第一篇:解析几何-9.8 抛物线(学案)
响水二中高三数学(理)一轮复习
学案 第九编 解析几何 主备人 张灵芝 总第50期
§9.8 抛物线
班级 姓名 等第
基础自测
1.设a≠0,a∈R,则抛物线y=4ax2的焦点坐标为.2.若抛物线y=2px的焦点与椭圆2x26+
y22=1的右焦点重合,则p的值为
.3.抛物线y2=24ax(a>0)上有一点M,它的横坐标是3,它到焦点的距离是5,则抛物线的方程为.4.若双曲线x2316yp22=1的左焦点在抛物线y2=2px的准线上,则p的值为.5.已知F是抛物线C:y2=4x的焦点,A、B是抛物线C上的两个点,线段AB的中点为M(2,2),则△ABF的面积等于.例题精讲
例1 已知抛物线y=2x的焦点是F,点P是抛物线上的动点,又有点A(3,2),求|PA|+|PF|的最小2值,并求出取最小值时P点的坐标.例2已知抛物线顶点在原点,焦点在坐标轴上,又知此抛物线上的一点A(m,-3)到焦点F的距离为5,求m的值,并写出此抛物线的方程.99
例3 如图所示,设抛物线方程为x=2py(p>0),M为直线y=-2p上任意一点,过M 引抛物线的切线,切2点分别为A,B.(1)求证:A,M,B三点的横坐标成等差数列;
(2)已知当M点的坐标为(2,-2p)时,|AB|=410.求此时抛物线的方程.巩固练习
1.已知点P是抛物线y2=2x上的一个动点,则点P到点(0,2)的距离与点P到该抛物线准线的距离之和的最小值为.2.已知抛物线C的顶点在原点,焦点F在x轴正半轴上,设A、B是抛物线C上的两个动点(AB不垂直于x轴),但|AF|+|BF|=8,线段AB的垂直平分线恒经过定点Q(6,0),求此抛物线的方程.3.已知以向量v=1,为方向向量的直线l过点0,,抛物线C:y=2px(p>0)的顶点关于直线l的24152 100 对称点在该抛物线的准线上.(1)求抛物线C的方程;
(2)设A、B是抛物线C上两个动点,过A作平行于x轴的直线m,直线OB与直线m交于点N,若
2,试求点N的轨迹方程.OA·OB+p=0(O为原点,A、B异于原点)
回顾总结 知识 方法 思想
第二篇:解析几何-9.7 双曲线(学案)
响水二中高三数学(理)一轮复习
学案 第九编 解析几何 主备人 张灵芝 总第49期
§9.7 双曲线
班级 姓名 等第
基础自测
1.已知双曲线的离心率为2,焦点是(-4,0),(4,0),则双曲线方程为.2.过双曲线x-y=8的左焦点F1有一条弦PQ在左支上,若|PQ|=7,F2是双曲线的右焦点,则△PF2Q的周长是.3.已知椭圆xa2222yb22=1(a>b>0)与双曲线
2xm
222yn2
22=1(m>0,n>0)有相同的焦点(-c,0)和
(c,0).若c是a与m的等比中项,n是m与c的等差中项,则椭圆的离心率等于.4.设F1、F2分别是双曲线xa22yb22=1的左、右焦点.若双曲线上存在点A,使∠F1AF2=90°且|AF1|=3|AF2|,则双曲线的离心率为.5.已知P是双曲线xa22y29=1右支上的一点,双曲线的一条渐近线方程为3x-y=0,设F1、F2分别为双曲线的左、右焦点.若|PF2|=3,则|PF1|=.例题精讲
例1 已知动圆M与圆C1:(x+4)+y=2外切,与圆C2:(x-4)+y=2内切,求动圆圆心M的轨迹方程.例2 根据下列条件,求双曲线的标准方程.(1)与双曲线
297);(2)与双曲线x22
x29y216=1有共同的渐近线,且过点(-3,316y24=1有公共焦点,且过点(32,2).例3 双曲线C:xa22yb22=1(a>0,b>0)的右顶点为A,x轴上有一点Q(2a,0),若C上存在一点P,使AP²PQ=0,求此双曲线离心率的取值范围.巩固练习
1.由双曲线x29y24=1上的一点P与左、右两焦点F1、F2构成△PF1F2,求△PF1F2的内切圆与边F1F2的切点坐标.2.已知双曲线的渐近线的方程为2x±3y=0,(1)若双曲线经过P((2)若双曲线的焦距是
23.已知双曲线的中心在原点,焦点F1、F2在坐标轴上,离心率为
26,2),求双曲线方程;
13,求双曲线方程;(3)若双曲线顶点间的距离是6,求双曲线方程.,且过点P(4,-
10).(1)求双曲线方程;(2)若点M(3,m)在双曲线上,求证:MF1²MF2=0;(3)求△F1MF2的面积.回顾总结
知识 方法 思想
第三篇:解析几何
清华大学校长毕业致辞
字号: 小 中 大 发布: 2009-04-08 23:10:20 查看(1129)/ 评分(6 / 0)/ 我要评论(3)个人分类: 心意小语
清华校长送给毕业生5句话——未来的世界:方向比努力重要,能力比知识重要,健康比成绩重要,生活比文凭重要,情商比智商重要!
方向比努力重要
现在是讲究绩效的时代,公司、企业、政府,需要的是有能力且能与企业方向共同发展的人,而不是一味努力但却南辕北辙的人。自己适合哪些行业,哪些职业,有很多东西是先天决定的,只有充分地发掘自己的潜力,而不是总与自己的弱点对抗,一个人才能出人头地,就像现在很多企业招聘的时候,他们相信通过培训和教育可以让火鸡学会爬树,但是还是觉得选只松鼠方便一些。方向不对,再努力、再辛苦,你也很难成为你想成为的那种人。
能力比知识重要
知识在一个人的构架里只是表象的东西,就相当于有些人可以在答卷上回答如何管理企业、如何解决棘手的问题、如何当好市长等等,但是在现实面前,他们却显得毫无头绪、不知所措,他们总是在问为什么会是这种情况,应该是哪种情况等等。他们的知识只是知识,而不能演化为能力,更不能通过能力来发掘他们的潜力。现在很多企业都在研究能力模型,从能力的角度来观察应聘者能否胜任岗位。当然,高能力不能和高绩效直接挂钩,能力的发挥也是在一定的机制、环境、工作内容与职责之内的,没有这些平台和环境,再高的能力也只能被尘封。
健康比成绩重要
成绩只能代表过去,这是很多人已经认同的一句话。对于毕业后走入工作岗位的毕业生,学生阶段的成绩将成为永久的奖状贴在墙上,进入一个工作单位,就预示着新的竞赛,新的起跑线。没有健康的身心,如何应对变幻莫测的市场环境和人生变革,如何应对工作压力和个人成就欲的矛盾?而且在现代社会,拥有强健的身体已经不是最重要的,健康的心理越来越被提上日程,处理复杂的人际关系、承受挫折与痛苦、缓解压力与抑郁,这些都将成为工薪族乃至学生们常常面对的问题。为了防止英年早逝、过劳死,还是多注意一下身体和心理的健康投资吧。
生活比文凭重要
曾经有一个故事,说有个记者问放羊的小孩,为什么放羊?答:为了挣钱,挣钱干啥?答:盖房子,盖房子干啥?答:娶媳妇,娶媳妇干啥?答:生孩子,生孩子干啥?答:放羊!
记得去年在人大听一个教授讲管理学基础课,他说你们虽然都是研究生,但很多人本质上还是农民!大家惊愕,窃窃私语。他说你们为什么读研究生,很多人是不是想找个好工作,找好工作为了什么,为了找个好老婆,吃喝住行都不错,然后生孩子,为了孩子的前途更光明,这些不就是农民的朴素想法吗?哪个农民父母不希望自己的子女比自己更好?说说你们很多人是不是农民思想,什么时候,你能突破这种思维模式,你就超脱了。当这个社会看重文凭的时候,假文凭就成为一种产业,即使是很有能力的人,也不得不弄个文凭,给自己脸上贴点金。比起生活,文凭还重要吗?很多人找女朋友或者男朋友,把学历当作指标之一,既希望对方能够给他/她伴侣的温暖与浪漫,又希望他/她知识丰富、学历相当或更高,在事业上能蒸蒸日上;我想说,你找的是伴侣,不是合作伙伴,更不是同事,生活就是生活,这个人适合你,即使你是博士他/她斗大字不识一个,那也无所谓,适合就会和谐融洽,人比文凭更重要。很多成功的人在回头的时候都说自己太关注工作和事业了,最遗憾的是没有好好陪陪父母、爱人、孩子,往往还伤心落泪,何必呢,早意识到这些,多给生活一些空间和时间就可以了。我们没有必要活得那么累。
情商比智商重要
这个就很有意思了。大家忽然一下子对情商重视了起来,因为在新的世纪,情商将成为成功领导中最重要的因素之一。比如在许多员工和自己的亲人因恐怖袭击丧生的时刻,某公司CEO Mark Loehr让自己镇定下来,把遭受痛苦的员工们召集到一起,说:我们今天不用上班,就在这里一起缅怀我们的亲人,并一一慰问他们和亲属。在那一个充满阴云的星期,他用自己的实际行动帮助了自己和他的员工,让他们承受了悲痛,并把悲痛转化为努力工作的热情,在许多企业经营亏损的情况下,他们公司的营业额却成倍上涨,这就是情商领导的力量,是融合了自我情绪控制、高度忍耐、高度人际责任感的艺术。曾经有个记者刁难一位企业家:听说您大学时某门课重考了很多次还没有通过。这位企业家平静地回答:我羡慕聪明的人,那些聪明的人可以成为科学家、工程师、律师等等,而我们这些愚笨的可怜虫只能管理他们。要成为卓越的成功者,不一定智商高才可以获得成功的机会,如果你情商高,懂得如何去发掘自己身边的资源,甚至利用有限的资源拓展新的天地,滚雪球似得积累自己的资源,那你也将走向卓越。在世界上出人头地的人,都能够主动寻找他们要的时势;若找不到,他们就自己创造出来!
TAG: 清华大学 校长 致辞
推荐到圈子 推荐给好友上一篇下一篇
相关阅读: 我记住了你——献给网友的新年致辞(黄作敏, 2009-1-02) 忆老师(7)校长、教导主任——胡老师、陈老师(瞌睡书虫, 2009-1-17) 一个人的叙事史:读刘道玉《一个大学校长的自白》(july99, 2009-3-01)
彭艳:美女校长演绎的精彩(原创)(未经许可,请勿转载)(gong7266, 2009-3-03)转载:清华大学孙立平教授的《对中国最大的威胁不是社会动荡而是社会溃败(更新中)》(马津龙, 2009-3-06)校长的喟叹(谷园春草, 2009-3-16)又见老校长(lhuihui, 2009-3-18)[转发]校长校长,是谁束缚了你的翅膀(李玲珑, 2009-4-01)关于中国普通高等学校的校长问题(大庆商江, 2009-4-03)高二学生被清华大学“预定”(hubert888, 2009-4-06)
第四篇:《解析几何》讲稿
第一章 矢量与坐标
教学目的
1、理解矢量的有关概念,掌握矢量线性运算的法则及其运算性质;
2、理解矢量的乘法运算的意义,熟悉它们的几何性质,并掌握它们的运算规律;
3、利用矢量建立坐标系概念,并给出矢量线性运算和乘法运算的坐标表示;
4、能熟练地进行矢量的各种运算,并能利用矢量来解决一些几何问题。
教学重点 矢量的概念和矢量的数性积,矢性积,混合积。教学难点 矢量数性积,矢性积与混合积的几何意义。
参考文献(1)解析几何(第三版),吕林根 许子道 等编,高等教育出版社,2001.06(2)解析几何思考与训练,梁延堂 马世祥主编,兰州大学出版社,2000.08 授课课时 10
§1.1
矢量的概念
教学目的
1、理解矢量的有关概念;
2、掌握矢量间的关系。教学重点 矢量的两个要素:摸与方向。教学难点 矢量的相等 参考文献(1)解析几何(第三版),吕林根 许子道 等编,高等教育出版社,2001.06(2)解析几何思考与训练,梁延堂 马世祥主编,兰州大学出版社,2000.08
授课课时 2
§1.1 矢量的概念
一、有关概念
1.矢量
既有大小又有方向的量叫做矢量,或称为向量,简称矢.而只有大小的量叫做数量,或称为标量.2.矢量的表示
用有向线段来表示矢量,有向线段的始点与终点分别叫做矢量的始点与终点,有向线段的方向表示矢量的方向,有向线段的长度代表矢量的大小.用3.矢量的模
矢量的大小称为矢量的模,亦称长度.用|
二、特殊矢量
1.零矢:模为零,方向不定.2.单位矢 :模为1,与矢量方向相同., ,„ 或黑体字a, x,„ 来记矢量.|,||,||,|a|,|x| , „ 来表示.三、矢量间的关系
1.平行矢:,所在直线平行,记作 //.2.相等矢:模相等,方向相同.3.自由矢:始点任意,只由模与方向确定的矢量.4.相反矢:模相等,方向相反.5.共线矢:平行于同一直线的一组矢量.6.共面矢:平行于同一平面的一组矢量.7.固定矢量: 在解析几何的大多数问题里,只有矢量的长度和方向发挥主要作用,而与它的起点无关,即为自由矢量.在个别情形下,有时我们只把有同一起点且相等的矢量才看作相等矢量,亦即两矢量完全重合时才看作相等,这样规定的矢量叫做固定矢量.需要注意,在应用科学中起点位置不同,所产生的作用也会不同,如图1-1,同样的力由于
作用点M1和M2的不同,效果也会不同.例1.设在平面上给了一个四边形ABCD,点K、L、M、N分别是边AB、BC、CD、DA的中点,求证:=.当ABCD是空间四边形时,这等式是否也成立?
证明:如图1-2,连结AC, 则在BAC中,KL向相同;在DAC中,NM且
AC.与方
AC.与方向相同,从而KL=NM与方向相同,所以=.由于上述证明不受ABCD是平面四边形或空间四边形的影响,即证明过程中并未用到ABCD必须是平面四边形的限制,故等式对空间情形也成立.例2.回答下列问题:
(1)若矢量//,//,则是否有//?(2)若矢量,共面,,也共面,则,是否也共面?
(3)若矢量,中//,则,是否共面?(4)若矢量,共线,在什么条件下,也共线?
