第一篇:2百分数应用题教案
百分数的应用
教材分析:
百分数的简单应用,运用方程解决简单的百分数问题,在此基础上,本单元进一步学习百分数的应用。本单元学习的主要内容有:百分数的进一步应用、运用方程解决简单的百分数问题。本单元主要是通过四个活动引导学生展开学习的。本单元教材编写力图体现以下特点。
1.注重百分数在实际生活中的应用
2.鼓励学生根据问题中的数量关系以及百分数的意义解决问题 教学目标
1.在具体情境中理解“增加百分之几”或“减少百分之几”的意义,加深对百分数意义的理解。
2.能利用百分数的有关知识以及方程解决一些实际问题,提高解决实际问题的能力,感受百分数与日常生活的密切联系。单元学习内容的前后联系单元教材分析在五年级下学期,学生已经学习了百分数的意义和读写,百分数和分数、小数的互化,教学重点:
能运用所学知识解决有关百分数的实际问题。教学难点:
运用方程解决简单的百分数问题。评价建议
本单元知识和技能评价主要是:能运用所学知识解决有关百分数的实际问题。第一,解决增加百分之几或减少百分之几的问题,如小明家2月份用电150千瓦时,3月份用电100千瓦时,3月份比2月份节约了百分之几?第二,解决比一个数增加或减少百分之几的数的实际问题,如妈妈在商场中看中了一件540元的风衣,按八折购买,能省多少元?第三,能够列方程解答问题,如小龙有63代的数码宝贝卡120张,比53代的数码宝贝卡多30%,小龙有多少张53代的数码宝贝卡?第四,能解决与储蓄有关的实际问题。
在知识技能的评价中,要注意所选择的实际问题应结合学生的生活经验,不仅要关注学生解决问题的结果,还要关注学生解决问题的思路和方法;还可以鼓励学生提出问题,评价学生提出问题的能力。教学案例研讨教学内容百分数的应用
百分数的应用
(一)教材分析:
本节课是在学生已学习百分数的简单应用、运用方程解决简单的百分数问题的基础上进一步学习百分数的应用。教材通过创设“水结成冰块”的情境,引发问题,让学生带着问题探寻解决的办法,从而真正理解增加百分之几,减少百分之几的意义并由此及彼的掌握解决此类问题的方法。学生状况分析:
我所执教的学校属于我区一所规模较大的学校,其家庭教育比较好,学生见识多,胆子大,具有较强表达能力和学习能力。为此,在教学中我主要从学生的生活实际入手,采用学生自主探究、合作交流为主,教师点拨引导为辅的策略,让学生在生活实例中感知,在积极思辨中发现,在具体运用中理解的方法进行百分数应用的教学。学习目标:
1、理解“增加百分之几”或“减少百分之几”的意义,加深对百分数意义的理解。
2、能计算出实际问题中“增加百分之几”或“减少百分之几”。
3、进一步体会数学与生活的联系,增强数学学习的主动性、积极性。教学重点:
能运用所学知识解决有关百分数的实际问题。教学难点:
运用方程解决简单的百分数问题。
四、教学设计
(一)创设情境,提出问题
1、观察表格,提出问题
(1)师:这里有一份关于百大超市和国光超市七月份、八月份销售金额情况统计表。如果你是经理,看了之后,你能得到哪些信息? 七月份 八月份
40万元 50万元 20万元 30万元 百大超市 国光超市
(设计说明:根据地区学生的特点,将“水结成冰块”的情境转换为超市销售金额增加百分之几,更接近本校学生的生活实际。“如果你是经理”能让学生更快地进入到情境之中,利于学生主动地去获取知识。)(2)同桌讨论(3)学生汇报
(4)师:两个超市七月份的销售金额都比八月份有所增加,其增加的金额都是10万元,通过这个数据我们能说两个超市的增加幅度一样吗?(5)小组讨论
(6)汇报:要比较两个超市的增长幅度,必须进行第二次比较,即百大超市八月份销售金额比七月份销售金额多百分之几?国光超市八月份销售金额比七月份销售金额多百分之几?(设计说明:教师以“通过这两个数据我们能说两个超市的增加幅度一样吗?”进行设疑,引导学生思考。提出问题,而学生所提问题正好是本节课要学习的知识点。)
2、出示课题:百分数的应用
(二)自主构建,探究新知
1、解决“百大超市八月份销售金额比七月份销售金额多百分之几?”这一问题。
(1)小组讨论,解决问题。提示:
要求百大超市八月份销售金额比七月份销售金额多百分之几,就是要求谁是谁的百分之几?
