(x+1)>0

(3)3x-2(x-1)>0(4)-(x-1)>04、下列的一元一次不等式(1)xx1xx2x1x2xx1(3)1(4)1 (2)323223231、解下列不等式

12(1)x(2)(x1)2(3)x2+x23

2x1x21(4)(x1)2(5)323

-2x1x32(7)-3(6)23

> 2已知关于x的方程3k-5x=-9的解是非负数,求k的取值范围

第五篇:9.3 一元一次不等式组教案

9.3 一元一次不等式组(2)

文星中学唐波

一、教学目标

(一)知识与技能目标

1、熟练掌握一元一次不等式组的解法,会用一元一次不等式组解决有关的实际问题。

2、理解一元一次不等式组应用题的一般解题步骤,逐步形成分析问题和解决问题的能力。

(二)过程与方法目标

通过利用列一元一次不等式组解答实际问题,初步学会从数学的角度提出问题、理解问题、并能综合运用所学的知识解决问题,发展应用意识。

(三)情感态度与价值观

通过解决实际问题,体验数学学习的乐趣,初步认识数学与人类生活的密切联系。

二、教学重难点

(一)重点:建立用不等式组解决实际问题的数学模型。

(二)难点:正确分析实际问题中的不等关系,根据具体信息列出不等式组。

三、学法引导

(一)教师教法:直观演示、引导探究相结合。

(二)学生学法:观察发现、交流探究、练习巩固相结合。

四、教具准备:多媒体演示

五、教学过程

(一)、设问激趣,引入新课

猜一猜:我属狗,请同学们根据我的实际情况来猜测我的年龄。(学生大胆猜想,利用不等关系分析得出答案。)

(二)、观察发现,竞赛闯关

1、比一比:填表找规律

(学生抢答,教师补充。)2利用发现的规律解不等式组 (学生解答,抽生演板。)你可以得到它的整数解吗?

(抽生回答:因为大于11小于14的整数有12和13,所以整数解为12和13。)3填空:三角形三边长分别为2、7、c,则 c的取值范围是__________。如果c是一个偶

数,则 c=__________。

(学生回答,教师补充更正。)

(三)、欣赏图片,探究新知

1、欣赏“五岳看山”。

2、利用欣赏引出例题(教科书P139例2仿编)

例:3名同学计划在10天内到嵩山拍照500张(每天拍照数量相同),按原来的计划,不能完成任务;如果每人每天比原计划多拍1张,就能提前完成任务,每个同学原计划每天............拍多少张?

生齐读,找出题中的已知条件和未知条件;再默读,找一找表示数量关系的句子。师引导分析,并提出问题:

(1)你是怎样理解“不能完成任务”的数量含义的?你是怎样理解“提前完成任务”的数量含义的?

(2)解决这个问题,你打算怎样设未知数?

(3)在本题中,可以找出几个不等关系,可以列出几个不等式?(学生交流讨论,教师指导。)

7x98

7(x3)98

解答完成后,学生自学课本例2。

3、由例解题答过程,类比列二元一次方程组解应用题的步骤,总结列一元一次不等式组的解题步骤:

(1)、分析题意,设未知数; .(2)、利用不等关系,列不等式组; .(3)、解不等式组; .

(4)、检验,根据题意写出答案。.(学生总结,抽生回答,教师补充。)

(四)、闯关练习,巩固新知

1练一练:为纪念“5·12”大地震一周年,“五一”部分同学到青城山拍照留念,如果每人拍8张则多于如果每人拍9张则不够问共有多少个同学参加青城山旅游? ..150张;..180张。

教师引导:抓住重点词语,找到不等关系,列出不等式组。学生独立完成,抽生回答。

比较列二元一次方程组和列一元一次不等式组解应用题的区别:

(学生类比找区别,教师补充。)2练一练(教科书P140练习第2题):一本英语书共98页,张力读了一周(7天)还没读完,而李永不到一周就已读完。李永平均每天比张力多读3页,张力平均每天读多少页(答案取整数)?

学生分析列出不等式组,教师指导。(前面的练习已解出不等式组。)

(五)、畅所欲言,归纳小结 学生畅所欲言,谈收获体会 多媒体展示,本课内容小结:

1、解一元一次不等式组的秘笈:同大取大,同小取小,大小小大中间找,大大小小解不了。

2、具有多种不等关系的问题,可通过不等式组解决。

3、列一元一次不等式组解应用题的步骤是:(1)、分析题意,设未知数;(2)、利用不等关系,列不等式组;(3)、解不等式组;

(4)、检验,根据题意写出答案。

(六)、课后演练,终极挑战

必做题:教材习题9.3第4、5、6题;

选做题:一个两位数,它的十位数字比个位数字大1,而且这个两位数大于30小于42,则这个两位数是多少?

六、板书设计

9.3一元一次不等式组(2)

解:设每个同学原计划每天拍x张,得

① 310x500

310(x1)500②

1、分析题意,设未知数;

解得x <16 3

3根据题意,x应为整数,所以x=16 答:每个同学原计划每天拍16张。

2

2、找不等关系,列不等式组; 

3、解不等式组; 步骤



4、检验并根据题意写出答案。

下载第1课时解一元一次不等式组教案(优秀范文5篇)word格式文档
下载第1课时解一元一次不等式组教案(优秀范文5篇).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    9.3一元一次不等式组教案

    9.3 一元一次不等式组(第1课时) 西吉三中 刘征兵 教学设计思想 准确熟练地解一元一次不等式以及用数轴上的点表示不等式的解集是这节课的基础,因此讲新课之前要复习提问这些内......

    《一元一次不等式组》说课稿大全

    《一元一次不等式组》说课稿作为一无名无私奉献的教育工作者,时常需要编写说课稿,说课稿有助于教学取得成功、提高教学质量。那要怎么写好说课稿呢?以下是小编整理的《一元一次......

    《一元一次不等式组》说课稿范文

    《一元一次不等式组》说课稿 尊敬的各位专家评委,大家好! 我是自考教师资格证 号考生,今天我说课的题目叫《一元一次不等式组》,它属于义务教育第三学段(即初中七年级)的课程内容......

    一元一次不等式组说课稿

    《一元一次不等式组》说课稿 绥阳县坪乐中学:韩成友 尊敬的各位老师: 下午好! 我说课的课题是《一元一次不等式组》。 我将从教材分析、学情分析、教学目标、教学重难点、教学......

    《一元一次不等式组》说课稿

    《一元一次不等式组》说课稿1 各位评委老师:大家好!我是九集镇龙门中学老师,今天我展示课的内容是人教版数学七年级下册第九章第二节的第一课时《一元一次不等式》。下面我就......

    《一元一次不等式组》第二课时参考教案(共5篇)

    9.3 一元一次不等式组(2) 教学设计: 一、出示学习目标 学习目标: 1、进一步学习一元一次不等式的解法. 2、会按照要求求一元一次不等式组的特殊解. 设计意图:明确的目标是学习前......

    7.6一元一次不等式组练习题1

    沭阳县广宇学校初二数学作业纸 课题: 7.6一元一次不等式组(1)主备人:冯宝回姓名班级学号 1、若aa,则3ab. 39 2、当y_______时,代数式32y的值至少为1. 4 3、从小明家到学校的路程......

    9.2-一元一次不等式-教学设计(第1课时)

    《一元一次不等式》教学设计(第1课时) 一、内容和内容解析 (一)内容 一元一次不等式的概念及解法 (二)内容解析 在初中阶段,不等式位于一次方程(组)之后,它是进一步探究现实世界数......