解:(1)由//可知,,所在直线相互平行,同理,所在直线相互平行,从而,所在直线相互平行,从而有//;
(2),不一定共面.只有当,,,不共面; ,五矢量全部在同一平面上时,共面,否则(3)//,二矢量必共面,从而,必共面;(4)只有当ABDC组成平行四边形,即
作业题:
=
时,才共线.1.设点O是正六边形ABCDEF的中心,在矢量、、、、、、、、、和中,哪些矢量是相等的?、2.如图1-3,设ABCD-EFGH是一个平行六面体,在下列各对矢量中,找出相等的矢量和互为相反矢量的矢量:
(1)、;、(2)、、;
(3);
(4)、.;
(5)矢量的线性运算(§1.2 矢量的加法、§1.3 矢量的数乘)教学目的
1、掌握矢量加法的两个法则、数量与矢量的乘法概念及运算律;
2、能用矢量法证明有关几何命题。
教学重点 矢量加法的平行四边形法则、数量与矢量的乘法概念 教学难点 运算律的证明、几何命题转化为矢量间的关系 参考文献(1)解析几何(第三版),吕林根 许子道 等编,高等教育出版社,2001.06(2)解析几何思考与训练,梁延堂 马世祥主编,兰州大学出版社,2000.08
授课课时 2
§1.2 矢量的加法
一、概念
1.两个例子
物理学中的力与位移都是矢量.两个不共线的力作用于一点的合力,可用“平行四边形法则”求得,如图1-4, 两个力、的合力,就是以、为邻边的平行四边形OACB的对角线矢量
.两个位移的合成可以用“三角形法则”求出,如图1-5, 连续两次位移位移.2.矢量的加法法则
(1)三角形法则
设已知矢量、,以空间任意一点O为始点接连作矢量一折线OAB,从折线的端点O到另一端点B的矢量(2)平行四边形法则
如果以两个矢量量=+叫做矢量与的和.、=,=得
与的结果, 相当于
=,叫做两矢量与的和,记做=+.为邻边组成一个平行四边形OACB,那么对角线矢
二、性质
1.运算规律
(1)交换律 +=+;
(2)结合律(+)+=+(+);(3)+=;
(4)+(-)=.2.矢量加法的多边形法则 有限个矢量,„,相加,自任意点O开始,依次作
=就是n个矢量
=即
=特别地, 当An与O重合时,=3.矢量减法
=.+
+„+
.=, =,„,=,得一折线OA1A2„An,于是矢量,„, 的和
++„+(1)设矢量与的和等于矢量,即+=,那么矢量叫做矢量与的差,记做=-,由矢量与求它们的差-的运算叫做矢量减法.(2)减去一个矢量等于加上它的相反矢量,即有
-=+(-)
4.三角不等式
(1)|+|≢||+||, |-|≣||-||;
证明:如图1-4, |+|=||,||+|| =|| +||,|-|=|根据“三角形中两边之和大于第三边,两边之差小于第三边”即得.第一个不等式还可以推广到任意有限多个矢量的情况:
(2)|++„+|≢|
|+|
|+„+|
|..|;
例1.从矢量方程组中解出矢量解:类似于二元一次方程组的解法有
例2.用矢量法证明平行四边形对角线互相平分.证明:如图1-6,在平行四边形ABCD中,取BD的中点O,则 =+=+
=
+|=|
=,所以A, O, C三点共线,且|作业题:
|,从而平行四边形对角线互相平分.1.设两矢量与共线,试证+=+.2.证明:四边形ABCD为平行四边形的充要条件是对任一点O有+=+.§1.3 数量乘矢量
一、概念
1.数乘的例子
位移、力、速度与加速度等都是矢量,而时间、质量、面积等都是数量,这些矢量与数量之间经常会发生某些结合的关系,如公式
=m
其中表示力,表示加速度,m表示质量;再如公式
=t
其中表示位移,表示速度,t表示时间.2.数乘的定义
实数与矢量的乘积是一个矢量,记做,它的模||=||||;的方向,当>0时与相同,当<0时与相反.=的充要条件是=0或=
.设≠,则=||
二、性质 1.运算规律(1)
1=.或=
.(2)结合律
()=().(3)第一分配律(+)=+.(4)第二分配律
(+)=+.证明:(1)由数乘定义,显然成立.(2)当=或,中至少有一个为0时,显然成立;当≠,≠0时,(+)与+的模都等于||||||,而它们的方向,当与同号时,都与同方向,当与异号时,都与反方向,即(+)与+的方向相同,所以有
(+)=+.(3)如果=或,及+中至少有一个为0,等式显然成立.因此只须证明当≠,≠0,(+)≠0的情形:(ⅰ)如果>0,显然(+)与+同向,且
∣(+)|=| + | ||=(| |+| |)||=| | ||+| | ||=| |+| |=|+|,所以(+)=+.(ⅱ)如果<0,不妨设>0,<0;再看 +>0,+<0 的两种情形.下面只证明前一种情形,后一种情形同理可证.现假定>0,<0,+>0.这时有(-)(+)>0,根据(ⅰ)得
(+)+(-)=﹝(+)+(-)﹞=,所以
(+)=-(-)=+.(4)当=0或,中至少有一个为时,显然成立;因此只须证明当≠,≠,≠0的情形:(ⅰ)如果,共线,取m=此有
(,同向)或m=-
(,反向),则=m,因
(+)=(m+)=﹝(m+1)﹞=(m+)=(m)+ =(m)+=+.(ⅱ)如果,不共线,根据矢量加法的三角形法则即可证明(+)=+.2.由矢量的加法与数乘矢量的运算规律可知,对于矢量也可以像实数及多项式那样去运算,例如
5(+2)-2(2-)=5+10-4+2=+1
2.3.由前节和本节,我们对矢量定义了两种运算:+和m(mR),这两种运算满足: I-1.+=+,I-2.(+)+=+(+),I-3.存在一个零矢量,满足+=,I-4.每一个矢量都有相反矢量(-),使+(-)=;II-1.1=, II-2.m(n)=(mn), II-3.(m+n)=m+n, II-4.m(+)=m+m.如果仅从运算法则着眼,而不考虑矢量的具体含义,则凡是具有两种运算加法和数乘,并满足上述一系列运算规律的元素的集合,叫做实数域上的线性空间(亦称矢量空间或向量空间).例1.如图1-7,设M是平行四边形ABCD的中心,O是任意一点,证明
+分析:将证明:因为+
+
=
4.分别看作△OAC与△OBD的中线.=(=+(), +
+=
(+
+)),所以
2所以
+++=4.例2.设点O是平面上正多边形A1A2„An的中心,证明:
+分析:如图1-8,每一矢量从而求解.证明:因为
++
+„+
=.倍数,都是其相邻两矢量的和矢量的某一
==, , „„
++
==, ,所以
2(=(+++„++„+)),所以
(-2)(++„+)=.显然
≠2, 即 -2≠0.所以
作业题: ++„+
=.可以构1.设L、M、N分别是ΔABC的三边BC、CA、AB的中点,证明:三中线矢量成一个三角形.2.设L、M、N是△ABC的三边的中点,O是任意一点,证明
+=++.3.用矢量法证明,四面体对棱中点的连线相交于一点且互相平分., , §1.4 矢量的线性关系与矢量的分解
教学目的
1、理解矢量在直线和平面及空间的分解定理;
2、掌握矢量间的线性相关性及判断方法。教学重点 矢量的三个分解定理及线性相关的判断。教学难点 分解定理的证明 参考文献(1)解析几何(第三版),吕林根 许子道 等编,高等教育出版社,2001.06(2)解析几何思考与训练,梁延堂 马世祥主编,兰州大学出版社,2000.08 授课课时 2
§1.4 矢量的线性关系与矢量的分解
一、矢量的分解
1.线性运算: 矢量的加法和数与矢量的乘法统称为矢量的线性运算.2.线性组合: 由矢量做矢量,„,,„,与数量1,2,„,n所组成的矢量=
1,„,+
2+„+n叫的线性组合.我们也说矢量可以用矢量线性表示,或者说,矢量可以分解成矢量,„,的线性组合.3.矢量在直线上的分解:
定理1 如果矢量,那么矢量与矢量共线的充要条件是可以用矢量线性表示,或者说是的线性组合,即=x,且系数x被,唯一确定.称为用线性组合来表示共线矢量的基底.证明 如果 =x成立,那么由数乘矢量的定义立刻知与共线.反过来,如果与非零矢量共线,那么一定存在实数x,使得=x.显然,如果=,那么=0,即x=0.x的唯一性:如果=x=,而,所以 x=.4.矢量在平面上的分解: 定理2 如果矢量,,那么(x-=
不共线,那么矢量与, ,共面的充要条件是可以用矢量
+y,且系数x, y被, ,线性唯一表示,或者说矢量可以分解成矢量确定., 的线性组合,即=x, 称为平面上矢量的基底., 证明 因为矢量么根据定理1有=x始点O,并设交于A,B.因为则得
=+不共线,所以+y,.设与,共面,如果与(或)共线,那,其中y =0(或x=0);如果与=,都不共线,则把它们归结到共同的=,∥,(i=1,2),那么过的终点分别作OE2,OE1的平行线依次与OE1,OE2∥,那么根据定理1可设
= x,=y,根据平行四边形法,即
=x 反过来,设=x如果xy≠0,那么x面.最后证明x, y被∥+y, y+y.(或,y)共线,则与,,如果x, y 有一个是零,那么与∥,根据平行四边形法则得与 x共面.,共面,因此与共, ,唯一确定.假设
=x+y=
+ ,)
=(y-)
=, 那么
(x-如果x≠,那么
=-,即 ∥, 这与定理条件矛盾,所以x=
5.矢量在空间的分解: 定理3 如果矢量, ,.同理y =,因此x, y被唯一确定.不共面,那么空间任意矢量可以由矢量的线性组合,即=x+y+z, ,线性表示,或者, , 说矢量可以分解成矢量唯一确定., , , ,,且系数x, y, z被, 称为空间矢量的基底., , 证明
因为矢量如果与,,不共面,所以,≠(i=1,2,3),且被此不共线.(,之中的两个矢量
+y或
+0,)共面,那么根据定理2有
+z或=0
+y+z).=,=x如果与=,,+0(=x之中的任意两个矢量都不共面,则把它们归结到共同的始点O,并设(i=1,2,3),那么过的终点分别作三个平面分别与平面OE2E3,OE3E1,OE1E2平行,且分别与直、+、,为三棱,=为对角线的平行线OE1,OE2,OE3相交于A,B,C三点,从而作成了以六面体,于是得到:
=由定理1可设= x,= y,= z=x下面证明x, y, z被, ,+,所以 +y+z., 唯一确定.假设 =x+y+z=
+
+)
,=(y-)=(z-)那么
(x-=,如果
x≠,那么
,=-=-有定理2可知因此x, y, z被
1.定义 , , 共面,这与定理条件矛盾,所以x=,.同理,y=,z=., , 唯一确定.二、矢量的线性关系
对于n(n≣1)个矢量, , „,,如果存在不全为零的n个数1, 2,„, n, 使得
1+2+„+n,=, , „,线性无关是指,只有当1=2=„那么n个矢量, , „, =n=0时,上式才成立.2.判断方法
叫做线性相关.矢量推论1 一个矢量线性相关的充要条件是=.证明:由矢量线性相关的定义即得.定理4 矢量组合.证明:设, , , „,(n≣2)线性相关的充要条件是其中有一个矢量是其余矢量的线性
+
2+„+n,即
=,且1, 2,„, n 不全为零,不, „, =-
线性相关,则1-,-„-, „, 妨设n ≠0,那么是其余矢量的线性组合.是其余矢量的线性组合,即 , , „, 反过来,设n个矢量=1+2+„+n-1,即1
中有一个矢量,不妨设
+2+„+(-1)=,且1, 2,„,(-1)不全为零,因此线性相关.定理5 如果一组矢量中的一部分矢量线性相关,那么这一组矢量就线性相关.证明:设一组矢量, , „,,„,(s≢r)中,有一部分矢量那么存在不全为零的n个数1, 2,„, s, 使得
1, , „, 线性相关,+2+0
+„+s+„+r=,=,且1, 2,„, s不全为零.即
1+2+„+s所以这一组矢量, , „,,„, 线性相关.推论2 一组矢量中如果含有零矢量,那么这组矢量必线性相关.证明:由推论1和定理5即得.根据矢量的分解定理和线性相关概念,可得如下定理: 定理6 两矢量共线的充要条件是它们线性相关.定理7 三矢量共面的充要条件是它们线性相关.定理8 空间任何四个矢量总是线性相关.推论3 空间四个以上矢量总是线性相关.证明:由定理5和定理8即得.例1.设一直线上三点A, B, P满足=
证明:如图1-11,因为
=(-1),O是空间任意一点,求证: ==所以
(1+)所以 ---==, , =(+.=,=,AT是角A的平分线(它与BC交于T点),试将
分-), ,例2.在△ABC中,设解为,的线性组合.分析:如图1-12,利用三角形的角平分线定理.解:因为 且 与=,方向相同,所以 =由上题结论有.==.+
+
=
.例3.用矢量法证明:P是△ABC重心的充要条件是分析:如图1-13,利用三角形重心的性质.证明:)若P为△ABC的重心,则
=2++=+,从而
+
-
=,即
=.)若++=, 则
=-
=,+取E,F,G分别为AB,BC,CA之中点,则有
=,(=2
+)..故P为△ABC的重心.+2,=-
3+12
+11
共面,其从而 =2.同理可证
+3
=2+2例4.证明三个矢量=-, =4-6中能否用,线性表示?如能表示,写出线性表示关系式.证明:题中的矢量(-或(-+4-3v)由于, , , +3, +2
不共面,即它们线性无关.考虑表达式
++v=,即)+(4-6
+2)+v(-3
=.+12
+11)=,+(3-6+12v)+(2+2+11v)线性无关,故有 解得
=-10,=-1,v=2.由于
=-100,所以能用,线性表示
=-例5.如图1-14,, 三点共线的充要条件是+=1.证明:有m-1, 使-(1+m)=但已知==
+.=+,试证A, B, C是三个两两不共线的矢量,且
//,)因为
A,B,C共线,从而有=m=m(=+m++.由, -,.对,=1.),分解的唯一性可得 ,=从而
+=+)设+=1.则有
==-所以 ++(=(==--,),), +(1-)从而 //.所以
A,B,C三点共线.例6.梅尼劳(MeneLaus)定理:如图1-15,A,B,C分别是△ABC三边BC,CA,AB上的定比分点,如果它们把△ABC的边分成定比
=, =, v=,那么A,B,C三点共线的充要条件是v=-1.证明:由 =可知 =由第1题有 , , ==, v=,=v, ,=, =
+
=, 从而
=v所以
=
=(1+)=v(, +, +),=由上题结论知三点A,B,C共线的充要条件是
+化简即得
v=-1.作业题:
1.在平行四边形ABCD中,(1)设对角线=,=,求, =
.=1,, , ,;,.,分解为,(2)设边BC和CD的中点为M和N,且2.在△ABC中,设=,=
=,求, D、E是边BC的三等分点,将矢量的线性组合.3.用矢量法证明: 三角形三中线共点.4.设G是△ABC的重心,O是空间任意一点,试证
=
(+).5.设=(i=1, 2, 3, 4),试证P1, P2, P3, P4四点共面的充要条件是存在不全为零的实数i(i=1, 2, 3, 4)使
1+2+3+4=, 且.§1.5 标架与坐标
教学目的
1、能利用矢量建立坐标系概念;
2、理解点的坐标及矢量分量的表示方法;
3、掌握矢量线性运算及线段定比分点的坐标表示方法。
教学重点 标架概念及点和矢量的坐标表示方法 教学难点 矢量的分量 参考文献(1)解析几何(第三版),吕林根 许子道 等编,高等教育出版社,2001.06(2)解析几何思考与训练,梁延堂 马世祥主编,兰州大学出版社,2000.08 授课课时 1
§1.5 标架与坐标
一、空间坐标系
1.空间中的一个定点O,连同三个不共面的有序矢量记做{O;,}.如果, , , , ,的全体,叫做空间中的一个标架,}叫做笛卡尔标架;, ,, }叫做
都是单位矢量,那么{O;两两相互垂直的笛卡尔标架叫做笛卡尔直角标架,简称直角标架;在一般情况下,{O;仿射标架.2.对于标架{O;,},如果, ,间的相互关系和右手拇指、食指、中指相同,那么这个标架叫做右旋标架或称右手标架;如果, , 间的相互关系和左手的拇指、食指、中指相同,那么这个标架叫做左旋标架或称左手标架.如图1-16.3.表达式=x+y+z中的x, y, z叫做矢量关于标架{O;记做{x, y, z}或{x, y, z}.4.对于取定了标架{O;架{O;z).,,}的空间中任意点P,矢量,,}的分量或称为坐标,关于标
叫做点P的径矢,径矢}的分量x, y, z叫做点P关于标架{O;}的坐标,记做P(x, y, z)或(x, y, 5.当空间取定标架{ O;, , }之后,空间全体矢量的集合或者全体点的集合与全体有序三数组x, y, z的集合具有一一对应的关系,这种一一对应的关系叫做空间矢量或点的一个坐标系.空间坐标系也常用{O;,}来表示,此时点O叫做坐标原点,, , 都叫做坐标矢量.6.由右(左)旋标架决定的坐标系叫做右(左)旋坐标系或右(左)手坐标系;仿射标架、笛卡尔标架与直角标架所确定的坐标系分别叫做仿射坐标系、笛卡尔坐标系与直角坐标系.二、平面坐标系
1.约定用{O;手直角坐标系.}表示直角坐标系,以后在讨论空间问题时所采用的坐标系,一般都是空间右2.过点O沿着三坐标矢量, , 的方向引三轴Ox, Oy, Oz,可以用这三条具有公共点O的不共面的轴Ox, Oy, Oz来表示空间坐标系,记做O—x y z,此时点O叫做空间坐标系的原点,三条轴Ox, Oy, Oz都叫做坐标轴,且依次叫做x轴,y轴和z轴,每两条坐标 轴所决定的平面叫做坐标面,分别叫做xOy平面,yOz平面与
xOz平面.三坐标平面把空间划分为八个区域,每一个区域都叫做卦限.3.平面上一个定点O, 连同两个不共线的有序矢量{O;,},如果, 都是单位矢量,那么{O;, 的全体,叫做平面上的一个标架,记做
与
相互垂直的笛卡尔
}叫做笛卡尔标架;, 标架叫做笛卡尔直角标架,简称直角标架;在一般情况下,{O;}叫做仿射标架.4.对于标架{O;,},将绕O旋转,使的方向以最近的路径旋转到与果旋转方向是逆时针的,则这种标架叫做右旋标架或称右手标架;如果旋转方 的方向相合时,如
向是顺时针的,则这种标架叫做左旋标架或称左手标架.如图1-17.5.表达式=x或{x, y}.+y中的x, y叫做矢量关于标架{O;,}的平面上的任意点P,矢量,}的分量或称为坐标,记做{x, y}
关于标架6.对于取定了标架{O;{O;,叫做点P的径矢,径矢}的分量x, y叫做点P关于标架{O;}的坐标,记做P(x, y)或(x, y).7.当平面上取定标架{O;,}之后,平面上全体矢量的集合或者全体点的集合与全体有序数对x, y的集合具有一一对应的关系,这种一一对应的关系叫做平面上矢量或点的一个坐标系.平面坐标系也常用{O;,}来表示,此时点O叫做坐标原点,, 都叫做坐标矢量.8.由右(左)旋标架决定的坐标系叫做右(左)旋坐标系或右(左)手坐标系;仿射标架、笛卡尔标架与直角标架所确定的坐标系分别叫做仿射坐标系、笛卡尔坐标系与直角坐标系.15.约定用{O;,}表示直角坐标系, 在讨论平面问题时所采用的坐标系,一般都是平面右手直角坐标系.9.过点O沿着坐标矢量, 的方向引二轴Ox, Oy,可以用这二条具有公共点O的不共线的轴Ox,Oy来表示平面坐标系,记做O-x y,此时点O叫做平面坐标系的原点,Ox叫做x轴,Oy叫做y轴.两坐标轴把平面分成四个区域,每一个区域都叫做象限.三、直线坐标系 1.直线上一个定点O,连同直线上一个非零矢量的全体,叫做直线上的一个标架,记做{O;},如果为单位矢量,那么{O;}叫做笛卡尔标架,在一般情况下,{O;}叫做仿射标架.2.表达式=x中的x叫做矢量关于标架{O;}的分量或称为坐标,记做{x}或{x}.3.对于取定了标架{O;}的直线上任意点P,矢量x叫做点P关于标架{O;}的坐标,记做P(x)或(x).叫做点P的径矢,径矢
关于标架的分量4.当直线上取定标架{O;}之后,直线上全体矢量的集合或全体点的集合与全体实数x的集合具有一一对应的关系,这种一一对应的关系叫做直线上矢量或点的一个坐标系.直线上的坐标系也常用{O;}来表示,此时点O叫做坐标原点,叫做坐标矢量.5.由仿射标架与笛卡尔标架所确定的坐标系分别叫做仿射坐标系与笛卡尔坐标系.6.取定标架{O;}的直线,叫做坐标轴或简称为轴,原点为O,坐标写成x的轴记做Ox.例1.在空间直角坐标系{O;}下,求P(2,-3,-1),M(a, b, c)关于(1)坐标平面;(2)坐标轴;(3)坐标原点的各个对称点的坐标.解:可按照“关于哪轴对称,哪轴不动,其余变号”的方法去考虑,有 M(a, b, c)关于xOy平面的对称点坐标为(a, b, -c),M(a, b, c)关于yOz平面的对称点坐标为(-a, b, c),M(a, b, c)关于xOz平面的对称点坐标为(a,-b, c),M(a, b, c)关于x轴平面的对称点坐标为(a,-b,-c),M(a, b, c)关于y轴的对称点的坐标为(-a, b,-c),M(a, b, c)关于z轴的对称点的坐标为(-a,-b, c).类似考虑P(2,-3,-1)即可.例2.已知矢量, , 的分量如下:
(1)={0, -1, 2},={0, 2, -4},={1, 2, -1};(2)={1, 2, 3},={2, -1, 0},={0, 5, 6}.试判别它们是否共面?能否将表成,的线性组合?若能表示,写出表示式.解:(1)因为 //,但
=0,所以 , , 三矢量共面, 由于, 的对应坐标成比例,即,故不能将表成, 的线性组合.(2)因为 =0,所以 , , 三矢量共面.,故可以将表成, 的线性组合.由于 , 的对应坐标不成比例,即设 =+, 即
{0, 5, 6}={1, 2, 3}+{2, -1, 0} 从而
由此解得
=2,=-1,所以
=2-.例3.证明:四面体每一个顶点与对面重心所连的线段共点,且这点到顶点的距离是它到对面重心距离的三倍.用四面体的顶点坐标把交点坐标表示出来.证明:设四面体A1A2A3A4,Ai对面重心为Gi, 欲证AiGi交于一点(i=1, 2, 3, 4).在AiGi上取一点Pi,使则
=
3, 从而
=,设Ai(xi, yi, zi)(i=1, 2, 3, 4),G1G2G3G4所以 , , ,P1(,)
P1(,).同理得P2P3P4P1,所以AiGi交于一点P,且这点到顶点距离等于这点到对面重心距离的三倍.作业题:
1.指出坐标满足下列条件的点(x, y, z)在空间的位置.(1)
x=y;
(2)
y z<0;
(3)
x y z<0.2.平行于z轴的矢量有什么特点?平行于x轴和y轴的矢量又分别有什么特点?