通过小组研究,你们认为这道题应该怎样解答? 生1:50÷40 生2:(50—40)÷40 生3:(50—40)÷50 ……(2)学生评议,理清思路
①学生评议时,引导他们画出线段图:
②启发学生思考:“百大超市八月份销售金额比七月份销售金额多百分之几”,是哪两个量在比较?
③得出结论,列出算式:
要求百大超市八月份销售金额比七月份销售金额多百分之几,就是求“百大超市八月份销售金额比七月份销售多的金额”是“七月份销售金额”的百分之几? 列式:(50—40)÷40
=10÷40 =25% ④引导学生说出第二种解法: 师:还有别的算法吗? ⑤交流汇报:
50÷40—1=125%—1=25%
(结合线段图理解)
(设计说明:通过小组合作交流,让学生自已解决问题,使他们参与到知识的探究过程中去,培养了学生的合作意识和探索精神。)
2、解决“百大超市七月份销售金额比八月份销售金额少百分之几”的问题。①提出问题:
师:“同学们解决了自已提出的问题,老师也有一个问题,你们能帮老师解答吗?” 生:能。
师:“百大超市七月份销售金额比八月份销售金额少百分之几?”(设计说明:在学生提出问题,自已解决问题之后,老师适时提出问题,不仅体现了师生之间的平等关系,而且把知识进行了拓展。)
②学生列式解答: 生:(50—40)÷50
=10÷50
=20% ③引导学生小结:被除数相同,但除数不同,多百分之几与少百分之几的结果是不一样的。㈢巩固应用、深化提高
1、解决问题
①国光超市八月份销售金额比七月份销售金额多百分之几? ②国光超市七月份销售金额比八月份销售金额少百分之几?(1)列式解答:(30—20)÷20=50%(30—20)÷30≈33.3%
(2)观察发现:
师:你认为解答的关键是什么?
生:求百大超市八月份销售金额比七月份销售金额多百分之几,就是求“百大超市八月份销售金额比七月份销售多的金额”是“七月份销售金额”的百分之几?
师:解决今天的问题关键在于把它转化成已经学过的问题。其实我们以前也运用过转化的方法,你还记得吗?
生:上个单元学习圆的面积时,把圆转化成长方形来求的。师:转化的方法是我们学习、研究数学的好办法。以后遇到难题时也可以用转化的方法试试。
(设计说明:结合教学内容,教给学生学习的方法,既使学生掌握了方法,又使学生能形成完整的认知结构。)
2、做课本“试一试”第(1)题。
学生自已读题,说一说几成是什么意思后独立完成。
3、解决实际问题:
师:据了解赣州为了迎接宋城文化节活动,正在大搞绿化工作,一个绿色的赣州将展现在我们眼前。在叔叔、阿姨的绿化过程中遇到一个问题,你们想帮他们来解决吗?
出示题目:韶关原计划造林12公顷,实际造林14公顷,实际比原计划多造林百分之几?原计划比实际少造林百分之几?
4、小调查:
⑴调查你家上个月和这个月用水、用电的量,并进行比较,从比较中你发现了什么?
⑵了解一下你班上同学零花钱的情况,并进行比较,看看你能得到什么结论?