3.已知线段AB被点C(2, 0, 2)和D(5,-2, 0)三等分,试求这个线段两端点A与B的坐标.§1.6 矢量在轴上的射影
教学目的
1、掌握射影与射影矢量的概念及矢量线性运算的射影表示;
2、理解矢量在轴上的的射影与坐标的关系。
教学重点 矢量在轴上的射影与射影矢量的概念 教学难点 射影与射影矢量的关系 参考文献(1)解析几何(第三版),吕林根 许子道 等编,高等教育出版社,2001.06(2)解析几何思考与训练,梁延堂 马世祥主编,兰州大学出版社,2000.08 授课课时 1
§1.6 矢量在轴上的射影
一、概念
1.已知空间的一点A与一轴l,通过A作垂直于轴l的平面,平面与轴l的交点A叫做点A在轴l上的射影.2.设矢量的始点A和终点B在轴l上的射影
叫做矢量
在轴l上分别为A和B,那么矢量的射影矢量,记作射影矢量l.如图1-18.3.如果在轴上取与轴方向相同的单位矢量,则有射影矢量l==x,其中x叫做矢量,即 =x.与射影l分别写成射影矢量
与射影,且分别叫做矢量
在在轴l上的射影,记作:射影l射影l4.可以把射影矢量l矢量上的射影矢量与在上的射影,两者之间的关系是
射影矢量
=(射影
=,).=, 把射线OA和OB构成的在0与5.设是两个非零矢量,自空间任意点O作之间的角,叫做矢量与的夹角,记做(,).按规定,若,同向,则(,)=0;若,反向,则(,)=;若,则0<(,)<.时,以矢6.在平面上,可以引进从矢量到矢量的有向角的概念,并记作(,),当量扫过矢量,之间的夹角(,)旋转到与矢量同方向的位置时,如果旋转方向是逆时针的,则(,)=(,);如果旋转方向是顺时针的,则(,)=-(,).当//
时,(,)=(,).有向角的值,常可推广到 ≢-π 或 >π,这时我们认为相差2π整数倍的值代表同一角,对于有向角还有下面的等式(,)=-(,),(,)+(,)=().二、性质
1.矢量在轴l上的射影等于矢量的模乘以轴与该矢量的夹角的余弦:
射影i=|
|cos, =(l,).证明:如图,射影i=||=||cos.由矢量在轴l上的射影概念容易证得如下性质:
2.相等矢量在同一轴上的射影相等.3.对于任何矢量有
射影l(+)=射影l+射影l.4.对于任何矢量与任意实数有
射影l()=射影l.例题:试证明:射影l(+„+n射影l.证明:用数学归纳法来证.当n=2时,有
射影l(12)=射影l()+射影l(假设当n=k时等式成立,即有 射影l(射影l(=射影l[(=射影l()+)+射影l()=1射影l)
]))=1射影l+2射影l.+„+n)=1射影l+射影l
+„+k射影l.欲证当n=k+1时亦然.事实上
=1射影l+„+k射影l+k+1射影l 故等式对自然数n成立.作业题:
1.两非零矢量的夹角在空间和平面上分别是怎样定义的?取值范围如何? 2.在射影的关系如何?,射影矢量
与射影, 射影矢量
中,若,=-, 则它们相互间3.射影相等的两个矢量是否必相等?射影为0的矢量,是否必为?
§1.7 两矢量的数性积
教学目的
1、掌握矢量的数性积概念及几何意义;
2、理解矢量的模、方向余弦和交角及数性积的坐标表示;
3、能证明有关的几何命题。
教学重点 两矢量的数性积概念及几何意义 教学难点 根据数性积理论证明有关的命题 参考文献(1)解析几何(第三版),吕林根 许子道 等编,高等教育出版社,2001.06(2)解析几何思考与训练,梁延堂 马世祥主编,兰州大学出版社,2000.08
授课课时 1
§1.7 两矢量的数性积
一、概念
1.数性积的例子.一个质点在力的作用下,经过位移
=,则这个力所作的功为
W=|其中=(,),功W是由矢量
|||cos
与按上式确定的一个数量.如图1-19.2.两个矢量与的模和它们夹角的余弦的乘积叫做矢量和的数性积(也称数积,内积,点积),记做或,即
=||||cos(,).二、性质
1.=||射影=||射影
..2.当为单位矢量时 =射影3.=||=22.4.两矢量和相互垂直的充要条件是=0.5.矢量的数性积满足下面的运算规律(1)交换律 =.(2)关于数因子的结合律()=()=().(3)分配律(+)=+.三、坐标运算 1.设={}, ={
}, 则 =
.=, =,=.2.设={X, Y, Z},则
||=3.空间两点P1(x1,y1,z1),P2(x2,y2,z2)间的距离是
..4.矢量与坐标轴(或坐标矢量)所成的角叫做矢量的方向角,方向角的余弦叫做矢量的方向余弦.5.非零矢量={X, Y, Z}的方向余弦是
cos=cos=cos=且
cos+cos+cos=1,(其中的, , 分别为矢量与x轴,y轴,z轴的交角,即的三个方向角.)并有
6.设空间中两个非零矢量为{
},={
={cos, cos, cos}.},那么它们夹角的余弦是
d=
===, ,.cos(,)=7.矢量{}和={
=
}相互垂直的充要条件是
.例1.在实数乘法中消去律成立,即ab=ac时,则a=0或b=c.这对矢量的数性积并不成立,举反例如下:
如图1-20,设有非零矢量及与其共面的两矢量和,使得其终点连线BC与OA垂直且交于M,则
=||||cos(,)=||OM, =||||cos(,)=||OM,于是 =, 但显然.例2.在平面上如果证明: 因为 ,+),,且
=
(i=1,2),则有=.所以,对该平面上任意矢量=(-)=(-)(==((-)+-
+(-)
-)=0,)+(故(-).由的任意性知 -=.从而 =.例3.用矢量法证明以下各题:
222(1)三角形的余弦定理 a=b+c-2bccosA;
(2)三角形各边的垂直平分线共点且这点到各顶点等距.证明:(1)如图1-21,△ABC中,设且||=a,||=b,||=c.则=-,=(-)=+-2=+-2||||cosA.222此即
a=b+c-2bccosA.(2)如图1-22,设AB, BC边的垂直平分线PD, PE相交于P, 2222
=,=,=,D, E, F为AB, BC, CA的中点, 设=-=因为 , =-,=, =
-,=,=
(=, 则+),(+)., ,所以(+)(-)=(2
-
2)=0,(+)(-)=从而有 所以 2
(2
-
2)=0,2
2=2=2
,即 ||=||=||,(2(+)(-)=-
2)=0,所以 ,且 ||=||=||.故三角形各边的垂直平分线共点且这点到各顶点等距.作业题:
1.用矢量法证明对角线互相垂直的平行四边形是菱形.2.证明 -||||≢
≢|||
|.=,=, =,求
+
+.3.已知等边三角形ABC的边长为1,且4.(1)求两个共线矢量的数性积;(2)求两个单位矢量的数性积.§1.8 两矢量的矢性积
教学目的
1、掌握矢量的矢性积概念及几何意义;
2、理解矢量矢性积的运算律及坐标表示;
3、会用顶点坐标计算三角形的面积。
教学重点 两矢量矢性积概念及几何意义 教学难点 矢性积的几何意义 参考文献(1)解析几何(第三版),吕林根 许子道 等编,高等教育出版社,2001.06(2)解析几何思考与训练,梁延堂 马世祥主编,兰州大学出版社,2000.08 授课课时 1
§1.8 两矢量的矢性积
一、概念
1.矢性积的例子
物理学中的力矩是一个矢量,它是两个矢量的矢性积,如图1-23,如果力则力矩
=
.的作用点是A,,2.两矢量与的矢性积(也称矢积,外积,叉积)是一个矢量,记做或[],它的模是
||=||||sin(,),它的方向与,都垂直,并且按,这个顺序构成右手标架{O;,}.二、性质
定理1.两不共线矢量与的矢性积的模,在数值上等于以与为邻边所构成的平行四边形的面积.证明:如图1-24,平行四边形的面积S=|| h =||||sin(,)=||.定理2.两矢量与共线的充要条件是 =.证明:当与共线时,sin(,)=0,从而||=0,即=;反过来,当=时=或=或∥,而可以看成与任何矢量共线,所以总有∥.定理3.矢量的矢性积满足下面的运算规律:
(1)反交换律
=-().(2)关于数因子的结合律
()=()=().(3)分配律
(+)=+.证明:只给出反交换律=-()的证明,其余类似可证:
如果与共线,那么()与()都是,显然成立.如果与不共线,那么
||=||||sin(,)=||||sin(,)=||,而根据矢性积的定义()与()共线且方向相反,从而=-().推论.设, 为任意实数,有
()()=()(),(+)=+.三、坐标运算
1.如果={X1, Y1, Z1},={X2, Y2, Z2}, 那么
=++.或
=.2.与中学代数里的方程一样,我们将含有未知矢量的等式叫做矢量方程.例如=l,其中是已知矢量,是未知矢量,l是常数,这就是一个矢量方程.解矢量方程常用两种方法:其一是对方程实行各种向量运算来求出未知向量;其二是利用坐标化成代数方程再去求解.例1.证明()≢222
2,并说明在什么情形下等号成立.22
2证明:()=||=||||sin(,)
≢||||=22
.,即当时,等号要使等号成立, 必须sin(,)=1, 从而sin(,)=1, 故(,)=成立.例2.证明如果++=,那么==,并说明它的几何意义.证明:由++=, 有(++)==, 但 =,于是
+=,所以 =.同理
由(++)=, 有 =,从而 ==.其几何意义是以三角形的任二边为邻边构成的平行四边形的面积相等.例3.如果非零矢量(i=1,2,3)满足垂直的单位矢量,并且按这次序构成右手系.证明:由矢性积的定义易知,因为 =,||=,|=|
|||, ,,=
,=,那么,是彼此
彼此垂直,且构成右手系.下证它们均为单位矢量.所以 ||=||,|所以 ||=||||.|=1,|22由于 ||0,从而 |同理可证 |
|=1.|=1,||=1.从而,都是单位矢量.例4.用矢量方法证明:(1)三角形的正弦定理
==.(2)三角形面积的海伦(Heron)公式,即三斜求积公式:
=p(p-a)(p-b)(p-c).式中p=(a+b+c)是三角形的半周长,为三角形的面积.=,=,=,且||=a,||=b, ||证明(1)如图1-25,在△ABC中,设=c, 则
++=, 从而有 ==,所以
||=||=||,bcsinA=casinB=absinC, 于是
==.(2)同上题图,△ABC的面积为
=所以
=2
||,().22
22因为
()+()=所以
=2,[22-()].2由于
++=,从而
+=-,(+)=所以
2,(c-a-b),2
2=(222-2
-
2)=故有
====[ab-222(c-a-b)]
222[2ab-(c-a-b)][2ab+(c-a-b)] [(a+b)-c][222-(a-b)]
2(a+b+c)(a+b-c)(c+a-b)(c-a+b)=2p(2p-2c)(2p-2b)(2p-2a).2所以
=p(pa)(pb)(pc), 或
=例5.试解方程组
., //,其中 ,l是已知数.解法一:化成坐标式得
a1x1+a2x2+a3x3=l,其中, , x2=,k0, 解得 , x3=, ,x1=再化成矢量式得解法二:由.得,代入
得,于是
k=, 从而有作业题:.1.设, , 为三个两两不共线的矢量,且== ,则++=.2.设两非零矢量3.已知两非零矢量4.已知积.,,求k值,使两个向量k,求
与, 其中
和
+k共线.共线的充要条件.=5, , , 求平行四边形ABCD的面
第二章 轨迹与方程
教学目的
1、理解曲面与空间曲线方程的意义;
2、掌握求轨迹方程(矢量式与坐标式参数方程及普通方程)的方法;
3、会判断已知方程所表示的轨迹名称。
教学重点 曲面和空间曲线的方程求法
教学难点 判断已知的参数方程或普通方程所表示的图形 参考文献(1)解析几何(第三版),吕林根 许子道 等编,高等教育出版社,2001.06(2)解析几何思考与训练,梁延堂 马世祥主编,兰州大学出版社,2000.08 《解析几何》课程教案(第三章)
授课课时 4第二章
轨迹与方程
本章的目的是建立轨迹与其方程的对应,在空间或平面上取定标架之后,空间或平面上的点就与有序实数组(x, y, z)或(x, y)建立了一一对应关系,在此基础上,进一步建立作为点的轨迹的曲线、曲面与其方程之间的联系,把研究曲线与曲面的几何问题,归结为研究其方程的代数问题,进而为用代数的方法研究曲线和曲面创造了条件,奠定了基础.空间轨迹与平面轨迹相比要复杂得多,但它的方程的建立,以及对某些问题的处理,两者却非常相似.本章的知识结构为:
轨迹
方程
→ 方程
→ 轨迹
§2.1 平面曲线的方程
一、普通方程
1.平面上的曲线(包括直线),都可以看成具有某种特征性质的点的集合.曲线上点的特征性质,包含两方面的意思:(1)曲线上的点都具有这些性质;(2)具有这些性质的点都在曲线上.因此曲线上点的特征性质,也可以说成是点在曲线上的充要条件.2.当平面上取定了标架之后,如果一个方程F(x, y)= 0或 y =f(x)与一条曲线有着关系:(1)满足方程的(x, y)必是曲线上某一点的坐标;(2)曲线上任何一点的坐标(x, y)满足这个方程,那么这个方程F(x, y)= 0就叫做这条曲线的普通方程,而这条曲线叫做这个方程的图形.3.对于一条给定的曲线,要求出它的方程,实际上就是在给定的坐标系下,将这条曲线上的点的特征性质,用关于曲线上的点的两个坐标x, y的方程来表示.二、参数方程
1.曲线常可表现为一个动点运动的轨迹,但是运动的规律往往不是直接反映为动点的两个坐标x与y之间的关系,而是直接表现为动点的位置随着时间改变的规律.当动点按照某种规律运动时,与它对应的径矢也将随着时间t的不同而改变(模与方向的改变),这样的径矢,我们称它为变矢,记做
.,那么2.如果变数t(a≢t≢b)的每一个值对应于变矢的一个完全确定的值(模与方向)我们就说是变数t的矢性函数,记做
=,(a≢t≢b)
显然当t变化时,矢量的模与方向一般也随着改变.3.设平面上取定的标架为{O;,写为
其中x(t),y(t)是
},矢量就可用它的分量表示,这样矢性函数== x(t)+y(t),(a≢t≢b),就可以的分量,它们分别是变数t的函数.4.若取t(a≢t≢b)的一切可能取的值,径矢的终点总在一条曲线上;反过来,在这条曲线上的任意点,总对应着以它为终点的径矢,而这径矢可由t 的某一值t0(a≢t0≢b)完全决定,则把 = x(t)+y(t),(a≢t≢b)
叫做曲线的矢量式参数方程,其中t为参数.如图2-1.5.因为曲线上点的径矢的分量为x(t), y(t),所以曲线的参数方程也常写成下列形式
(a≢t≢b)
把这个表达式叫做曲线的坐标式参数方程.如能从上式中消去参数t(如果可能的话),那么就能得出曲线的普通方程F(x, y)=0.6.曲线的参数方程的表达形式不唯一.例1.有一长度为2a(a>0)的线段,它的两端点分别在x轴正半轴和y轴正半轴上滑动,求此线段中点的轨迹.解法一:如图2-2,取 为参数,设线段中点为M(x, y),于是A(2acos, 0),B(0, 2asin,), 所以
(0< <消去参数 得所求轨迹的一般方程为
x2+y2 = a2(x>0, y>0).)
解法二:如图2-3, 设线段为AB,其中点为P(x, y),且设(,====(|(+|+|)|))=,则
[2acos()+2asin()]
= acos+asin,所以动点轨迹的坐标式参数方程为
(消去参数 得所求轨迹的一般方程为
< < )
x2+y2 = a2(x>0, y>0).例2.三角形ABC底边的两个端点为B(3, 0),C(3, 0), 顶点A在直线7x5y35=0上移动,求这三角形重心的轨迹.解:设△ABC的重心为G(x, y),顶点A为(x0, y0),则有
x==x0, y==y0,从而
x0=3x , y0 =3y.而A(x0, y0)在直线7x5y35=0上, 故有
7x05y035=0 或 21x15y35=0.这是一条平行于已知直线7x5y35=0的直线.例3.一动点M到A(3, 0)的距离恒等于它到点B(6, 0)的距离的一半,求此动点M的轨迹方程,并指出此轨迹是什么图形?
解:设M(x, y),依题意有
2=,2222两边平方得:4((x3)+y)=(x+6)+y,2224(x6x+9)+3y(x+12x+36)=0, 223x+3y36x=0,22(x6)+y=36.此即为中心在(6, 0),半径为6的圆.2例4.一动点到两定点距离的乘积等于定值m,求此动点的轨迹(此轨迹叫做卡西尼卵形线).解:设两定点为F1, F2,且|F1F2|=2c(c>0),动点为M(x, y),取直线F1F2为x轴,其中点为坐标原点建立坐标系,则F1=(c, 0), F2=(c, 0),依题意有
2|MF1| |MF2| =m,=m,化简得
(x+y) 2c(xy)= m c.222
442
作业题:
1. 将下面平面曲线的参数方程化为普通方程:
(1)
-∞<t<+∞;
(2)
0≢t<2;
(3)0≢t<2.2.把下面平面曲线的普通方程化为参数方程: 2
(1)y= x
(2)
(3),();
§2.2 曲面的方程
一、普通方程
如果一个方程F(x, y, z)= 0或z=f(x, y)与一个曲面有着关系:(1)满足方程的(x, y, z)是曲面上点的坐标;(2)曲面上的任何一点的坐标(x, y, z)满足方程,则方程F(x, y, z)=0叫做曲面的普通方程,而曲面叫做方程F(x, y, z)=0的图形.二、参数方程
1.设在两个变数u, v的变动区域内定义了双参数矢函数
=(u, v)或
(u, v)=x(u, v)
+y(u, v)
+z(u, v),其中x(u, v), y(u, v), z(u, v)是变矢(u, v)的分量,它们都是变数u, v的函数,当u, v取遍变动区域的一切值时,径矢
=(u, v)=x(u, v)+y(u, v)+z(u, v)的终点M(x(u, v), y(u, v), z(u, v))所画成的轨迹,一般为一张曲面.2.如果取u, v(a≢u≢b, c≢v≢d)的一切可能取的值,径矢
(u, v)的终点M总在一个曲面上;反过来,在这个曲面上的任意点M总对应着以它为终点的径矢, 而这径矢可由u, v的值(a≢u≢b, c≢v≢d)通过
(u, v)=x(u, v)+y(u, v)+z(u, v)
完全决定,那么我们就把上式叫做曲面的矢量式参数方程,其中u, v为参数.3.径矢(u, v)的分量为{x(u, v), y(u, v), z(u, v)},从而曲面的参数方程也常写成
该表达式叫做曲面的坐标式参数方程.4.空间曲面参数方程的表达形式不唯一.例1.一动点移动时,与A(4, 0, 0)及xOy平面等距离,求该动点的轨迹方程.解:设动点为M(x, y, z),依题意有
=|z|,两边平方化简得(x4)+y=0.例2.在空间,选取适当的坐标系,求下列点的轨迹方程:(1)到两定点距离之比等于常数的点的轨迹;(2)到两定点距离之和等于常数的点的轨迹;(3)到两定点距离之差等于常数的点的轨迹;
(4)到一定点和一定平面距离之比等于常数的点的轨迹.解:(1)取两定点连线为x轴,两定点连线段中点为原点建立空间直角坐标系,设两定点为A(a, 0, 0),B(a, 0, 0), 常数为m>0,再设动点M(x, y, z),则依题意有
=m,2222222222222平方得
x + 2ax+a +y+z = mx 2amx +ma +my +mz,222222
2(m1)(x+y+z)2a(m+1)x+a(m1)=0.此即为所求动点的轨迹.222(2)设坐标系选取同(1),两定点间距离为2c(c>0), 常数为2a(a>0),且b=ac>0,从而两定点为A(c, 0, 0), B(c, 0, 0), 设动点为M(x, y, z),依题意有 22
+m移项
222 2
=2a, , =2a
2平方(x+c)+y+z=4a+(xc)+y+z4a化简
再平方 化简
即
a=acx, 2222224222 a(xc)+ay+az=a+cx2acx,2222222222(ac)x+ay+az=a(ac),22222222
bx+ay+az=ab,2,从而
++=1.222(3)假设同(2),但b=ca >0,依题意有
移项
=2a+,2
=2a,平方化简
a=cxa,2222222222再平方化简
(ca)x-ay-az=a(ca),22222222即
bxayaz=ab,从而
=1.(4)取定点为(0, 0, c),定平面为xOy面,常数为m>0,设动点为M(x, y, z),依题意有
=m |z|, 22平方
x+y+z2cz+c = mz, 即有
22222 x+y+(1m)z2cz+c =0.例3.求中心在原点, 半径为r的球面的参数方程.解:如图2-4, 设M是球面上的任意一点,M在xOy坐标面上的射影为 P,设xOP =(0≢ <2),zOM =(0≢≢), P在x轴上的射影为Q,那么 2
=则
=(r)+(=++)+r,.这就是圆柱面的矢量式参数方程,它的坐标式参数方程为
其中0≢≢, ≢ <2.消去参数得普通方程为
x2 + y2 + z2 = r2.例4.求以z轴为对称轴,半径为R的圆柱面的参数方程.解:如图2-5, 设M是圆柱面上的任意一点,M在xOy坐标面上的射影为 P,设xOP =(0≢ <2),P在x轴上的射影为Q,那么 =
=++,则
=(R)+()+u.这就是圆柱面的矢量式参数方程,它的坐标式参数方程为
其中的 与u是参数,取值范围分别是0≢ <2, < u < .消去参数得普通方程为
x2+y2=R2.作业题:
1.求下列各球面的方程:
(1)中心(2,—1,3),半径为R=6;
(2)中心在原点,且经过点(6,—2,3);
(3)一条直径的两个端点是(2,—3,5)与(4,1,—3);(4)通过原点与(4,0,0),(1,3,0),(0,0,—4).2.求下列球面的中心与半径:
(1);
(2);
(3)
.§2.3 母线平行于坐标轴的柱面方程
假设动点P(x, y, z)的坐标间的关系是不含变数z的方程F(x, y)=0,在空间坐标系中表示一个曲面,它所表示的曲面是由平行于z轴的直线沿xOy平面上一条曲线
L: F(x, y)=0
移动而成,这样的曲面叫做柱面,曲线L叫做它的准线,形成柱面的动直线叫做它的母线,即方程F(x, y)=0决定一个母线平行于z轴的柱面.同理,方程F(y,z)=0与F(x, z)=0都表示柱面,它们的母线分别平行于x 轴和y轴.如上一节的例4,方程 x 2 + y 2= R 2 表示母线平行于z轴的柱面,准线L为xOy坐标面上的圆.例题
说出下列方程表示的图形名称:
(1),(2),(3)y=2p x.2解:(1)表示一个柱面,母线平行于z轴,准线为xOy坐标面上的椭圆,所以叫做椭圆柱面.(2)表示一个柱面,母线平行于z轴,准线为xOy坐标面上的双曲线,所以叫做双曲柱面.(3)表示一个柱面,母线平行于z轴,准线为xOy坐标面上的抛物线.所以叫做抛物柱面.作业题:
指出下列方程表示的轨迹名称,并画出图形:
(1)(2)(3)(4);
.;
;
§2.4 空间曲线的方程
一、普通方程
1.空间曲线,可以看成两个曲面的交线.设方程组
是这样的两个曲面方程,它们相交于曲线L.上述方程组表示一条空间曲线L的方程,我们称它为空间曲线的普通方程(一般方程).2.由代数知识知道,任何方程组的解,也一定是与它等价的方程组的解,所以空间曲线L可以用不同形式的方程组表示.二、参数方程
1.在空间建立了坐标系后, 设矢函数内变动时,的径矢都可由t的某个值通过≢b)为参数.2.因为空间曲线上点的径矢
或
=x(t)+y(t)
+z(t),当t在区间a≢t≢b的终点M(x(t), y(t), z(t))全部都在空间曲线L上;反过来,空间曲线L上的任意点
来表示, 则把它叫做空间曲线L的矢量式参数方程,其中t(a≢t的分量为{x(t), y(t), z(t)},所以空间曲线的参数方程常写成
(a≢t≢b)
此表达式叫做空间曲线的坐标式参数方程,其中t为参数.三、射影柱面
通过空间曲线L作柱面,使其母线平行于坐标轴Ox, Oy或Oz轴,设它们的方程分别为
F1(y, z)=0, F2(x, z)=0, F3(x, y)=0
这三个柱面分别叫做曲线L对yOz, xOz与xOy坐标面的射影柱面,因此由所表示的曲线L,可以用它对三个坐标面的任意两个射影柱面来表示.代数上从两个三元方程中消去一个元,其几何意义就是求空间曲线的射影柱面.例1.有一质点,沿着已知圆锥面的一条直母线, 自圆锥的顶点起,作等速直线运动,另一方面这一条母线在圆锥面上,过圆锥的顶点绕圆锥的轴(旋转轴)作等速的转动,这时质点在圆锥面上的轨迹叫做圆锥螺线.试建立圆锥螺线的方程.解:如图2-6,取圆锥顶点为原点,轴线为z轴建立坐标系,设圆锥角为2,从而=,旋转角速度为,直线速度为v,动点的初始位置在原点.设经)= t, |
|=v t,时间t后动点到P点,过P作xOy面上的射影Q,则(从而有
(0≢t <+)
例2.有两条互相直交的直线l1与l2,其中l1绕l2作螺旋运动,即l1一方面绕l2作等速转动,另一方面又沿着l2作等速直线运动,在运动中l1永远保持与l2直交,这样由l1所画出的曲面叫做螺旋面,试建立螺旋面的方程.解:如图2-7,取l2为z轴建立坐标系,并设l1在运动到某时刻t0时与x轴重合,令角速度为,直线速度为v,时间t取作参数.假定在时刻t时l1位置如图,P(x, y, z)为l1上任意点,其在xOy面上的射影为Q,在z轴上射影(l1与l2在此刻的交点)为R,则 || = vt,|
| =u.从而有
(
作业题:
1.平面 与 的公共点组成什么轨迹?
2.求下列空间曲线对三个坐标面的射影柱面方程:
(1)
(2)
3.指出下列曲面与三个坐标面的交线是什么曲线?(1);
(2);
(3)
.第三章平面与空间直线
教学目的
1、深刻理解在空间直角坐标系下平面方程是一个关于x,y,z的三元一次方程;反过来任何一个关于x,y,z的三元一次方程都表示一个平面。直线可以看成两个平面的交线,它可以用两个相交平面的方程构成的方程组来表示;
2、掌握平面与空间直线的各种形式的方程,明确方程中常数(参数)的几何意义,能根据决定平面或决定直线的各种导出它们的方程,并熟悉平面方程的各种形式的互化与直线各种方程形式的互化;
3、能熟练地根据平面和直线的方程以及点的坐标判别有关点、平面、直线之间的位置关系与计算它们之间的距离和交角。
教学重点平面与空间直线的方程求法及点、平面、直线之间的相关位置 教学难点平面与空间直线各种形式方程的互化
参考文献(1)解析几何(第三版),吕林根 许子道 等编,高等教育出版社,2001.06(2)解析几何思考与训练,梁延堂 马世祥主编,兰州大学出版社,2000.08 授课课时 10
第三章
平面与空间直线
这一章是本课程的主要内容之一,我们将用代数的方法定量地研究空间最简单而又最基本的图形——平面与空间直线,建立它们各种形式的方程,导出空间的点、平面与空间直线之间位置关系的解析表达式,给出距离、夹角等计算公式.本章的知识结构为:
平面的方程
直线的方程
相关位置→→
§3.1平面的方程
教学目的
1、理解在空间直角坐标系下平面方程是一个关于x,y,z的三元一次方程,反过来,任何一个关于x,y,z的三元一次方程都表示一个平面;
2、会求平面的各种方程(参数式、点位式、三点式、截距式、一般式、点法式及法式);
3、掌握平面的一般式与法式方程的互化。
教学重点平面的点位式、一般式和法式方程及其转化方法 教学难点平面各种方程之间的互化 参考文献(1)解析几何(第三版),吕林根 许子道 等编,高等教育出版社,2001.06(2)解析几何思考与训练,梁延堂 马世祥主编,兰州大学出版社,2000.08 授课课时 2
§3.1 平面的方程
一、平面的点位式方程
1.在空间给定了一点M0(x0, y0, z0)与两个不共线矢量={X1, Y1, Z1},={X2, Y2, Z2 }, 那么通过点M0且与矢量,平行的平面就被唯一确定,矢量, 叫做平面的方位矢量.这个概念与中学几何中的“两条相交直线确定一个平面”是一致的.2.如图3-1, 在空间取标架{O;=坐标式参数方程为 ,},则平面的矢量式参数方程为
+u+v,(其中u, v为参数).3.平面的方程还可表示为(,)=0和
=0.它们和2中的方程一起都叫做平面的点位式方程.4.由不共线三点Mi(xi, yi, zi)(i=1,2,3)确定的平面的三点式方程为
=+u(-)+v().(-,-,)=0,=0,或
=0.5.平面的截距式方程为 ++=1,其中a, b, c(abc≠0)分别叫做平面在三坐标轴上的截距.二、平面的一般方程
空间平面的基本定理: 空间中任一平面的方程都可表示成一个关于变数x, y, z的一次方程;反过来,每一个关于变数x, y, z的一次方程都表示一个平面.方程
Ax + By + Cz + D = 0
(A, B, C不全为0)
叫做平面的一般方程.证明:因为空间任意平面都可以由它上面的一个点M0(x0, y0, z0)与两个方位矢量={X1, Y1, Z1},={X2, Y2, Z2 }确定,因而方程可以写为成:
Ax+By+Cz+D=0,=0.此方程展开就可写其中A =,B=,C=.因为,不共线,所以A,B,C不全为零,这表明空间中任一平面的方程都可表示成一个关于变数x, y, z的一次方程;
反过来,在方程Ax+By+Cz+D=0中,因为A,B,C不全为零,不妨设A≠0,则有
A2(x+)+Aby +AC z=0,即
显然,它是由一点M0(的平面.=0., 0, 0)与两个方位矢量={B, -A, 0},={C, 0, -A }确定
三、平面的点法式方程
1.如果在空间给定一点M0和一个非零矢量,那么通过点M0且与矢量垂直的平面唯一地被确定.把与平面垂直的非零矢量叫做平面的法矢量或简称平面的法矢.这个概念与中学几何中的“过一点与已知直线垂直的平面是唯一确定的”一致.2.如图3-2, 在空间直角坐标系{O;,}下,设点M0的径矢=,平面上任意一点M的径矢为=,且M0(x0, y0, z0), M(x, y, z),则
(-)=0 或 A(x-x0)+B(y-y0)+C(z-z0)=0 都叫做平面的点法式方程.3.如图3-3, 如果平面上点M0特殊地取自原点O向平面所引垂线的垂足P, 而的法矢量取单位法矢量,当平面不过原点时,则 的正向取为与相同;当平面过原点时,|=p,的正向在垂直于平面的两个方向中任取一个,设|-p=0
叫做平面的矢量式法式方程.如果设={x, y, z},={cos, cos, cos}, 则
xcos + ycos + zcos-p=0
叫做平面的坐标式法式方程或简称法式方程.4.把平面的一般方程 Ax+By+Cz+D=0化为法式方程的方法如下:
以法式化因子 =
(在取定符号后)乘以方程Ax+By+Cz+D=0可得法式方程:
.其中的选取,当D0时,使D=-p<0,即与D异号;当D=0时,的符号可以任意选取(正的或负的,一般选与A同号,若还有A=0,则选与B同号等等).例1.求通过M1(1, -1, -5)和M2(2, 3, -1)且垂直于xOz坐标面的平面的方程.解:取定点为M1(1,-1,-5),方位矢量为={0,1,0}和
={1, 4, 4},故有
=0,即 4x―z―9=0.例2.已知两点A(a1, a2, a3)和B(b1, b2, b3),求分别过AB的中点、两个三等分点且与AB垂直的平面方程.解:取={a1-b1,a2-b2,a3-b3}为所求平面的法矢量, AB的中点是
M 两个三等分点是 , ,M2,设P(x, y, z)为平面上任意点,则过M, M1, M2分别与AB垂直的平面的点法式方程为 M
1=0或 =0,=0或 =0,=0或
化成坐标式方程分别为
=0.(a1-b1)(a1-b1)+(a2-b2)+(a2-b2)
+(a3-b3)+(a3-b3)
=0.=0.(a1-b1)+(a2-b2)+(a3-b3)=0.例3.已知三角形顶点为A(0, -7, 0), B(2, -1, 1), C(2, 2, 2), 求平行于△ABC所在的平面且与它相距为2个单位的平面方程.解:△ABC所在的平面方程为
=0 或 3x-2y+6z-14=0.设M(x, y, z)为所求平面上的任意一点,依题意有 ,3x-2y+6z-14=14,故所求的平面方程有两个:
3x-2y+6z=0 和3x-2y+6z-28=0.例4.求与原点距离为6个单位,且在三坐标轴Ox, Oy与Oz上的截距之比为a:b:c=-1:3:2的平面.解:依题意可设所求平面为 ,6x-2y-3z+6k=0,以法式化因子 = 乘以上式两端
从而
=6, k=7 故所求的平面方程有两个
6x-2y-3z 42=0.例5.平面 =1分别与三个坐标轴交于A, B, C, 求
△ABC的面积.解:依题意有A(a, 0, 0), B(0, b, 0), C(0, 0, c), 则
={-a, b, 0}, 所以
S△ABC==||=
|{bc, ac, -ab}|.={-a, 0, c}, 例6.设从坐标原点到平面 ++=1的距离为p,求证 +
+
=
.证明:将++-1=0化为法线式
+依题意有
+-=0,=p,整理即得 ++=.作业题:
1.如果两个一次方程(a-3)x+(b+1)y+(c-2)z+8=0和(b+2)x+(c-9)y+(a-3)z-16=0表示同一平面,试确定a, b, c的值.2.已知A(a1, a2, a3)及B(b1, b2, b3),分别求过A、B且与AB垂直的平面的方程.3.原点O在所求平面上的正射影是P(a, b, c),求平面方程.4.已知一平面过点M0.(x0, y0, z0),且在x轴、y轴上的截距分别是a、b, 求其方程.§3.2平面与点的相关位置 §3.3 两平面的相关位置
教学目的
1、理解点与平面的离差与距离概念及求法;
2、掌握判别点与平面、两平面位置关系的方法;
3、会求两平面的交角与距离。
教学重点 点与平面的离差和两平面的位置关系 教学难点 点与平面的离差 参考文献(1)解析几何(第三版),吕林根 许子道 等编,高等教育出版社,2001.06(2)解析几何思考与训练,梁延堂 马世祥主编,兰州大学出版社,2000.08
授课课时 1
§3.2 平面与点的相关位置
一、位置关系
1.空间中两点Mi(xi, yi, zi)(i=1,2)的位置关系,有且只有两种情况,就是重合或不重合,重合的条件是两点的坐标对应相等;在不重合时两点间的距离为
||=.2.空间中平面与点的位置关系,有且只有两种情况,就是点在平面上,或点不在平面上,点在平面上的条件是点的坐标满足平面方程,点不在平面上时要考虑点到平面的离差,点到平面的距离.二、离差和距离
1.如图3-4, 如果自点M0到平面引垂线,垂足为Q,那么矢量射影叫做点M0与平面的离差(或有向距离),记做=射影.2.点M0与平面:=
=0间的离差为 -p.在平面的单位法矢量
上的其中 =.3.点M0(x0, y0, z0)与平面:xcos+ycos+zcos-p=0间的离差是
=x0cos+y0cos+z0cos-p.4.点M0(x0, y0, z0)与平面: Ax+By+Cz+D=0间的距离为
d=||=.5.平面:Ax+By+Cz+D=0把空间划分为两部分,对于某一部分的点Ax+By+Cz+D>0;而对另一部分的点则Ax+By+Cz+D<0,在平面上的点Ax+By+Cz+D=0.例1.计算点M(-2, 4, 3)与平面:2x-y+2z+3=0间的离差和距离.解:将化为法式方程
-所以
=-(-2)+ 4-
x + y-z-1=0.,3-1=-
.例2.求通过x轴且与点M(5, 4, 13)相距8个单位的平面方程.解:由题意,设所求平面方程为 By + Cz=0, 则
=8,22平方化简
48B-104BC-105C=0,(12B-35C)(4B+3C)=0, 得
B=,或
B=-C, 故所求平面方程为 35y+12z=0 及 3y-4z=0.例3.求原点关于平面6x+2y-9z+121=0的对称点的坐标.解:将平面方程法式化
-,d=| |=则 ={, -, },p=11.设对称点为O(x0, y0, z0),由对称点的性质可有=2p, 即{x0, y0, z0}={-12, -4, 18},故所求对称点的坐标为O(-12, -4, 18).例4.判别点M(2, -1, 1)和N(1, 2, 3)在由下列相交平面所构成的同一个二面角内,还是分别在相邻二面角内,或是分别在对顶二面角内?