(设计说明:练习的设计既有针对性,又能联系学生的生活实际,使学生及时巩固了本节课所学的知识。)
求一个数比另一个数多(或少)百分之几的练习课
第2课时学习目标:
1、通过练习使学生进一步熟练地掌握求一个数比另一个数的多(或少)百分之几的的应用题的解题方法;提高解答这类题的能力。
2、能计算出实际问题中“增加百分之几”或“减少百分之几”。
3、进一步体会数学与生活的联系,增强数学学习的主动性、积极性。
重点:分析求一个数比另一个数的多(或少)百分之几的的应用题的数量关系。
难点:解答这一类应用题的能力。教学过程:
(一)明确本节练习课的内容和目的
进一步理解解答这类应用题的关键是弄清谁是谁的百分之几,谁是单位“1”的量。(二)基本练习1.口答。
5是4的百分之几?4是5的百分之几? 5比4多百分之几?4比5少百分之几? 2.只列式不计算。
①张师傅一家去年人均收入6500元,今年人均收入增加了500元,增加了百分之几?去年人均收入是今年的百分之几?500÷6500
6500÷(6500+500)
②张师傅一家今年人均收入7000元,比去年增加了500元,比去年增加了百分之几?今年人均收入是去年的百分之几?500÷(7000—500)7000÷(7000—500)
学生列式后,师生进一步讨论:这两题分别是谁和谁比?谁是单位“1”?(三)变式练习
1.根据问句,说出谁和谁比,谁是单位“1”的量。①松树棵数是柳树棵数的百分之几? ②汽车速度比自行车速度快百分之几? ③降价了百分之几? ④增产了百分之几? ⑤超过计划的百分之几? 2.判断。(让学生用手势表示“√”或“×”)①因为5比4多25%,所以4比5少25%。()②100克水中加10克盐,盐占盐水的10%。()③玲玲已做对了45道口算题,还有5道没做对,那么正确率是90%。()3.选择正确算式。(用手势表示)(1)小明有故事书5本,小兰有故事书8本,小兰比小明多百分之几?()(2)购买同一刑号的电脑,今年售价0.8万元,去年售价1.2万元,今年售价比去年降低了百分之几?
1.2-0.81.2 ;1.2-0.80.8 ;1.20.8 -1; 1- 0.81.25 ;(四)发展练习1.比较每组中两道题的联系与区别,并列式。第一组:
(1)甲数是50,乙数比甲数少10,乙数比甲数少百分之几?(2)甲数是50,乙数是40,乙数比甲数少百分之几? 第二组:
(1)某厂原计划生产200台机床,实际比计划多生产20台,实际比计划多生产百分之几?(2)某厂原计划生产200台机床,实际比计划多生产20台,实际生产的台数是计划的百分之几? 2.根据算式补充问题。
六(2)班有男生25人,女生23人,?(1)23÷25,?(2)23÷(23十25),?(3)25÷(23-+-25),?(4)(25—23)÷25,?(5)(25—23)÷23,?(五)教学小结
一个数是另一个数的百分之几的应用题的解题方法。
百分数的应用
(二)【教学内容】
小学数学实验教材(北师大版)六年级上册第一单元P34-37内容。【教学目标】
1、进一步认识“增加百分之几”或“减少百分之几”的意义,加深对百分数意义的理解。
2、能解决“比一个数增加百分之几的数”或“比一个数减少百分之几的数”的实际问题,提高运用数学解决实际问题的能力,体会百分数与现实生活的密切联系。【教学重点】
理解“增加百分之几”或“减少百分之几”的意义,能解决有关“增加百分之几”或“减少百分之几”的实际问题。【教学难点】
理解“增加百分之几”或“减少百分之几”的意义,能解决有关“增加百分之几”或“减少百分之几”的实际问题。【教具准备】 多媒体课件。教学过程:
一、导入
1、我国有一个非常著名的科学家-----袁隆平,大家知道吗?(如果有学生知道,可以让学生说一说)
2、他是我国杂交水稻研究领域的开创者和带头人,也是世界上第一个成功地利用水稻杂种优势的科学家,是联合国粮农组织国际首席顾问,被誉为“杂交水稻之父”。
3、因为杂交水稻比普通水稻的产量要高很多,所以我国杂交水稻的种植面积一年比一年增加。
二、百分数的应用
1、生活中的百分数问题
2000年某地在教水稻的种植面积为20万公顷,2001年的种植面积比2000年增加25%,2001年杂交水稻的种植面积是多少公顷?
2、线段图 教师提出要求:你能用线段图表示出2000年和2001年之间的数量关系吗? ※ 学生独立画图 ※ 展示学生的成果 ※ 教师评价
25% = 1/4 20公顷
2000年
25%
2001年
3、学生自主解答问题
4、班内交流
办法一:
× 25% = 5(公顷)
+ 5 = 25(公顷)
办法二:+ 25 % = 125%
× 125% = 25(公顷)
三、试一试
1、生活中的折扣
游乐场的套票原来每套30元,六一期间八折优惠,购买一套这样的套票能省多少元?
2、思考:八折是什么意思? ※
学生自由发表自己的见解
※
教师评价
※
八折就是现价是原价的80%
3、学生自主解答然后交流
办法一: 30 × 80% = 24(元)
- 24 = 6(元)
办法二: 30 ×(1 - 80%)
= 30 × 20 % = 6(元)
四、练一练
1、教科书P26练一练第1题
2、教科书P26练一练第2题
3、教科书P26练一练第3题
五、课堂总结
通过今天的学习你有什么收获?