(1)1:3x-y +2z-3=0与 2:x-2y-z+4=0;(2)1:2x-y +5z-1=0与 2:3x-2y+6z-1=0.解法一:设点M与平面1, 2间的离差分别为M1, M2, 点N与平面1, 2间的离差分别为N1, N2,则
M与N在同一二面角内当且仅当M1N1>0且M2N2>0;
M与N在相邻二面角内当且仅当M1N1>0且M2N2<0, 或M1N1<0且M2N2>0;M与N在对顶二面角内当且仅当M1N1<0且M2N2<0.(1)把i(i=1,2)法式化
1:2:-
x-x+
y+y+
z-z-
=0, =0, , 则
M1=, M2=-, N1=-, N2=-由于
M1N1<0 且 M2N2>0, 所以M, N在相邻二面角内.(2)把i(i=1, 2)法式化
1:2:
x-
=0,y+z-=0,x-y+z-则
M1=, M2=, N1=-, N2=-, 由于
M1N1<0 且 M2N2<0, 所以M, N在对顶二面角内.解法二:设f1(x, y, z)=3x-y+2z-3, f2(x, y, z)=3x-2y+6z-1.则 M, N在同一二面角内当且仅当f1M f1N>0且f2M f2N>0;
M, N在相邻二面角内当且仅当f1Mf1N>0且f2M f2N<0, 或f1M f1N<0且f2M f2N>0;M, N在对顶二面角内当且仅当f1M f1N<0且f2M f2N<0.其中f1M表示f1(x, y, z)在M点的函数值,其余类似.(1)由于f1M=6, f1N=-8, f2M =7, f2N=4,f1M f1N<0且f2M f2N>0,所以M, N在相邻二面角内
(2)类似讨论得M, N在对顶二面角内.例5.试求由平面1: 2x-y+2z-3=0与2: 3x+2y-6z-1=0所构成二面角的角平分面方程,在此二面角内有点M(1, 2,-3).解:设P(x, y, z)为角平分面上任意一点,则依题意
=,7(2x-y+2z-3)=3(3x+2y-6z-1).设f1(x, y, z)=2x-y+2z-3,f2(x, y, z)=3x+2y-6z-1.因为所求平分面分点M所在的二面角,所以点P与M或者在同一二面角内或者在对顶二面角内,于是由第4题解法二知
或
此即
或
因为
f1(1, 2, -3)=2×1-2+2×(-3)-3=-9<0,f2(1, 2, -3)=3×1+2×2-6×(-3)-1=24>0.所以无论何种情况,f1(x, y, z)与f2(x, y, z)符号相反,从而
7(2x-y+2z-3)=-3(3x+2y-6z-1),整理得
23x-y-4z-24=0.作业题:
1.证明点M0(x0, y0, z0)到平面:Ax+By+Cz+D=0的距离是
d=.2.求与平面2x-y-z+3=0的离差等于-2的点的轨迹.3.在z轴上求一点,使它到M(1, -2, 0)与到平面3x-2y+6z-9=0的距离相等.4.求到平面2x-y+z-7=0和平面x+y+2z-11=0距离相等的点的轨迹.§3.3 两平面的相关位置
一、位置关系
1.两平面的位置关系有:相交,平行,重合三种.2.设两平面i:
Aix+Biy+Ciz+Di=0(i=1,2), 则1, 2的法矢量为
={A1, B1 ,C1},={A2, B2, C2}.与
不平行).(1)1, 2相交的充要条件是: A1:B1:C1 A2:B2:C2((2)1, 2平行的充要条件是:
(3)1, 2重合的充要条件是:
二、夹角
==
==
=
((∥∥).).1.如图3-5, 在{O;,}下,两平面的夹角为:(1, 2)= 或(-),其中=(,), 量,从而
(i=1, 2)是平面i的法矢cos(1, 2)=cos==2.两平面1与2相互垂直的充要条件是:
A1A2+B1B2+C1C2=0..⊥
即
例1.由cos(1, 2)=,1//2的充要条件
是
=
=.证明:因为
1//2(∠(1, 2)=0或),所以 cos(1, 2)=±1, 所以
±=±1,2222222平方得
(A1A2+B1B2+C1C2)=(A1+B1+C1)(A2+B2+C2),A21A22+B12B22+C21C22+2A1A2B1B2+2B1B2C1C2+2C1C2A1A2 ***222=A1A2+B1B2+C1C2+A1B2+A1C2+A2B1+A2C1+B1C2+B2C1,整理得
222(A1B2-A2B1)+(B1C2-B2C1)+(C1A2-C2A1)=0,所以
A1B2-A2B1=0, B1C2-B2C1=0, C1A2-C2A1=0,
第五篇:《解析几何》教案
《解析几何》教案
第一章 向量与坐标
本章教学目的:通过本章学习,使学生掌握向量及其运算的概念,熟练掌握线性运算和非线性运算的基本性质、运算规律和分量表示,会利用向量及其运算建立空间坐标系和解决某些几何问题,为以下各章利用代数方法研究空间图形的性质打下基础.本章教学重点:(1)向量的基本概念和向量间关系的各种刻划。(2)向量的线性运算、积运算的定义、运算规律及分量表示.本章教学难点:(1)向量及其运算与空间坐标系的联系;(2)向量的数量积与向量积的区别与联系;(3)向量及其运算在平面、立体几何中的应用.本章教学内容:
§1.1 向量的基本概念
一、定义:既有大小又有方向的量称为向量,如力、速度、位移等.二、表示:在几何上,用带箭头的线段表示向量,箭头表示向量的方向,线段长度代表向量的大小;向量的大小又叫向量的模(长度).始点为A,终点为B的向量,记作,其模记做.注:为方便起见,今后除少数情形用向量的始、终点字母标记向量外,我们一般用小写黑体字母a、b、c„„标记向量,而用希腊字母λ、μ、ν„„标记数量.三、两种特殊向量:
1、零向量:模等于0的向量为零向量,简称零向量,以0记之.注:零向量是唯一方向不定的向量.2、单位向量:模等于1的向量称为单位向量.特别地,与非0向量同向的单位向量称为的单位向量,记作.四、向量间的几种特殊关系:
1、平行(共线):向量a平行于向量b,意即a所在直线平行于b所在直线,记作a∥b,规定:零向量平行于任何向量.2、相等:向量a等于向量b,意即a与b同向且模相等,记作a=b.注:二向量相等与否,仅取决于它们的模与方向,而与其位置无关,这种与位置无关的向量称为自由向量,我们以后提到的向量都是指自由向量.3、反向量:与向量a模相等但方向相反的向量称为a的反向量,记作-a,显然,零向量的反向量还是其自身.4、共面向量:平行于同一平面的一组向量称为共面向量.易见,任两个向量总是共面的,三向量中若有两向量共线,则三向量一定共面,零向量与任何共面向量组共面.注意:应把向量与数量严格区别开来:
①向量不能比较大小,如
没有意义; ②向量没有运算,如类似的式子没有意义.§1.2 向量的加法
一 向量的加法: 定义1 设、为,以与
与
为邻边作一平行四边形,取对角线向量,记,如图1-1,称之和,并记作(图1-1)
这种用平行四边形的对角线向量来规定两个向量之和的方法称作向量加法的平行四边形法则.如果向量若与与向量在同一直线上,那么,规定它们的和是这样一个向量: 的指向相同时,和向量的方向与原来两向量相同,其模等于两向量的模之和.若与的指向相反时,和向量的模等于两向量的模之差的绝对值,其方向与模值大的向量方向一致.由于平行四边形的对边平行且相等,可以这样来作出两向量的和向量: 定义2 作,以的终点为起点作,联接
(图1-2)得
(1-2)
该方法称作向量加法的三角形法则.(图1-2)向量加法的三角形法则的实质是:
将两向量的首尾相联,则一向量的首与另一向量的尾的连线就是两向量的和向量.据向量的加法的定义,可以证明向量加法具有下列运算规律: 定理1 向量的加法满足下面的运算律:
1、交换律 ,(1.2-2)
2、结合律.(1.2-3)证 交换律的证明从向量的加法定义即可得证.下证结合律.自空间任一点O开始依次作
所以
由定理1知,对三向量.二 向量的减法 定义3 若,则我们把叫做与的差,记为,.,只要把与、长度相同而方向相反的向量,以
与
加到向量上去.由平行,则
.相加,不论其先后顺序和结合顺序如何,结果总是相同的,可以简单的写作
,则有
显然,特别地,由三角形法则可看出:要从减去四边形法可如下作出向量对角线向量..设
为邻边作一平行四边形例1 设互不共线的三向量、与,试证明顺次将它们的终点与始点相连而成一个三角形的充要条件是它们的和是零向量.证 必要性 设三向量、、可以构成三角形
(图1-3),(图1-3),那么, 即 充分性 设
.,作
那么,所以,从而,所以、、可以构成三角形.例2 用向量法证明:对角线互相平分的四边形是平行四边形.证 设四边形因此从图可看出:所以,∥,且,即四边形的对角线、交于
点且互相平分(图1-4),为平行四边形.(图1-4)
定义1.3.1 设是一个数量,向量与
§1.3 数量乘向量 的乘积是一向量,记作时,向量的方向与,其模等于的方向相同;当的倍,即时,向量
是.;且方向规定如下:当零向量,当时,向量的方向与的方向相反.特别地,取,则向量的模与的模相等,而方向相反,由负向量的定义知: 据向量与数量乘积的定义,可导出数乘向量运算符合下列运算规律: 定理1.3.1.数量与向量的乘法满足下面的运算律: 1)1²2)结合律 3)分配律 =,(1.3-1),(1.3-2)
4)证 1)据定义显然成立.2)显然,向量且 = 或、=、=
.(1.3-3)的方向是一致,.3)分配律 如果反之 ⅰ)若 ,中至少有一个为0,等式显然成立;
显然同向,且
所以ⅱ)若若所以不妨设则有
由ⅰ)可得,对的情形可类似证明.一个常用的结论: 定理3.若行且设由于即,则是非零向量,用与(为数量),则向量(是数量).同方向的单位向量.与
亦同方向,而且,与向量
平行,记作
;反之,若向量
与向量
平表示与同方向,从而.我们规定:若,.于是.这表明:一个非零向量除以它的模是一个与原向量同方向的单位向量.请注意:向量之间并没有定义除法运算,因此决不能将式子十分显然,这种错误是受实数运算法则的“惯性作用”所造成.例1 设AM是三角形ABC的中线,求证
.改写成形式.(图1-5)
证 如图1-5,因为,所以
但 因而,即.例2 用向量法证明:连接三角形两边中点的线段平行于第三边且等于第三边的一半.证 设△ABC两边AB,AC中点分别为M,N,则所以,且.§1.4 向量的线性关系与向量的分解
定义1.4.1 由向量
与数量
所组成的向量
线性表示,或称可以分解成向量
叫做向量的的线性组合,或称可以用向量线性组合.定理1.4.1 如果向量使得 并且系数证 若存在实数再证,那么向量与向量共线的充要条件是可用向量线性表示,即存在实数,(1.4-1)被,唯一确定.成立,那么由定义1.3.1知向量与向量共线.反之,如果向量与向量共线,那么一定使得(见1.3节中1.3.5的证明).,那么不共线,那么向量与,而,所以,.线性表示,即 的唯一性:如果定理1.4.2 如果向量 并且系数证: 被
共面的充要条件是可用向量,(1.4-2),唯一确定.(图1-6)因与不共线,由定义1.1.4知,其中,并设
.设与都不共线,中之一共线,那么由定理1.4.1有中有一个为零;如果与,于,把它们归结共同的始点别作设反之,设如果共面.最后证,那么,那么经过的终点分,由定理 1.4.1,可.的平行线依次交直线(图1-6),因,即,那么
与,所以由平行四边形法则得,如果
中有一个为零,如
共线,因此与共面.,从向量加法的平行四边形法则知与
=,,将有,这与假设矛盾,所以
都共面,因此与的唯一性.因为那么 如果,那么,这就证明了唯一性.定理1.4.3 如果向量数
.同理
不共面,那么空间任意向量可以由向量线性表示,即存在一组实使得,(1.4-3)
并且系数x,y,z被,唯一确定.证明方法与定理1.4.2类似.定义1.4.2 对于个向量,若存在不全为零的实数,(1.4-4)
则称向量线性相关.线性无关:.定理1.4.4 在组合.证 设向量时,向量
线性相关的充要条件是其中至少有一个向量是其余向量的线性,使得
不是线性相关的向量叫做线性无关,即向量线性相关,则存在不全为零的实数,且
使得,中至少有一个不等于0,不妨设则 反过来,设向量 即 中有一个向量,不妨设为
;,它是其余向量的线性组合,即,.因为数,-1不全为0,所以向量线性相关.定理1.4.5 如果一组向量中的部分向量线性相关,那么这一组向量就线性相关.证 设使得中有一部分,不妨设前r个向量线性相关,即存在不全为零的实数
.则有,因为,不全为零,所以线性相关.推论 如果一组向量中含有零向量,那么这一组向量就线性相关 类似地可证明下面的定理: 定理1.4.6 两向量与共线
线性相关.定理1.4.7 三向量与共面线性相关.定理1.4.8 空间任意四个或四个以上的向量总是线性相关的.例1 试证明:点,其中在线段
上的充要条件是:存在非负实数,使得,且是任意取定的一点.在线段.,证(先证必要性)设所以 任取一点所以,取,所以,上,则与同向,且,.,则,,使得
.,且,(充分性)若对任一点则 所以 有非负实数
与共线,即在直线上.又,所以在线段上.例2设证 为两不共线向量,证明共线,线性相关,使,共线的充要条件是.即存在不全为0的实数即,(1.4-5)
.又因为不共线 即线性无关,故方程有非零解
.§1.5 标架与坐标
一 空间点的直角坐标:
平面直角坐标系使我们建立了平面上的点与一对有序数组之间的一一对应关系,沟通了平面图形与数的研究.为了沟通空间图形与数的研究,我们用类似于平面解析几何的方法,通过引进空间直角坐标系来实现.1、空间直角坐标系
过空间一定点,作三条互相垂直的数轴,它们以为原点,且一般具有相同的长度单位,这三条轴分别叫轴(横轴)、轴(纵轴)、轴(竖轴),且统称为坐标轴.通常把轴,轴配置在水平面上,而
轴则是铅垂线,它们的正方向要符合右手规则:
(图1-7)右手握住轴,当右手的四个指头从三条坐标轴就组成了一个空间直角坐标系,点
角度转向轴与
轴正向时,大拇指的指向就是轴正向.左右.当然,它们的实
轴的正向以
叫做坐标原点.轴间的夹角画成注:为使空间直角坐标系画得更富于立体感,通常把际夹角还是.2、坐标面与卦限
三条坐标轴中的任意两条可以确定一个平面,这样定出的三个平面统称为坐标面.由轴与轴所决定的坐标面称为面,另外还有面与三个坐标面把空间分成了八个部分,这八个部分称为卦限.面.(图1-8)
3、空间点的直角坐标
取定空间直角坐标系之后,我们就可以建立起空间点与有序数组之间的对应关系.7 设为空间的一已知点,过点分别作垂直于
点的坐标.轴、轴、轴的三个平面,它们与轴、轴、轴的交点依次为了一个有序数组依次称,,这三点在轴、,这组数叫为点
轴、轴的坐标依次为
.的点,于是:空间点就唯一地确定的横坐标、纵坐标和竖坐标,记为,我们可以在、、轴上取坐标为
轴、反过来,若已知一有序数组在轴取坐标为的点,在轴上取坐标为的点,然后过分别作轴、轴的垂直平面,这三个平面的交点就是以有序数组为坐标的空间点.和有序数组
之间的一一对应关系..这样,通过空间直角坐标系,我们建立了空间点定义1 我们把上面有序数组
二 空间两点间的距离公式 定理1 设、叫点
在此坐标系下的坐标,记为
为空间的两点,则两点间的距离为
(1.5-1)
证 过、体,如图所示 各作三个分别垂直于三坐标轴的平面,这六个平面围成一个以为对角线的长方
(图1-9)
是直角三角形,故因为是直角三角形,故
;,,故 特别地,点与坐标原点的距离为.三 空间向量的坐标
.,从而 而
定义2 设使得标,记为定理
2设向量是与坐标轴,同向的单位向量,对空间任意向量都存在唯一的一组实数,,那么我们把这组有序的实数或
.、叫做向量在此坐标系下的坐的始终点坐标分别为,那么向量
.(1.5-2)的坐标为
证 由点及向量坐标的定义知所以
=由定义知
定理3 两向量和的分量等于两向量对应的分量的和.证 设,==所以
类似地可证下面的两定理: 定理
4设定理5 设,则,则+,.(1.5-3),那么
..,.共线的充要条件是
定理6
三非零向量,.(1.5-4),共面的充要条件是 证 因为.(1.5-5)
不共面,所以存在不全为0的实数
使得,由此可得
因为不全为0,所以.§1.6 向量在轴上的射影
一、空间点在轴上的投影:
设已知点及轴,过点作轴的垂直平面,则平面
与轴的交点叫做点
在轴
上的投影.(图1-10)
二、向量在轴上的投影: 定义1 设向量叫做向量的始点在轴与终点
在轴的投影分别为、,那么轴称为投影轴.上的有向线段的值上的投影,记作,轴(图1-11)这里,(1)的值是这样的一个数: 即,数的绝对值等于向量
;当的模.的方向与
(2)当的方向与轴的正向一致时,三、空间两向量的夹角:
轴的正向相反时,.设有两向量、交于点(若、不相交,可将其中一个向量平移使之相交),将其中一向量绕点在两向量所决定的平面内旋转,使它的正方向与另一向量的正方向重合,这样得到的旋转角度(限定)称为、间的夹角,记作
.(图1-12)
若、平行,当它们指向相同时,规定它们之间的夹角为;当它们的指向相反时,规定它们的夹角为.类似地,可规定向量与数轴间的夹角.将向量平行移动到与数轴相交,然后将向量绕交点在向量与数轴所决定的平面内旋转,使向量的正方向与数轴的正方向重合,这样得到的旋转角度四 投影定理: 定理1.6.1 向量在轴上的投影等于向量的模
称为向量与数轴的夹角.乘以轴与向量的夹角的余弦.即 ,(1.6-1)
(图1-13)证 过向量等于轴的始点引轴,且轴
与轴
平行且具有相同的正方向,那未轴
与向量的夹角与向量的夹角,而且有
故 由上式可知:向量当非零向量在轴
上的投影是一个数值,而不是向量.成锐角时,向量
都有,设,.分别是的投影为正..(1.6-2)
在轴上的投影,那么显然与投影轴定理1.6.2 对于任何向量证 取有 因为 所以 即 类似地可证下面的定理:,那么定理1.6.3 对于任何向量与任何实数
有.(1.6-3)
§1.7 两向量的数性积
定义1.7.1 对于两个向量a和b把它们的模|a|,|b|及它们的夹角 的余弦的乘积称为向量和的数量积记作ab,即 ab=|a||b|cos.由此定义和投影的关系可得ab|b|Prjb a=|a|Prjab.数量积的性质
2(1)a²a=|a|,记a²aa,则a|a|.(2)对于两个非零向量 a、b如果 a²b=0则 ab 反之如果ab则a²b0.定理1.7.1 如果认为零向量与任何向量都垂直则aba²b0.定理1.7.2 数量积满足下面运算律:(1)交换律 a²b= b²a(2)分配律(ab)cacbc
((3)a)²b a²(b)(a²b)(a)²(b)(a²b)
证(1)由定义知显然.(2)的证明
因为当c0时 上式显然成立
当c0时 有
(ab)c|c|Prjc(ab)|c|(PrjcaPrjcb)|c|Prjca|c|Prjcb acbc
(3)可类似地证明.例1 试用向量证明三角形的余弦定理
证 设在ΔABC中∠BCA c 记2|c| 2
2||=a ||=b |
|=c 要证
a 2+b 22 a b cos ab=c则有 cc
c(ab)(ab)a2-2 2 2
ab 从而
2ab+b|a|2+|b|22|a||b|cos(a^b)
即 ca+b2 a b cos
数量积的坐标表示:
定理1.7.3 设a{ax ay az }b{bx by bz } 则
a²baxbxaybyazbz
证 a²b(ax i ay j az k)²(bx i by j bz k)ax bx i²i ax by i²j ax bz i²k
ay bx j ²i ay by j ²j ay bz j²k
az bx k²i az by k²j az bz k²k ax bx ay by az bz
定理1.7.4 设a={ |a|=证 由定理1.7.2知
|a|=a=2
},则向量a的模
.,所以 |a|=.向量的方向角和方向余弦:向量与坐标轴所成的角叫做向量的方向角,方向角的余弦叫向量的方向余弦.定理1.7.5 设a={
},则a的方向余弦为
cos =, cos,cos且 其中
;,分别是向量a与x轴,y轴,z轴的夹角.证 因为 ai=|a|cos
且ai==,所以 |a|cos从而 cos=.同理可证 cos
cos且显然
两向量夹角的余弦的坐标表示
定理1.7.6
设(a ^ b)则当a
0、b0时有
.证 因为 a²b|a||b|cos
,所以
.例2 已知三点M(111)、A(221)和B(212)求AMB
解 从M到A的向量记为a 从M到B的向量记为b 则AMB 就是向量a与b的夹角.a{110}b{101}
因为
ab1110011
所以 从而.