“比一个数增加(减少)百分之几的数”的练习课
第4课时 【教学目标】
1、进一步认识“增加百分之几”或“减少百分之几”的意义,加深对百分数意义的理解。
2、能解决“比一个数增加百分之几的数”或“比一个数减少百分之几的数”的实际问题,提高运用数学解决实际问题的能力,体会百分数与现实生活的密切联系。
重点:分析“比一个数增加(减少)百分之几的数”的应用题的数量关系。
难点:解答这一类应用题的能力。教学准备 幻灯片、小黑板
一、基础练习
先说出下面各题把什么数量看作单位“1”,再回答问题。(1)一批钢材运走80%,还剩下百分之几?
(2)甲车速度比乙车快 27,甲车速度是乙车的几分之几?
二、练习
1、(1)兴业公司今年计划创利450万元,上半年已完成了 59。上半年创利多少万元?
(2)兴业公司今年计划创利450万元,上半年已完成了 59。下半年创利多少万元就能完成计划?
2、(1)一种彩色电视机原价每台2400台,现在每台售价比原价提价10%,每台提价多少元?
(2)一种彩色电视机原价每台2400台,现在每台售价比原价提价10%,现在每台售价多少元?
3、食堂六月份用粮2500千克,七月份用粮比六月份减少225,七月份用粮多少千克?
4、汽车销售市场上月原计划销售汽车850辆,实际比原计划多销售26%,多销售多少辆?
三、文字题
1、比24千克多50%是多少千克?
2、比24千克少50%是多少千克?
3、比415 米多13 是多少米?
4、比415 米少13 是多少米?
四、总结:这节课你有什么收获?
五、作业
基础练习
百分数的应用
(三)【教学内容】
小学数学实验教材(北师大版)六年级上册第一单元P38-40内容。【教学目标】
1、进一步加强对百分数的意义的理解,并能根据百分数的意义列方程解决实际问题。
2、通过解决实际问题进一步体会百分数与现实生活的密切联系。
3、结合实际对学生进行思想道德教育,学会节俭。【教学重点】
根据百分数的意义列方程解决实际问题。【教学难点】
根据百分数的意义列方程解决实际问题。【教具准备】 多媒体课件。教学过程教学过程说明
一、导入
通过前面的学习,我们知道百分数与生活有着十分紧密的联系。请同学们想一想,你能给大家说一些生活中用到百分数的事例吗?(让学生自由说一说)
二、家庭消费
下表是笑笑的妈妈记录的家庭消费情况: 年份 1985年 1995年 2005年
食品支出总额占家庭总支出的百分比 65%
58%
50% 其他支出总额占家庭总支出的百分比
35%
42%
50%
1、你能给大家说说表格所表示的意思吗?
2、根据表中数据,你有什么发现?
3、教师提出问题:
1985年食品支出比其他支出多210元。你知道这个家庭的总支出是多少元吗?
4、你准备怎样解答这个问题?(小组讨论)※
你觉得直接列式方便吗?为什么?
5、展示解答过程
解:设这个家庭1985年的总支出是X元。65% X - 35% X = 210
30% X = 210
X = 700
6、如果2005年 食品支出占家庭总支出的50%,旅游支出占家庭总支出的10%,两项支出一共是5400元,这个家庭的总支出是多少元? ※
学生独立解决
※
教师评价
下表是笑笑的妈妈记录的家庭消费情况: 年份 1985年 1995年 2005年
食品支出总额占家庭总支出的百分比 65%
58%
50% 其他支出总额占家庭总支出的百分比
35%
42%
50%
三、试一试
1、出示教科书P27试一试第2题
2、九五折是什么意思?
3、学生独立解答然后班内交流 解:设这本书的原价是X元。
X - 95% X = 6
5% X = 6
X = 120
四、练一练
1、教科书P28练一练第2题 “增产了两成”是什么意思? 展示解答过程:
解:设去年的产量是X吨。
X + 20% X = 36000
120% X = 36000
X = 30000
2、教科书P28练一练第4题
3、教科书P28练一练第5题
五、课堂总结
通过今天的学习你有什么收获?
“一个数的百分之几是多少,求这个数”的练习课 第6课时 学习目标 通过练习使学生进一步熟练地掌握“一个数的百分之几是多少,求这个数”的应用题的解题方法;提高解答这类题的能力。
教学重点:分析“一个数的百分之几是多少,求这个数”的应用题的数量关系。
难点:解答这一类应用题的能力
一、基础练习
先说说下面各题把什么数量看作单位“1”,再回答问题。
(1)一种羊毛衫现在的单价比原来降低了18。现在单价是原来的百分之几?
(2)小云的邮票张数比小军少20%。小云的邮票张数是小军的百分之几?
二、列式计算
1、多少吨的712 是3.5吨?
2、多少千米的50%是24千米?
3、多少米的13 是56 米?
4、多少千克的18%是6310 千克?
三、1、修路队修一条路,已经修好24千米,占全长的40%,这条路长多少千米?
2、甲村修一条水渠,已经修好80%,还剩下160米没有修。这条水渠长多少米?
3、东东看一本科幻小说,第一天看了全书的10%,第二天看了全书的30%,两天共看了80页,这本书共有多少页?
4、玩具厂五月份比四月份多生产儿童玩具2500件,多生产了20%。玩具厂四月份生产玩具多少件?
四、总结:你有什么收获?
五、作业
百分数应用(四)
一、教材分析
本课时的内容是百分数的具体应用一个方面。教材设计这一内容宗旨是进一步提高学生运用百分数解决实际问题的能力。随着我国社会主义市场经济体制的建立,百分数应用日益广泛,使学生多了解一些百分数的应用可以提高学生应用数学知识解决简单的实际问题的能力,通过这些实际问题还可以对学生进行思想品德教育。
教材安排了淘气和笑笑储蓄的情境,他们存入300元到期后不仅能取回存入300元的本金,还能得到银行付出利息的一部分钱。在这一实际情景中,通过具体的事例,帮助学生理解什么是本金、利息和年利率。教材给出了整存整取的年利率,还有利息的计算公式,并鼓励学生利用公式实际计算一下笑笑和淘气分别得到多少利息。教材还涉及到了利息税,在实际生活中,国债和教育储蓄是不需要交利息税的。
二、学生分析
在此学习内容之前,学生已经学习了百分数的定义和读写、百分数和分数、小数的互化、百分数的简单应用、运用方程解决简单的百分数问题。在此基础上,进一步学习百分数的应用。
三、学习目标
1、了解一些有关利息的初步知识,能利用百分数的有关知识,解决一些与储蓄有关的实际问题。
2、学会合理理财,逐步养成不乱花钱的好习惯。
四、教学设计
㈠学生汇报调查资料,情景导入
师:(课前布置学生到银行去调查年利率,了解有关储蓄的知识。)昨天同学们到银行去做了一个小调查,请你汇报调查的情况。生1:我知道了中国建设银行、中国人民银行、中国农业银行以及农村合作信用社等等都是我们日常生活中进行储蓄的场所。生2:我知道储蓄不仅可以帮助国家进行经济建设,而且能增加家庭个人的收入。
师:说的真好。这是储蓄的优点,储蓄能支持国家建设。生3:我知道储蓄分活期和定期两种。在定期存款方式中,又可以分为零存整取和整存整取两大类。
师:你说的是储蓄的种类。(板:储蓄的种类:零存整取、整存整取)
生4:我调查到定期一年的利率是2.52%,定期二年的利率是3.06%,定期三年的利率是3.69%,定期五年的利率是4.14%…… 生5:我们调查了存款的年利率(投影展示)
存期(整存整取)年利率 % 一年 2.25 二年 2.70 三年 3.24 四年 3.60 生6:我调查到存款要交利息税,另外教育储蓄不用交税。生7:把钱存入银行,取出来的还有银行要多付的一些钱。师:这些多出来的一部分钱有个专有名词叫什么? 生8:我知道是利息。
师:利息就是取款时银行所多支付的钱。
生9:我还知道利息的计算方法,利息=本金×期限×利率 师:真不错!你还知道了利息的计算方法。生10:我还知道支付方式。有现金支汇票支付。
生11:我知道在储蓄之前必须先填写存款单,而且每个银行的存款单都不一样的。
生12:我知道存款时必须要写清楚种类,你存的是人民币还是其他种类。……
师:同学们真了不起,了解了这么多。听到你们的汇报,老师了增长了许多知识。这节课你们想进一步研究哪些方面的知识? 生1:取钱的方法。生2:关于利息税的问题。生3:有关利息怎样计算? 生4:怎样进行抵押贷款? 生5:票汇是怎样进行的?……
师:综合大家的意见,看来同学们对利息与利息税有比较浓厚的学习兴趣,好,我们今天就来研究有关利息与利息税方面的问题。(板书:利息;利息税。)㈡探究新知
1、小组探讨
师:我们先来讨论利息与利息税的问题,在小组讨论的基础上,再进行全班的交流。
(学生小组交流、教师参与小组的讨论。)师:把你们探讨的结果全班交流。
生1:利息是把钱存入银行后,取出时多出的部分就是利息。比如2004年存入银行200元,到2005年就会得到200元多一些,多出的钱就是利息。
生2:利息越多,利息税就越多。
生3:我知道利息是怎样计算的:利息=本金×年限×利率
2、举例探究
师:老师知道同学们过年的时候,得到了一些压岁钱,你觉得怎样处理这些压岁钱呢? 生1:当然是存到银行了。
师:是啊!存到银行不但能支援国家建设。到期还能得到利息。根据存款的种类和时间的长短,利率是不一样的。咱们就以笑笑的300元为例,如果你有300元钱,打算怎样存款,你是怎么想的?