§1.8 两向量的向量积
定义1.8.1 两个向量a与b的向量积(也称外积)是一个向量,记做ab或,它的模|ab||a||b|sin,它的方向与a和b垂直并且按a,b, ab确定这个顺序构成右手标架{O;a,b,ab}.从定义知向量积有下列性质:(1)aa0
(2)对于两个非零向量a,b如果ab0则a//b;反之如果a//b则ab 0.定理1.8.1 两不共线向量a与b 的向量积的模,等于以a与b为边所构成的平行四边形的面积.定理1.8.2 两向量a与b共线的充要条件是ab0.证 当a与b共线时,由于sin(a、b)=0,所以|ab|=|a||b| sin(a、b)=0,从而ab0;反之,当ab0时,由定义知,a =0,或b =0,或a//b,因零向可看成与任向量都共线,所以总有a//b,即a与b共线.定理1.8.3 向量积满足下面的运算律
(1)反交换律 abba,(2)分配律(ab)cacbc,(3)数因子的结合律(a)ba(b)(ab)().证(略).推论: c(ab)c a c b
定理1.8.4 设a ax i ay j az kb bx i by j bz k,则 ab(aybz azby)i(azbx axbz)j(axby aybx)k
证 由向量积的运算律可得
ab(ax iay jaz k)(bx iby j bz k)axbx iiaxby ij axbz ik
aybx jiayby jjaybz jkazbx kiazby k azbz kk
由于 iijjkk0ijkjkikij 所以 ab(aybz azby)i(azbx axbz)j(axby aybx)k.为了帮助记忆利用三阶行列式符号上式可写成
aybzi+azbxj+axbykaybxkaxbzjazbyi
(ay bz az by)i(az bx ax bz)j(ax by ay bx)k
例1 设a(2 1 1)b(11 2)计算ab
解 =2ij2kk4ji i5j 3k
例2 已知三角形ABC的顶点分别是A(123)、B(345)、C(247)求三角形ABC的面积
解 根据向量积的定义可知三角形ABC的面积
由于(222)(124)因此
4i6j2k
于是
例3 设刚体以等角速度 绕l 轴旋转计算刚体上一点M的线速度
解 刚体绕l 轴旋转时我们可以用在l 轴上的一个向量n表示角速度它的大小等于角速度的大小它即以右手握住l 轴当右手的四个手指的转向与刚体的旋转方向一致时大姆指的指向就是n的方向
设点M到旋转轴l的距离为a 再在l轴上任取一点O作向量r并以 表示n与r的夹角那么
a|r| sin
设线速度为v那么由物理学上线速度与角速度间的关系可知v的大小为
|v||n|a |n||r| sin
v的方向垂直于通过M点与l轴的平面即v垂直于n与r又v的指向是使n、r、v符合右手规则因此有
vnr
§1.9 三向量的混合积
定义1.9.1 给定空间的三个向量或.定理1.9.1 三个不共面向量且当右手系时构成右手系时混合积为正;当,当构成左手系时的混合积的绝对值等于以
为棱的平行六面体的体积
=
当,并构成,我们把
叫做三向量的混合积,记做
构成左手系时混合积为负,也就是.可构成以证 由于向量的底面是以不共面,所以把它们归结到共同的试始点,它的高为,为棱的平行六面体,它
.为边的平行四边形,面积为,体积是根据数性积的定义其中是当与的夹角.构成右手系时,.,.共面的充要条件是共面,由定理1.9.1知,因而可得
当构成左手系时,因而可得
定理1.9.2 三向量证 若三向量.反过来,如果,即
.,所以,从而,那么根据定理1.7.1有,另一方面,有向性积的定义知,所以共面.定理1.9.3轮换混合积的三个因子,并不改变它的值;对调任何俩因子要改变混合积符号,即
.证 当共面时,定理显然成立;当
不共面时,混合积的绝对值等于以
为棱的平行六面体的体积,又因轮换的顺序时,不改变左右手系,因而混合积不变,而对调任意两个之间的顺序时,将右手系变为左,而左变右,所以混合积变号.推论: 定理1.9.4设
.,,那么
证 由向量的向性积的计算知
.再根据向量的数性积得,==
=推论: 三向量
.共面的充要条件是
例1 设三向量证明:由
且所以例2 已知四面体,求它的体积。,即
满足
.,证明:
两边与做数量积,得:,共面。
共面。,,的顶点坐标解:
,,所以,§1.10三向量的双重外积
定义1.10.1 给定空间三向量,先做其中两个的向量积,再把所得的向量与第三个向量做向量积,那么,最后的结果仍然是一个向量,叫做三个向量的双重向量积。
就是三向量也垂直,所以定理1.10.1 证 若中有一个是零向量,或定理显然成立。
现设都为非零向量,且的一个双重向量积。且和
共面。
(1.10.1)
共线,或与
都垂直,则(1.10.1)两边都是零向量,与
都垂直,与
不共线,为了证明(1.10.1)成立,先证
(1)
由于(2)式两边分别与,解得,即(1)式成立。共面,而
不共线,故可设,(2)
作数量积可得
下证(1.10.1)成立。由于则有利用(1)式可得例1.试证: 证明:
三式相加得例2. 证明: 证明:设,则
不共面,对任意,可设。
。,小 结
知识点回顾:
解析几何的基本思想就是用代数的方法来研究几何问题,为了把代数运算引到几何中来,最根本的做法就是把空间的几何结构有系统地代数化,数量化。因此在本章中主要引入了向量及它的运算,并通过向量了坐标系,从而使得空间中的点都和三元有序数组建立了一一对应的关系,为空间的几何结构代数化打好了基础。
通过本章的学习,应掌握向量及其各种运算的概念,熟练掌握线性运算和非线性运算的基本性质、运算规律和分量表示,会利用向量及其运算建立空间坐标系和解决某些几何问题,如利用两向量的数量积为零来判断各种垂直关系,两向量的向量积为零向量来判断各种平行问题,三向量的混合积为零来判断共面问题,以及在空间直角坐标系下,利用向量积的模求面积,混合积来求体积等问题。
1.向量加法的运算规律:
(1)
(2)(3)
(4)
2.数乘的运算规律:
(1)1²(2)
(3)(4),.=,.3.两向量的数量积
(1)ab=|a||b|cos.(2)aba²b0.(3)在空间直角坐标系下,设a a²b 4.两向量的向量积
{ax ay az }baxbxaybyazbz
{bx by bz } 则
(1)两个向量a与b的向量积(也称外积)是一个向量,记做ab或,它的模|ab||a||b|sin,它的方向与a和b垂直并且按a,b, ab确定这个顺序构成右手标架{O;a,b,ab}
(2)两向量a与b共线的充要条件是ab0..(3)在空间直角坐标系下设a ax i ay j az kb bx i by j bz k,则 ab(aybz azby)i(azbx axbz)j(axby aybx)k
(4)两不共线向量a与b 的向量积的模,等于以a与b为边所构成的平行四边形的面积
5.三向量的混合积
(1)三个不共面向量并且当也就是
.(2)三向量
共面的充要条件是,.,的混合积的绝对值等于以构成右手系时混合积为正;当=
当
构成右手系时
为棱的平行六面体的体积,构成左手系时混合积为负,当
构成左手系时(3)在空间直角坐标系下设那么
.典型习题
1.已知四面体ABCD的顶点坐标A(4,3,0),B(6,0,6),C(0,0,0),D。
求(1)△BCD的面积。
(2)四面体ABCD的体积。(3)C到△BCD的距离。解:(1)
所以 △BCD的面积,-------2分
(2)四面体ABCD的体积为
(3)设C到BCD平面的距离为h,则
从而有。
.,即
2.用向量法证明:P是ΔABC重心的充要条件为证明:设P为△ABC的重心,D为BC边中点,则 又因为PD为△PBC的中线,所以 所以有 设D为BC边中点,则,即。
又因为,与共线,即P在BC边的中线上,同理可得P也在AB,AC边的中线上,从而有P为△ABC的重心。
3.证明:四面体每一个顶点与对面重心所连的线段共点,且这点到顶点的距离是它到对面重心距离的三倍.用四面体的顶点坐标把交点坐标表示出来.[证明]:设四面体A1A2A3A4,Ai对面重心为Gi, 欲证AiGi交于一点(i=1, 2, 3, 4).在AiGi上取一点Pi,使=3, 从而设Ai(xi, yi, zi)(i=1, 2, 3, 4),则
=,G1G2G3G4所以 , , ,P1(P1(同理得P24.在四面体,,)
P3P
4,).P1,所以AiGi交于一点P,且这点到顶点距离等于这点到对面重心距离的三倍.是的重心(三中线之交点),求矢量
对于矢量 中,设点的分解式。
解:是的重心。连接并延长与BC交于P 同理
(1)
由(1)(2)(3)得
(2)
(3)
即
第二章 轨迹与方程
本章教学目的:通过本章学习,使学生理解空间坐标系下曲面与空间曲线方程之定义及表示,熟悉空间中一些特殊曲面、曲线的方程.本章教学重点:空间坐标系下曲面与空间曲线方程的定义.本章教学难点:(1)空间坐标系下母线平行于坐标轴的柱面方程与平面坐标系下有关平面曲线方程的区别;(2)空间坐标系下,空间曲线一般方程的规范表示.本章教学内容:
§2.1平面曲线的方程
在平面上或空间取定了坐标系之后,平面上或空间的点就与有序数组(坐标):或建立了一一对应的关系.曲线、曲面(轨迹)就与 方程
或建立一一对应的关系.1.平面上的曲线: 具有某种特征性质的点的集合(轨迹).曲线的方程:1 曲线上的点都具有这些性质.2具有这些性质的点都在曲线上.2.曲线的方程, 方程的图形
定义2.1.1 当平面上取定了坐标系之后,如果一个方程与一条曲线有着关系:1满足方程的线上某一点的坐标;2曲线上任何一点的坐标这条曲线叫做这个方程的图形.例1.求圆心在原点,半径为R的圆的方程.必是曲
满足这个方程,那么这个方程叫做这条曲线的方程,而解: 任意点类似地, 圆心在 例2.已知两点解: 动点在圆上,半径为R的圆的方程为和在轨迹上,求满足条件
..的动点的轨迹方程.即
平方整理得
再平方整理得
.为所求轨迹方程.注: 在求曲线的方程时,化简过程中可能造成范围 的变化,得到的方程所代表曲线上的点与条件并不
完全相符,必须补上或除去.3.曲线的参数方程 变向量: 随的变化而变化的向量.:对每一个
都唯一确定的一个.()叫做曲线的向量式 向量函数= 定义2.1.2 在坐标系上,向量函数==参数方程.曲线的坐标式参数方程: 曲线的普通方程:.21
例3.一个圆在一直线上无滑动地滚动,求圆周上一点的轨迹.(图2-3)
解:取直角坐标系,设半径为的圆在轴上滚动,开始时点P恰好在原点O(图2-3),经过一段时间的滚动,圆与直线轴的切点移到A点,圆心移到C点,这时有
.设为到的有向角,则到的角为,则
.又
, ,这即是P点轨迹的向量式参数方程.其坐标式参数方程为:取时,消去参数,得其在的一段的普通方程: 这种曲线叫做旋轮线或称为摆线.例4.已知大圆半径为,小圆半径为,设大圆不动,而小圆在大圆内无滑动地滚动,动圆周上某一点P的轨迹叫做内旋轮线(或称内摆线),求内旋轮线的方程.解:
设运动开始时动点P与大圆周上的A点重合,并取大圆中心O为原点,OA为x轴,过O与OA垂直的直线为y轴建立坐标系,经过某一过程后,小圆与大圆的接触点为B,小圆中心为C,则C一定在OB上,且有,设为到则有又由弧AB等于弧BP可得所以
.的有向角,为
到的有向角,从而有到的有向角为,23 即为P点的向量式参数方程,其坐标式参数方程为
(-∞﹤<+∞)
例5 把线绕在一个固定的圆周上,将线头拉紧后向反方向旋转,以把线从圆周上解放出来,使放出来的部分成为圆的切线,求线头的轨迹.解 设圆的半径为是圆周上的点,如右图,建立坐标系,那么 设 且矢量 所以 =从而得,,那么,对轴所成的有向角为,线头的最初位置
,这就是所求点轨迹的矢量式参数方程.由上式可得该轨迹的坐标式参数方程为
该曲线叫渐伸线或切展线.一、曲面的方程:
§2.2 曲面的方程
定义2.2.1 设Σ为一曲面,F(x,y,z)=0或以后,若Σ上任一点P(x,y,z)的坐标都满足F(x,y,z)=0或都在曲面Σ上,则称F(x,y,z)=0或
为一三元方程,空间中建立了坐标系,而且凡坐标满足方程的点
为曲面Σ的方程,而曲面Σ叫做方程F(x,y,z)=0或的图形.不难看出,一点在曲面Σ上〈═〉该点的坐标满足Σ的方程,即曲面上的点与其方程的解之间是一一对应的 ∴Σ的方程的代数性质必能反映出Σ的几何性质.三元方程的表示的几种特殊图形:
空间中任一曲面的方程都是一三元方程,反之,是否任一三元方程也表示空间中的一个曲面呢?一般而言这是成立的,但也有如下特殊情况
1° 若F(x,y,z)=0的左端可分解成两个(或多个)因式F1(x,y,z)与F2(x,y,z)的乘积,即F(x,y,z)≡F1(x,y,z)F2(x,y,z),则
F(x,y,z)=0〈═〉F1(x,y,z)=0或F2(x,y,z)=0,此时 F(x,y,z)=0表示两叶曲面与,它们分别以F1(x,y,z)=0,F2(x,y,z)=0为其方程,此时称F(x,y,z)=0表示的图形为变态曲面.如
即为三坐标面.2方程 仅表示坐标原点和点(1,2,3)3°方程可能表示若干条曲线,如
0
即表示z轴和x轴 4°方程 不表示任何实图形,如,此时,称所表示的图形为虚曲面 3 求法:
例1:求平行于坐标面的平面的方程.解:设平行于 面的平面为π,π与z轴的交点为∈π〈═〉
共面,则
=0 即
同理,平行于其他两坐标面的平面的方程为
例2:求作两定点A(1,-2,1),B(0,1,3)等距离的点的轨迹.解:
(图2.1)
设所求轨迹为Σ,则
=
〈═〉-2x+4y-2z+6=-2y-6z+10
〈═〉2x-6y-4z+4=0〈═〉x-3y-2z+2=0
即所求轨迹为x-3y-2z+2=0
例3:求半径为R的球面的方程
解:建立直角坐标系{O;i,j,k},并设球心 P(x,y,z)球面Σ〈═〉∣
(a,b,c),则
∣=R〈═〉
特别地,若M.(a,b,c)为坐标原点,则球面Σ的方程为 x²+y²+z²=R²
综合上述条例,可归纳出求曲面方程的一般步骤如下: 1°建立适当的坐标系;(方程易求且求出的方程简单)
2°设动点Σ坐标为P(x,y,z),并根据已知条件,推出曲面上的点的坐标应满足的方程; 3°对方程作同解化简.二、曲面的参数方程:
定义2.2.2 设DR²为有序数对集,若对任意(u,v)∈D,按照某对应规则,有唯一确定的向量r与之对应,称这种对应关系为D上的一个二元向量函数,记作
r=r(u,v),(u,v)∈D
定义2.2.3 设Σ为一曲面,r=r(u,v),(u,v)∈D为一二元向量函数,在空间坐标系下,若对任意(u,v)∈D,径向
=r(u,v)的终点P总在曲面Σ上,而且对任意P∈Σ,也必能找到(u,v)∈D,使=r
(u,v),则 称r=r(u,v)为Σ的向量式参数方程,记作Σ:r=r(u,v),(u,v)∈D.若令 r(u,v)={x(u,v),y(u,v),z(u,v)},则 称
(u,v)∈D
为Σ的坐标式参数方程,记作Σ:(u,v)∈D
(图2.2)(图2.3)例:建立球面的参数方程:
解:为简单起见,设坐标原点位于球心,球面半径为R,如图
对任意M(x,y,z)∈球面Σ;令P为M 在x.y面上投影,并令=∠(r= =,),则
∣cos
i+∣
∣sin
j+∣∣sin sinj +Rcos
∣cos
j+∣
∣cos =∣ =∣∣sin cos i+ ∣ =Rsin cos i+Rsin sin ∴球面的参数方程 为: 0π 0<2π
三、球坐标系与柱坐标系
定义2.2.4 空间中建立了直角坐标系之后,对空间中任一点M(x,y,z),设∣OM∣=ρ 则M在以O为中心,以ρ为半径的球面上,从而存在φ,θ,使
(*)
反之,对任意ρ(ρ≣0),φ(0π),θ(0<2π),通过(*)也能确定空间中一点M(x,y,z),我们称有序三数组ρ,φ,θ为M点 的球坐标(空间极坐标),记作M(ρ,φ,θ)
注:1°空间中的点与其球坐标间并非一一对应.2°已知M点的球坐标,通过(*)可求其直角坐标,而若已知M的直角坐 标,则
(**)
便可求其球坐标.定义2.2.5 空间中建立了直角坐标系之后,对
M(x,y,z),设其到z轴的距离为ρ,则 M落在以z轴为中心轴,以ρ为半径的圆柱面上,从而θ,u,使
(*)
反之,对给的ρ(ρ≣0),θ(0≦θ<2π),u(∣u∣<),依据(*)式
也可确定空间中一点M(x,y,z),称有序三数组ρ,θ,u为M点的柱坐标,记作M(ρ,θ,u).注:1°空间中的点与其柱坐标并非一一对应.2°由柱面坐标求直角坐标,利用(*)即可,而由直角坐标求柱坐标,则需按下式进行.例:在直角坐标系下,圆柱面的图形如下:,双曲柱面,平面
和抛物柱面 27
(图2.4)
(图2.5)
(图2.6)(图2.7)
§2.3 空间曲线的方程
一、空间曲线的一般方程
1.定义2.3.1 设L为空间曲线,为一三元方程组,空间中建立了坐标系之后,若L上任一点M(x,y,z)的坐标都满足方程组,而且凡坐标满足方程组的点都在曲线L上,则称
为曲线L的一般方程,又称普通方程,记作L:
28(图2.8)
注: 1°在空间坐标系下,任一曲线的方程定是两方程联立而成的方程组;
2°用方程组去表达曲线,其几何意义是将曲线看成了二曲面的交线(如图2.8);3°空间曲线的方程不唯一(但它们同解),如
与 均表示z轴
2.用曲线的射影柱面的方程来表达曲线