生2:我想存三年整存整取,时间长一些利息就会多的。生3:我存一年的整存整取,如果时间太长,需要用钱时取出来,就按活期存款计算利息了,那样利息就少了。师:你们知道的真多,活期存款的利率低一些。……
师:同学们想得很周到,我们存钱时应该根据自己的实际情况,确定怎样存。我们来看看淘气和笑笑说了什么吧。(出示课件:笑笑、淘气的压岁钱各得到300元,笑笑说:“我想存一年,整存整取。”淘气说:“我想存3年,整存整取。)”师:刚才同学们说的存款方式,到期后利息究竟是多少呢?我们一起来计算。
(教师给出计算利息公式:利息=本金×期限×利率,并给出年利率表,学生小组合作计算300元存一年和三年整存整取的利息)。
3、小组汇报
存一年:
存三年: 300×2.25%×1
300×3.24%×3 =6.75(元)
=29.16(元)
4、及时反馈
师提问:(以存一年为例),在这里300元表示什么?2.25%呢?1又表示什么?学生逐步回答后,老师继续追问:6.75又表示什么? 生:6.75表示存一年得到的利息。
师强调:300元就是存入银行的钱,叫做本金。(板:本金)
2.25%是年利率(板:年利率)
一年是期限(板:期限)
最后用 本金×年利率×期限 就能得到利息。
师边强调边整理好利息计算方法的公式。(板:利息=本金×年利率×期限)
师:6.75元就是300元存一年所得到银行付给笑笑的利息。教师再让学生以前面的说法为例,同桌互相说说存三年:300×3.24%×3=29.16(元)中的3.24%、300、3、29.16各表示什么。生:300表示本金,3.24%是存三年的年利率,3表示三年,29.16元是存三年所得到的利息。
5、利息税 课件出示
师:纳税是我们每个公民应尽的义务,按个人在银行所得到利息的20%纳税,请你算算,淘气和笑笑各应交多少利息税。笑笑:6.75×20%=1.35(元)淘气:29.16×20%=5.832(元)
师:那笑笑和淘气最后真正能得到的利息是多少元呢? 生计算:6.75-1.35=5.4(元)
29.16-5.832 =29.16-5.83 =23.33(元)
6、拓展
师引导学生在计算淘气和笑笑最后得到的利息时,还能利用什么方法更快算出得数,引导学生讨论出。存一年:300×2.25%×1×80%=5.4(元)存三年:300×3.24%×3×80%=23.33(元)
7、指导学生完成书上的小调查。
8、小练习。
小明的爸爸打算把5000元存入银行(两年后用),他如何存取才能得到更多的利息?
[设计说明:这是一个具有挑战性的实际问题,解决时需要用到上面调查的利率。教师首先可以引导学生思考存两年有多少种存法,然后直观估计一下哪种存法的利息多,再实际计算,可以鼓励学生进行全班交流。] ㈢延伸练习(教师课件出示)
1、李老师把2000元钱存入银行,整存整取5年,年利率是3.60%,利息税率为20%。到期后,李老师的本金和利息共有多少元?李老师交了多少利息税?
[明确什么时利息以及利息的计算公式。先求出利息=2000×3.60%×5=360(元),本金和利息的总和为2000+2000×3.60%×5=2360(元),李老师交的利息税为360×20%=72(元),李老师实得利息为360-72=288(元),这里实得利息是扣除利息税之后的部分。]
2、小华把得到的200元压岁钱存入银行,整存整取一年。她准备到期后将钱全部取出捐给“希望工程”。如果按年利率2.25%计算,到期后小华可以捐给“希望工程”多少钱?
㈣巩固新知、升华练习(教师课件出示)
甲乙两个品牌的语言学习机(甲标价370元,乙标价315元),出示情境:兰兰将350元人民币存入银行,整存整取2年期。银行整存整取2年期的利率是2.70%,两年后,他能买哪个品牌的学习机?
(学生计算后全班进行讨论。要先计算出2年后的本金和利息时多少,然后再比较,确定可以买哪个品牌的语言学习机。350×2.7%×2×(1-20%)+350=365.12(元),能买乙牌语言学习机。] [评析:此练习题的设计渗透了用数学比较的方法解决问题,这样教师不仅注意到巩固好所学知识,还注重到对学生数学方法运用的教学,达到知识与方法的统一。] ㈤游戏活动
师:现在每个小组都有一些百元的钱币,每个小组自行商量选出两个“银行工作人员”,另外两名学生当储户,让他们到喜欢的“银行”存上钱,两名工作人员可根据期限、本金、年利率算出储户的利息是多少元。每两名同学交换互玩一次。
[评析:游戏的设计以一个模拟的存钱情境,让学生能有机会用口表达本金、年利率、利息等词汇,又把百分数计算的知识在生活中具体化、生动化,提高了学生实际应用的能力,起到了知识与实际应用相结合的目的。] ㈥小结:
师:今天你学到了什么?
课题
百分数的应用
(四)的练习课
第 8 课时 学习目标
1、提高分析分数(百分数)乘法应用题数量关系的能力,并能比较熟练地解答分数(百分数)乘法应用题。
2、增强学生依法纳税的法律意识。教学重点:利息和税款的计算 教学难点:对所涉时间的理解 教学准备
一、揭题
师:这节课我们继续研究分数(百分数)应用题。
二、基本练习
1、复习:说说什么叫做利息、本金、利息税? 幻灯片、小黑板
2、求利息和利息税怎么求?
3、练习试一试:这是一个富有挑战的实际题目,先课前引导学生调查银行最近的利率。提问:两年有多少种存法,然后让学生估一估哪种存法的利息多,最后实际计算。
三、综合练习
1、第30页练习1---3 生独立解答,反馈。介绍自己的解题思路、分析数量关系。校对
2、编题
师:请根据自己的实际情况,编写一道类似的应用题。生独立编写应用题,并进行交流,评价。并根据所编的应用题进行解答。
四、总结 这节课有何收获?
五、作业设计
练习二
【教学内容】
北师大版小学数学第十一册P43-46 【教学目标】
1、通过练习,加强百分数的应用,能综合运用所学知识,解决问题。
2、进一步了解和掌握百分数的意义。【教学重点】
进一步提高学生运用百分数解决实际问题的能力,体会数学与日常生活的密切联系。【教具准备】 课件。
教学过程教学过程说明
一、谈话引入。
同学们,我们学习了百分数的应用,现在来看看遇到这些问题,你会不会用所学知识去解决。
一、基础练习
1、P31练习二和第1题
让学生先填表,然后指名说得数,集体订正。
2、第2题
解方程,挑选几题有代表性的题目,与学生一起探讨解题的方法。
3、练习二第3题
(1)10月份比9月份节约用水百分之几是什么意思?(2)需要知道什么量?
4、练习二第4题 学生自主完成,集体订正 师:什么叫孵化率? 孵化率是95%是什么意思? 不能孵出的占单位“1”的百分之几? 1-95%=5% 2400×5%=120(只)
5、练习二第5题
(1)先说题意,再独立完成。(2)集体订正
二、提高练习。
1、(自主学习天地)请学生完成“智慧树”的题。
再分题集体订正,并说出解题思路。
2、课本练习二第11题(1)先让学生看统计表(2)分小组讨论完成题目(3)指名小组代表解答。
3、P33思考题
师:要想知道哪个超市买更合算,先得求出分别到甲、瓶油的价格,再进行比较。甲:12×4=48(元)
买四送一,只需花4瓶的价格就可以买到5瓶油。
5乙超市买乙:12×5×0.85=51(元)每瓶12元,八五折 师:八五折是什么意思? 比较: 48<51 所以选择去甲超市
先让学生自主选择比较,再选择去哪个超市合算。
4、练习题(出示课件)学生独立完成。
四、课堂总结
通过今天的学习你有什么收获?