以曲线L为准线,母线平行于坐标轴的柱面称为L的射影柱面,若记L的三射影柱面的方程为
(x,y)=0,(y,z)=0,(z,x)=0,则
,便是L的用射影柱面表达的方程
若已知曲线L:的方程(y,z)=0, ,只需从L的方程中,分别消去x,y,z便三射影柱面(z,x)=0,(x,y)=0
例:设有曲线L: ,试求L的射影柱面,并用射影柱面方程表达曲线.解:从L的方程中分别消去x,y,z得到 z²-4y=4z,x²+z²=4z,x²+4z=0 它们即为L的射影柱面,而
(1),便均是L的用射影柱面表达的方程
注:利用方程(2)即可作出L的草图 二、空间曲线的参数方程:
(2),(3)
1.定义2.3.2 设L为一空间曲线,r=r(t),t∈A为一元向函数,在空间坐标系下,若对P∈L,t∈A,使 =r(t),而且对t∈A,必有P∈L,使r(t)=,则称r=r(t),t∈A为曲线L的向量式参数方程,记作L=r=r(t),t∈A,t ——参数
若点r(t)={x(t),y(t),z(t)}
则称 t∈A
为L的坐标式参数方程
注:空间曲线的参数方程中,仅有一个参数,而曲面的参数方程中,有两个参数,所以习惯上,称曲线是单参数的,而曲面是双参数的。
2.求法: 例:一质点,在半径=a的圆柱面上,一方面绕圆柱面的轴作匀速转动,一方面沿圆柱面的母线方向作匀速直线运动,求质点的运动轨迹。
解:以圆柱面的轴作为z轴,建立直角坐标系{O;i,j,k},如图,不妨设质点的起始点在x轴上,质点的角速率与线速率分别为ω。,ν。,质点的轨迹为L,则对∈L,在x。y面上的投影为′,(图2.9)r= = +,=acos=b,则
i+asin
j+
k
若令 r=acos i+asin j+b k ————L的向量式参数方程
而
小结
知识点回顾:
在平面上或空间取定了坐标系后,平面上或空间的点就与有序实数组(x,y)或(x,y,z)建立了一一对应的关系,在此基础上,把平面上的曲线或空间的曲面都看成具有某种特征性质的点的集合,而其特征性质在坐标系中反映为它的坐标之间的某种特定关系,把这种关系找出来,就是它的方程,而图形的方程和图形间有一一对应的关系,这样就把研究曲线与曲面的几何问题转化为了代数问题。如曲面的方程为F(x,y,z)=0,要研究空间中三曲面是否有公共点的问题就可归结为求三曲面方程的公共解,也就是解三元联立方程组的问题。例如方程组
如果有实数解,则三曲面点的坐标。若方程组无实数解,三曲面就没有公共点。
平面曲线的普通方程为
就有公共点,方程组的解就是公共,参数,参数方程为单参数的;曲面的普通方程为方程为双参数的;空间曲线的普通方程为,参数方程为单参数的。
参数方程若能消去参数可得到普通方程,普通方程化为参数方程时形式却是不唯一的,但一定要保证与原方程等价。典型习题:
1.有一长度为段中点的轨迹。解:设 >0)的线段,它的两端点分别在轴正半轴与,为两端点,为此线段的中点。
.在中有
轴的正半轴上移动,是求此线
:.则即.∴此线段中点的轨迹为.2.有一质点,沿着已知圆锥面的一条直母线自圆锥的顶点起,作等速直线运动,另一方面这一条母线在圆锥面上,过圆锥的顶点绕圆锥的轴(旋转轴)作等速的运动,这时质点在圆锥面上的轨迹叫做圆锥螺线,试建立圆锥螺线的方程.解:取圆锥面的顶点为坐标原点,圆锥的轴为z轴建立直角坐标系,并设圆锥顶角为,旋转角速度为,直线运动速度为V,动点的初始位置在原点,而且动点所在直母线的初始位置在xoz面上,t秒后质点到达P点,P点在xoy面上的射影为N,N在x轴上的射影为M,则有
而
所以,圆锥螺旋线的向量式参数方程为
坐标式参数方程为
(﹣∞ 本章教学目的: 通过本章的学习,使学生掌握空间坐标系下平面、直线方程的各种形式,掌握确定平面与直线的条件,熟练掌握点、平面与空间直线间各种位置关系的解析条件及其几何直观概念.本章教学重点:(1)空间坐标系下平面方程的点位式和点法式、直线方程点向式与标准式;(2)点、平面与空间直线间各种位置关系的解析条件;(3)平面与空间直线各种度量关系的量化公式.本章教学难点:(1)异面直线的公垂线方程;(2)综合运用位置关系的解析条件求平面、空间直线方程.本章教学内容: §3.1平面的方程 1.平面的点位式方程 在空间给定了一点M0与两个不共线的向量a,b后,通过点M0且与a,b平行的平面 就惟一被确定.向量a,b叫平面 的方位向量.任意两个与平行的不共线的向量都可作为平面 的方位向量.取标架==,设点M0的向径,平面 上任意一点M的向 = {x,y,z}(如图).点M在径为r =平面上的充要条件为向量与向量a,b共面.由于a,b不共线,这个共面的条件可以写成 = ua+vb 而= r -r0,所以上式可写成 r = r0+ua+vb(3.1-1) 此方程叫做平面 的点位式向量参数方程,其中u,v为参数.31 若令a = {,},b = {,},则由(3.1-1)可得 (3.1-2) 此方程叫做平面 的点位式坐标参数方程,其中u,v为参数.(3.1-1)式两边与a³b作内积,消去参数u,v得 (r -r0,a,b)= 0(3.1-3) 此即 =0(3.1-4) 这是 的点位式普通方程.例1:已知平面上三非共线点 (i = 1,2,3).求通过 ={,(i = 1,2,3)的平面方程。},i = 1,2,3.对动点M,设r = ={x,解: 建立坐标系{O;e1, e2, e3},设ri = y,z},取次为 和为方位向量,M1为定点,则平面的向量参数方程,坐标参数方程和一般方程依r = +u(-)+v(-r1)(3.1-5) (3.1-6) = 0(3.1-7) (3.1-5),(3.1-6)和(3.1-7)统称为平面的三点式方程.特别地,若是 与三坐标轴的交点,即≠0,则平面 的方程就是 (a,0,0),(0,b,0),(0,0,c),其中abc=0(3.1-8) 即 (3.1-9) 此方程叫平面的截距式方程,其中a,b,c称为 在三坐标轴上的截距.2.平面的一般方程 在空间,任一平面都可用其上一点M0(x0,y0,z0)和两个方位向量a = {,},b = {,}确定,因而任一平面都可用方程(3.1-4)表示.将(3.1-4)展开就可写成 Ax+By+Cz+D = 0(3.1-10)其中 A =,B =,C = 由于a = {,}与b = {,}不共线,所以A,B,C不全为零,这说明空间任一平面都可用关于a,b,c的一三元一次方程来表示.32 反之,任给一三元一次方程(3.1-10),不妨设A≠0,则(3.1-10)可改写成 即 它显然表示由点M0(-D / A,0,0)和两个不共线的向量{B,-A,0}和{C,0,-A }所决定的平面.于是有 定理3.1.1 空间中任一平面的方程都可表为一个关于变数x,y,z的三元一次方程;反过来,任一关于变数x,y,z的三元一次方程都表示一个平面.方程(3.1-10)称为平面 的一般方程.现在先来讨论几种特殊的平面方程(平面对于坐标系来讲具有某种特殊位置): 1.D=0的平面都通过原点。 2.A、B、C中有一个为0,例如C=0,则平面通过Z轴。 3.A、B、C中有两个为0,若D,B=C=0,平面平行于yoz坐标面。.其余情况同学们自己讨论。 3.平面的法式方程。 若给定一点M0和一个非零向量n,则过M0且与n垂直的平面也被惟一地确定.称n为的法向量.在空间坐标系{O;i,j,k}下,设={x,y,z},则因总有 = ={x0,y0,z0},n = {A,B,C},且平面上任一点M的向径r =⊥n,有 n(r-r0)= 0(3.1-11)也就是 A(x-x0)+B(y-y0)+C(z-z0)= 0(3.1-12) 方程(3.1-11)和(3.1-12)叫平面 的点法式方程.(3.1-12)中的系数A,B,C有简明的几何意义,它们就是平面 的一个法向量的分量.特别地,取M0为自O向 所作垂线的垂足,而n为单位向量.当平面不过原点时,取n为与00的单位向量n,当平面过原点时取n的正向为垂直与平面的两个方向中的任一个.设|| = p,则0n(r-p n0)= 0 = p n,由点P和n确定的平面的方程为,上式可写成 n0r-p = 0(3.1-13) 0 0 同向式中r是平面的动向径.由于此方程叫平面的向量式法式方程.0若设r = {x,y,z},n = {cos,cos,cos},则由(3.1-13)得 x cos+y cos+z cos-p = 0(3.1-14) 此为平面的坐标法式方程,简称法式方程.平面的坐标法式方程有如下特征: 1°一次项系数是单位向量的分量,其平方和等于1; 2°常数项-p≢0(意味着p ≣ 0).3°p是原点到平面的距离.例3: 求通过点 且平行于z轴的平面方程。,所以有2A 解:设平行于z轴的平面方程为Ax+By+D = 0,因为它又要通过-B+D = 0,3A-2B+D = 0,由上两式得A:B:C= 所以所求平面方程为x+y-1= 0 4.化一般方程为法式方程 在直角坐标系下,若已知的一般方程为Ax+By+Cz+D = 0,则n = {A,B,C}是的法向量,Ax+By+Cz+D = 0可写为 nr+D = 0(3.1-15) 与(3.1-13)比较可知,只要以 去乘(3.1-15)就可得法式方程 Ax+By+Cz+D = 0(3.1-16) 其中正负号的选取,当D≠0时应使(3.1-16)的常数项为负,D=0时可任意选.以上过程称为平面方程的法式化,而将例2:已知两点解: 中点坐标为: 化为法式方程,并求出原点指向平面的单位法向量。,,求线段 叫做法化因子.垂直平分面的方程。 平面的点法式方程为: 整理后得:例3:把平面 解: :所以 法式方程为: §3.2平面与点的相关位置 平面与点的位置关系,有两种情形,就是点在平面上和点不在平面上.前者的条件是点的坐标满足平面方程.点不在平面上时,一般要求点到平面的距离,并用离差反映点在平面的哪一侧.1.点到平面的距离 定义3.2.1 自点M0向平面 引垂线,垂足为Q.向量面之间的离差,记作 = 射影 n0 在平面的单位法向量n0上的射影叫做M0与平 (3.2-1) 显然 = 射影n0当0.0 = ²n =∣ 0 0 ∣cos∠(,n)=±∣ 0 ∣ 与n同向时,离差 > 0;当与n反向时,离差 < 0.当且仅当M0在平面上时,离差 = 显然,离差的绝对值就是点M0到平面 的距离.定理3.2.1 点M0与平面(3.1-13)之间的离差为 = n0r0-p(3.2-2)证:根据定义3.2.2和上图得 = 射影n0 其中q== n(0 0 -)= n(r0-q)= nr0-n q 0 000,而Q在平面(3.1-13)上,因此n q= p,所以 = nr0-p。,则 与间的离差 推论1 若平面 的法式方程为 3) 推论2 点与平面Ax+By+Cz+D = 0间的距离为 (3.2- (3.2-4) 2.平面划分空间问题 三元一次不等式的几何意义 设平面的一般方程为 Ax+By+Cz+D = 0 则空间中任一点M(x,y,z)与间的离差为 = (Ax+By+Cz+D)式中为平面的法化因子,由此有 Ax+By+Cz+D =(3.2-5) 对于平面同侧的点, 的符号相同;对于在平面的异侧的点, 有不同的符号,而一经取定,符号就是固定的.因此,平面:Ax+By+Cz+D = 0把空间划分为两部分,对于某一部分的点M(x,y,z)Ax+By+Cz+D > 0;而对于另一部分的点,则有Ax+By+Cz+D < 0,在平面上的点有Ax+By+Cz+D = 0.§3.3 两平面的相关位置 空间两平面的相关位置有3种情形,即相交、平行和重合.设两平面1与2的方程分别是 1:(1) 2:(2) 则两平面1与2相交、平行或是重合,就决定于由方程(1)与(2)构成的方程组是有解还是无解,或无数个解,从而我们可得下面的定理.定理3.3.1两平面(1)与(2)相交的充要条件是 (3.3-1) 平行的充要条件是 (3.3-2) 重合的充要条件是 (3.3-3) 由于两平面1与2的法向量分别为,当且仅当n1不平行于n2时1与2相交,当且仅当n1∥n2时1与2平行或重合,由此我们同样能得到上面3个条件.下面定义两平面间的夹角.设两平面的法向量间的夹角为,称1与2的二面角∠(1,2)= 或-为两平面间的夹角.显然有 =±cos =±定理3.3.2两平面(1)与(2)垂直的充要条件是 (3.3-5) 例 一平面过两点 和且垂直于平面x+y+z = 0,求它的方程.解 设所求平面的法向量为n = {A,B,C},(3.3-4) 由于在所求平面上,有,即.又n垂直于平面x+y+z = 0的法线向量{1,1,1},故有A+B+C = 0 解方程组 得 所求平面的方程为,约去非零因子C得,即 2x-y-z =0,§3.4 空间直线的方程 1.直线的点向式方程 在空间给定了一点与一个非零向量v = {X,Y,Z},则过点M0且平行于向量v的直线l就惟一地被确定.向量v叫直线l的方向向量.显然,任一与直线l上平行的飞零向量均可作为直线l的方向向量.下面建立直线l的方程.如图,设M(x,y,z)是直线l上任意一点,其对应的向径是r = { x,y,z },而对应的向径是r0,则因有 //v,有t∈R,= t v.即r-r0= t v 所以得直线l的点向式向量参数方程 r = r0+t v(3.4-1) 以诸相关向量的分量代入上式,得 根据向量加法的性质就得直线l的点向式坐标参数方程为 -∞ < t < +∞(3.4-2) 消去参数t,就得直线l的点向式对称方程为 (3.4-3) 此方程也叫直线l的标准方程.今后如无特别说明,在作业和考试时所求得的直线方程的结果都应写成对称式.例1 设直线L通过空间两点M1(x1,y1,z1)和M2(x2,y2,z2),则取M1为定点,就得到直线的两点式方程为 (3.4-4) 根据前面的分析和直线的方程(3.4-1),可得到 为方位向量,这个式子清楚地给出了直线的参数方程(3.4-1)或(3.4-2)中参数的几何意义:参数t的绝对值等于定点M0到动点M之间的距离与方向向量的模的比值,表明线段M0M的长度是方向向量v的长度的 |t| 倍.0特别地,若取方向向量为单位向量v = {cos,cos,cos} 则(3.4-1)、(3.4-2)和(3.4-3)就依次变为 0 r = r0+t v(3.4-5) -∞ < t < +∞(3.4-6) 和 (3.4-7) 此时因 |v| = 1,t的绝对值恰好等于l上两点M0与M之间的距离.直线l的方向向量的方向角,, cos,cos,cos 分别叫做直线l的方向角和方向余弦.由于任意一个与v平行的非零向量v'都可作为直线l的方向向量,而二者的分量是成比例的,我们一般称X :Y :Z为直线l的方向数,用来表示直线l的方向.2.直线的一般方程 空间直线l可看成两平面1和2的交线.事实上,若两个相交的平面1和2的方程分别为 1: 那么空间直线l上的任何一点的坐标同时满足这两个平面方程,即应满足方程组 2: (3.4-8) 反过来,如果点不在直线l上,那么它不可能同时在平面1和2上,所以它的坐标不满足方程组(3.4-8).因此,l可用方程组(3.4-8)表示,方程组(3.4-8)叫做空间直线的一般方程.一般说来,过空间一直线的平面有无限多个,所以只要在无限多个平面中任选其中的两个,将它们的方程联立起来,就可得到空间直线的方程.直线的标准方程(3.4-3)是一般方程的特殊形式.将标准方程化为一般式,得到的是直线的射影式方程.将直线的一般方程化为标准式,只需在直线上任取一点,然后取构成直线的两个平面的两个法向量的向量积为直线的方向向量即可.例 将直线的一般方程 化为对称式和参数方程.解 令y = 0,得这直线上的一点(1,0,-2).两平面的法向量为 a = {1,1,1},b = {2,-1,3} 因a³b = {4,-1,-3},取为直线的法向量,即得直线的对称式方程为 令,则得所求的参数方程为 §3.5 直线与平面的相关位置 直线与平面的相关位置有直线与平面相交,直线与平面平行和直线在平面上3种情形.设直线l与平面 的方程分别为 l:(1) :Ax+By+Cz+D = 0(2) (1)也就是 .将(2)代入(1),整理可得 (AX+BY+CZ)t = -(Ax0+By0+Cz0+D)(3) 当且仅当AX+BY+CZ≠0时,(3)有惟一解 这时直线l与平面 有惟一公共点;当且仅当AX+BY+CZ = 0,Ax0+By0+Cz0+D≠0时,(3)无解,直线l与平面 没有公共点;当且仅当AX+BY+CZ = 0,Ax0+By0+Cz0+D = 0时,(3)有无数多解,直线l在平面 上.于是有 定理3.5.1 关于直线(1)与平面(2)的相互位置,有下面的充要条件: 1)相交: AX+BY+CZ≠0 2)平行: AX+BY+CZ = 0,Ax0+By0+Cz0+D≠0 3)直线在平面上: AX+BY+CZ = 0,Ax0+By0+Cz0+D = 0 以上条件的几何解释:就是直线l的方向向量v与平面 的法向量n之间关系.1)表示v与n不垂直; 2)表示v与n垂直且直线l上的点(x0,y0,z0)不在平面 上; 3)表示v与n垂直且直线l上的点(x0,y0,z0)在平面 上.当直线l与平面 相交时,可求它们的交角.当直线不与平面垂直时,直线与平面的交角 是指直线和它在平面上的射影所构成的锐角;垂直时规定是直角.设v = {X,Y,Z}是直线l的方向向量,n = {A,B,C}是平面 的法向量,则 令 ∠(l,)=,∠(v,n)= ,就有 = 或= -( 为锐角) (3.5-1)因而,sin =∣cos∣==从这个公式也可直接得到定理3.5.1中的条件.§3.6 空间直线与点的相关位置 任给一条直线l的方程和一点M0,则l和M0的位置关系只有两种:点在直线上和点不在直线上。从代数上,这两种情况对应点的坐标满足方程和点的坐标不满足方程.当点不在直线上时,可求此点到直线的距离.设空间中有一点M0(x0,y0,z0),和一条直线l: l: 此处M1(x1,y1,z1)是l上的一点,v = {X,Y,Z}是l的方向向量.以v和 为邻边作一平行四变形,则其面积为 | v³|,点M0到直线l的距离d就是此平行四变形的对应于底 | v | 的高,所以 =(3.7-1) 在实际计算中,记忆上式的第二个等号后面的部分是没有实际意义的.只需根据公式的前半部分计算即可.§3.7空间两直线的相关位置 1.空间两直线的位置关系: 空间两直线的相关位置有异面与共面,共面时又有相交、平行和重合3种情形.设二直线的方程为 : i = 1,2 此处直线l1是由点和方向向量v1 = {X1,Y1,Z1}决定的,而直线l2是由点和方向向量v2 = {X2,Y2,Z2}决定的.由图容易看出,两直线的相关位置决定于三向量,v1,v2的相互关系.当且仅当这三个向量异面时,两直线异面;当且仅当这三个向量共面时,两直线共面.共面时,若v1,v2不平行,则l1和l2相交,若v1∥v2但不与平行,则l1和l2平行,v1∥v2∥则l1和l2重合.因此有 定理3.6.1 空间两直线l1和l2的相关位置有下面的充要条件 1)异面: (3.6-1) 2)相交:(3.6-2)3)平行:(3.6-3)4)重合:(3.6-4)2.空间两直线的夹角 平行于空间两直线的两向量间的夹角,叫空间两直线的夹角.显然,若两直线间的夹角是,则也可认为它们之间的夹角是-.定理3.6.2 空间两直线l1和l2的夹角的余弦为 (3.6-5),推论 两直线l1与l2垂直的充要条件是 X1X2+Y1Y2+Z1Z2 = 0(3.6-6) 3.二异面直线间的距离与公垂线的方程 空间两直线的点之间的最短距离叫这两条直线之间的距离.两相交或两重合直线间的距离为零;两平行直线间的距离等于其中一直线上的任意一点到另一直线的距离.与两条异面直线都垂直相交的直线叫两异面直线的公垂线.两异面直线间的距离就等于它们的公垂线夹在两异面直线间的线段的长.39 设两异面直线l1和l2的方程如前,l1和l2与它们的公垂线的交点分别为N1和N2,则l1和l2之间的距离 也就是 (3.6-6) 现在求两异面直线l1和l2的公垂线的方程.如上图,公垂线l0的方向向量可取作= {X,Y,Z},而公垂线l0可看作两个平面的交线,这两个平面一个通过点M1,以v1和 和为方向向量,另一个平面通过点M2,以v2和 和为方向向量.因此公垂线l0的一般方程可写为(3.6-7).例1求通过点方程。 解:设直线方程为:由条件可得: 而与平面平行,且与直线相交的直线的即 从而,且所以,直线方程为:例2 已知两直线: 与 ⑴ 证明它们为异面直线; ⑵ 求它们公垂线的方程 解: ⑴ ⑵ 公垂线方向为:,所以,两直线异面。 公垂线方程为:,化简得: 即: §3.8平面束 1.平面束 定义3.8.1 空间中过同一直线l的所有平面的集合称为有轴平面束,l称为这平面束的轴.定义3.8.2 空间中平行于一定平面的所有平面的集合称为平行平面束.有轴和平行平面束统称为平面束.定理3.8.1 如果两个平面 1:x+y+z+= 0(1) 2:x+y+z+= 0(2) 交于一条直线L,那么以直线L为轴的有轴平面束的方程是 (x+y+z+)+(x+y+其中 和 是不全为零的任意实数.证 先证(3.8-1)表示过L的平面.z+)= 0(3.8-1) (3.8-1)即为(+)x+(+)y+(+ 上式中x,y,z的系数必不全为零,若不然,则有 -: = : = :)z+= : + = 0 这与与相交矛盾.故表示(3.8-1)一平面,显然通过与的交线L.再证明对于过L的任一平面,必存在不全为零的实数,,使的方程为(3.8-1).首先,若是一般地,若≠件是,取 = 1, = 0;若是,取 = 0, =1即可.,i = 1,2,取上一点A(a,b,c)L,则由于(3.8-1)表示的平面要通过L的条(a+b+c+)+(a+b+ b+c+ c+)= 0 即 : =-(a+):(a+b+c+) 不妨取 =-(a+b+c+), =a+b+c+ 则由于A不在L上, 和 不全为零,因而过L且过A的平面 的方程必可写成(3.8-1)的形式.例 求过二平面4x-y+3z-1 = 0与x+5y-z+2 = 0的交线,且过原点的平面的方程.解 略(讲解时实推).定理3.8.2 如果两个平面 1:x+y+z+= 0(1) 2:x+y+z+= 0(2) 为平行平面,那么方程 41)+(x+y+z+)= 0(3.8-1) 为平行平面束,平面束中任一平面都和1或2平行.式中 和 是不全为零的任意实数,且 - :≠A1 :A2 = B1 :B2 = C1 :C2 定理3.8.3平行于平面:Ax+By+Cz+D = 0的所有平面的方程可表为 Ax+By+Cz+ = 0(3.8-2) 例 求与平面3x+y-z+4 = 0平行,且在z轴的截距等于-6的平面的方程.解 设所求的平面是3x+y-z+t = 0,则由于点(0,0,-6)在平面上,有 t+6 = 0, t =-6 所求的平面方程为 3x+y-z-6 = 0 2.平面把 定义3.8.3 空间中过一定点的所有平面的集合称为平面把,称为把心.(x+y+z+定理3.8.4 过定点(,)的所有平面的方程为 A(x-x0)+B(y-y0)+C(z-z0)= 0(3.8-3) 其中A,B,C是任意不全为零的实数.更一般地,我们有 定义3.8.3 空间中过一定点的所有平面的集合称为平面把,称为把心.定理3.8.5 过定点(,)的所有平面的方程为 A(x-x0)+B(y-y0)+C(z-z0)= 0(3.8-4) 其中A,B,C是任意不全为零的实数.定理3.8.6 对任意不全为0的 , ,,方程 (3.8-5) 表示过三平面 :的(惟一)交点(,,使 的方程为(3.8-4).)的一个平面;反之,对任意过, 3 的平面,必存在不全为零的 , ,小结 知识点回顾: 通过本章的学习,使学生掌握空间坐标系下平面、直线方程的各种形式,掌握确定平面与直线的条件,熟练掌握点、平面与空间直线间各种位置关系的解析条件及其几何直观概念.(1)空间坐标系下平面方程的点位式和点法式.在空间取仿射坐标系则平面设点的向量式参数方程为的坐标分别为,并设点的向径其中,那么,平面 为参数。 ;并设 上任意一点的向径为 则平面的坐标式参数方程为,为参数。 平面的点位式方程为 空间中任一平面的方程都可以表示成一个关于变量 x,y,z 的一次方程;反过来,每一个关于变量 x,y,z 的一次方程都表示一个平面,Ax+By+Cz+D=0 叫做平面的一般方程 取空间直角坐标系,设点的向径为 ,平面上的任意一点的向径为,则平面的点法式方程.(2)空间直线的各种方程.42 在空间取仿射坐标系则其向量式参数方程为,已知直线上一点。,动点,方向向量.坐标式参数方程为:对称式方程或标准方程为: .。 设有两个平面的方程为中的系数行列式 (*)如果,即方程组(*) 不全为零,那么相交,它们的交线设为,因为 上的任意一点同在这两平面上,所以它的坐标必满足方程组(*);反过来,坐标满足方程组(*)的点同在两平面上,因而一定在这两平面的交线即直线 上,因此方程组(*)表示直线的方程,把它叫做直线的一般方程(3)点的离差和点到平面的距离; 如果自点与平面到平面引垂线,其垂足为,那么向量 在平面的单位法向量 上的射影叫做点之间的离差,记做点到平面距离公式:(4)点到直线的的距离:.(5)异面直线的公垂线方程 两异面直线 典型习题: 1、一平面过两点 和,求它的方程.解 设所求平面的法线向量为 显然,故 即 又垂直于平面故有 ; 且垂直于平面,在所求平面上,,.的法线向量,43 解方程组 得 据点法式方程有,约去非零因子 得,故所求方程为 2、用对称式方程及其参数方程硎局毕?/span> 解 先找出这直线上的一点,如:取 代入方程组得 解此二元一次方程组得 于是,得到直线上的一点 再找该直线的一个方向向量都垂直,可取 .,由于两平面的交线与两平面的法线向量,因此,所给直线的对称式方程为 ; 直线的参数方程为 3分别在下列条件下确定(1)使(2)使与的值: 和 表示二平行平面; 表示同一平面; (3)使与表示二互相垂直的平面。解:(1)欲使所给的二方程表示同一平面,则: 即: 从而:。 (2)欲使所给的二方程表示二平行平面,则: 所以:。 所以: : 。(3)欲使所给的二方程表示二垂直平面,则:4.试验证直线:解: 直线与平面相交。 与平面 相交,并求出它的交点和交角。 又直线的坐标式参数方程为: 设交点处对应的参数为,从而交点为(1,0,-1)。又设直线与平面的交角为,则:,5.给定两异面直线:解:因为公垂线方程为:,与,试求它们的公垂线方程。 即,亦即 第四章 柱面、锥面、旋转曲面及常见二次曲面 本章教学目的: 使学生掌握柱面、锥面和旋转曲面的定义、方程求法和方程特征;熟练掌握五种常见二次曲面的定义、标准方程及几何特征,了解它们的性质,会画它们的草图.本章教学重点:(1)常见二次曲面的定义、标准方程及图形的特征;(2)坐标面上的曲线绕坐标轴旋转时所产生旋转曲面方程的求法.(3)通过求柱面、锥面和旋转曲面的方程,理解动曲线产生曲面的思想方法.本章教学难点 :(1)柱面及锥面方程的求法中消去参数的几何意义的理解;(2)双曲抛物面的几何性质的分析;(3)二次曲面直纹性的证明.本章教学内容: §4.1 柱面 一 柱面 定义4.1.1 在空间,由平行于定方向且与一条定曲线相交的一族平行直线所产生的曲面叫做柱面.其中定方向叫柱面的方向,定曲呓兄条都叫柱面的母线.注:1°一个柱面的准线不惟一(举例).2°平面和直线也是柱面.以下建立柱面的方程.设在给定的坐标系下,柱面S的准线为 (1) 母线的方向数为X,Y,Z.若M1(x1,y1,z1)为准线上任一点,则过M1的母线方程为 (2) 且有(3) 从(2)、(3)4个等式中消去参数x1,y1,z1,最后得一个三元方程 F(x,y,z)= 0 就是以(1)为准线,以{X,Y,Z}为方向的柱面的方程.这里需要特别强调的是,消去参数的几何意义,就是让点M1遍历准线上的所有位置,就是让动直线(1)“扫”出符合要求的柱面.例1 已知一个柱面的准线方程为,其母线的方向数是-1,0,1,求该柱面的方程.解 设M1(x1,y1,z1)是准线上的点,过M1(x1,y1,z1)的母线为 (1) 且有 (2)(3) 由(1)得 将(4)代入(2)和(3)得 (4) (5) (6) 由(5)和(6)得 (7) 将(7)代入(5)(或(6))得所求柱面方程为即.例2 已知圆柱面的轴为,点M1(1,-2,1)在此柱面上,求这个圆柱面的方程.解法一 记所求的圆柱面为S.因S的母线平行于其轴,母线的方向数为1,-2,-2,若能求得圆柱面的准线圆,则用例1的方法即可解题.空间的圆总可看成某一球面与某一平面的交线,故圆柱面的准线圆可看成以轴上的点.M0(0,1,-1)为中心,为半径的球面的交线,即准线圆 是 设为 上的任意点,则 (1)(2) 与过已知点M1(1,-2,1)且垂直于轴的平面S的过的母线为 (3) 由(1)、(2)、(3)消去参数x1,y1,z1,得S的方程为.将圆柱面看成动点到轴线等距离点的轨迹,这里的距离就是圆柱面的半径,那么例2就有下面的第二种解法.解法二 因轴的方向向量为v = {1,-2,-2},轴上的定点为M0(0,1,-1),M1(1,-2,1)是S上的定点,点M1到l的距离 .设M(x,y,z)是圆柱面上任意一点,则M到轴l的距离为,即 化简整理就得S的方程为 二、柱面的判定定理 定理4.1.1 在空间直角坐标系中,只含有两个元(坐标)的三元方程所表示的曲面是一个柱面,它的母线平行于所缺元(坐标)的同名坐标轴。 在空间直角坐标系里,因为这些柱面与 xoy坐标面的交线分别是椭圆,双曲线与抛物线,所以它们依次叫做椭圆柱面,双曲柱面,抛物柱面,统称为二次柱面.三、空间曲线的射影柱面 空间曲线L:(15),如果我们从(15)中依次消去一个元,可得,任取其中两个方程组,比如(16)那么方成这样(16)和(15)是两个等价的 方程组,也就是(16)表示的曲线和(15)是同一条,从而曲面都通过已知曲线(15);同理方程知,曲面 表示的曲面也通过已知曲线(15)。有定理4.1.1表示一个母线平行于z轴的柱面,在直角坐标系下,起母线垂直于xoy坐标面,我们把曲面叫做空间曲线(15)对xoy坐标面射影的射影柱面,而曲线曲线(15)在xoy坐标面上的射影曲线。同理,与 叫做空间 分别叫做曲线(15)对xoz坐标面与yoz坐标面射影的射影柱面,而曲线和叫做空间曲线(15)在xoz坐标面与yoz坐标面上的射影曲线。 §4.2 锥面 定义4.2.1 在空间,通过一定点且与一条定曲线相交的一族直线所产生的曲面叫做锥面.这里定点叫做锥面的顶点,定曲线叫锥面的准线,直线族中的每一条都叫锥面的母线.注:1°一个锥面的准线不惟一(举例).2°平面既是柱面也是锥面.3°一条直线也是锥面.4°若将柱面的母线看成在无穷远处相交的话,则柱面是一个顶点在无穷远点的锥面.以下建立锥面的方程.设锥面S的准线为 (1) 顶点为A(x0,y0,z0).若M1(x1,y1,z1)为准线上任一点,则过M1的锥面的母线方程为 (2) 且有(3) 从(2)、(3)4个等式中消去参数x1,y1,z1,最后得一个三元方程F(x,y,z)= 0 就是以(1)为准线,以A为顶点的锥面的方程.这里消去参数的几何意义与柱面的情形类似,就是让点M1跑遍准线上的所有点,从而让动直线(2)“扫”出符合要求的锥面.下面的定理给出了锥面方程的特征.先介绍齐次函数的概念.设为实数,对于函数,若 此处t的取值应使有确定的意义,则称为n元次齐次函数,对应的方程= 0为次齐次方程.22例 u = xy+2yz+xyz为三次齐次函数.定理4.2.1 一个关于x,y,z的齐次方程总表示一个顶点在原点的锥面.48 证: 由齐次方程的定义有当设直线的方程为 时有,故曲面S:为S上非原点的任意点,则 .过原点.满足,即有 .而 代入= 0,得,即直线 上的所有点的坐标满足曲面S的方程.因此直线在曲面S:上,故曲面S:是由这种通过坐标原点的直线组成,因而是以原点为顶点的锥面.推论 一个关于x-x0,y-y0,z-z0的齐次方程总表示一个顶点在(x0,y0,z0)的锥面.证 设有x-x0,y-y0,z-z0的齐次方程 F(x-x0,y-y0,z-z0)=0(*) 作坐标变换(**)为齐次方程,故表示顶点在点的锥面.的齐次方程可能只表示原点.例如 .这样的曲面,表示以,则(*)化为(**) 为顶点的锥面.从而 注 在特殊情况下,一个关于一般称为有实顶点的虚锥面.例1 锥面的顶点为原点,准线为解 设,求锥面的方程.为准线上任意一点,则过M1的母线为: (4) 且有(5) (6) 将(6)代入(4)得(7) 将(7)代入(3)得(4.2-1)这就是所求的锥面,称为为二次锥面.二次锥面的方程(4.2-1)所表示的图形,当a = b时就是我们熟悉的圆锥面.例2 已知一圆锥面的顶点为A(1,2,3),轴l垂直于平面30°的角,试求该圆锥面的方程.解 设,母线与轴l组成为所求曲面S的任一母线上的任一点,则过M的母线的方向向量为 n = {2,2,-1}.由题,圆锥的轴线的方向向量即为平面根据题意v和n的夹角是30°或150°,故有 即 化简整理得圆锥面的方程是 这是一个关于x-1,y-2,z-3的二次齐次方程.此结果也是对定理4.2.1的推论的一个直接验证.因圆锥面是一种特殊的锥面,上面的解法是一种适合于圆锥面的特殊方法.我们当然可以先求出圆锥面的准线,再利用顶点与准线求出该圆锥面的方程.§4.3 旋转曲面 1.一般的旋转曲面方程 定义4.3.1 在空间,一条曲线 绕一定直线l旋转一周所产生的曲面S叫做旋转曲面(或回转曲面).叫做S的母线,l称为S的的旋转轴,简称为轴.设为旋转曲面S的母线上的任一点,在 绕轴l旋转时,也绕l旋转而形成一个圆,称其为S的纬圆、纬线或平行圆.以l为边界的半平面与S的交线称为S的经线.S的纬圆实际上是过母线 上的点且垂直于轴l的平面与S的交线.S的所有纬圆构成整个S.S的所有经线的形状相同,且都可以作为S的母线,而母线不一定是经线.这里因为母线不一定为平面曲线,而经线为平面曲线.在直角坐标系下,设旋转曲面S的母线为 :旋转轴为 (1) l这里为l上一点,X,Y,Z为l的方向数.(2) 设M1(x1,y1,z1)为母线 上的任意点,过M1的纬圆总可看成过中心,(3) 为半径的球面的交线.故过M1的纬圆的方程为 且垂直于轴l的平面与以P0为 (4) 当M1跑遍整个母线时,就得出旋转曲面的所有纬圆,所求的旋转曲面就可以看成是由这些纬圆构成的.由于M1(x1,y1,z1)在母线 上,有 (5) 从(3)、(4)、(5)4个等式消去参数x1,y1,z1得一个方程 F(x,y,z)= 0 即为S的方程.例1 求直线 :绕直线旋转所得的旋转曲面S的方程.解 设M1(x1,y1,z1)为母线 上的任一点,因旋转轴过原点,过M1的纬圆方程为 (7)