五、作业
第二篇:百分数应用题教案
百分数应用题的练习课教学设计
李良子小学 张 莹
练习目标:
1、通过知识的综合应用,加深学生对三类应用题的数量关系和内在联系的认识,提高学生的分析能力和解答应用题的能力。
2、体验解决问题策略的多样化,灵活解题。
3、培养学生学习数学的兴趣和用数学方法解决问题的意识。练习重点: 能抓住关键句,准确地分析、理解数量关系。练习难点:能正确解答百分数乘、除法应用题。教具准备 :小黑板。练习过程: 一:训练引入。
1、口算练习。
同学们,数学知识是人们在实际生活中产生的,我们学好它也是为了更好地为生活服务。今天我们一块上一节百分数应用题的练习课。(板书课题)
2、解答百分数应用题的方法是什么?(抓住分率句;找准单位“1”;画图来分析;列式不必急.)
二、基本练习
我们解答百分数应用题都是抓住关键句,让我们一块分析几个关键句。
(一)热热身:
读句子,找出单位“1”
1、白兔只数比黑兔多30%。
2、男生人数比女生少20%;
3、期中考试的数学的优秀率为86%
(二)小试身手:
李良子小学六年级有男生16人,女生28人,? 口答,补充条件并列式。
小结::求一个数是另一个数的百分之几用除法计算。
比较量 ÷标准量=分率(板书)
(三)初步展示 :
1、老师想向大家了解一些情况,你们愿意提供吗?你的体重是多少?
2、设问:你知道自己体内大约有多少血液在流动吗?
3、提供资料:人体中血液的质量约占体重的7%。试算自己体内的血液。
4、反馈:我的体重是()千克,体内大约有血液()千克。你是怎样计算的?
5、六年级有女生28人,占全校女生人数的35%,全校女生有多少人? 小结:求一个数的百分之几是多少用乘法计算;已知一个数的百分之几是多少,求这个数用除法,即标准量x分率=比较量、比较量÷分率=标准量(板书)
(四)亲临“沙场”: 只列式不解答:
(1)饲养场有白兔60只,灰兔比白兔少20%,有灰兔多少只?(2)饲养场有白兔60只,比灰兔少20%,有灰兔多少只?(3)饲养场有白兔60只,灰兔比白兔多20%,有灰兔多少只?(4)饲养场有白兔60只,比灰兔多20%,有灰兔多少只?
1、生画示意图、列式
2、分小组合作讨论,说说相同点,不同点。
(五)思如泉涌:看图编百分数应用题(学生口头编题)
(六)学以致用:
有一天,老师带了5000元钱到家电市场买电器,看见有一款家电组合,TCL彩电2000元,比音箱的价钱贵60%.DVD的价钱是彩电的80%,请你帮老师预算一下,老师带的钱够吗?
三、总结收获。
说说这节课你有什么收获。
第三篇:百分数应用题教案
百分数应用题(四)(参考教案二)
六年级数学教案 来源:网友提供 阅读:
百分数应用题(四)(参考教案二)
教学目标
1.在学生学习了解答“一个数是另一个数的百分之几”的应用题的基础上,学习“求一个数比另一个数多(或少)百分之几”的应用题,使学生初步掌握分析方法,能够正确解答此类应用题。
2.进一步提高学生分析、比较、解答应用题的能力,培养认真审题的好习惯。教学重点和难点
掌握求一个数比另一个数多(或少)百分之几这类应用题的分析方法;能够正确地进行列式。
教学过程设计(一)复习准备
1.解答“一个数是另一个数的百分之几”用什么方法?(用除法)2.解答“一个数是另一个数的百分之几”的应用题,关键是什么?(找应用题中的标准量,也就是单位“1”,谁是标准量,谁就做除数。)3.口答,只列式不计算。(用投影出示)(1)5是4的百分之几?4是5的百分之几?(2)甲数是50,乙数是40,甲数比乙数多多少?甲数比乙数多的数是乙数的百分之几?
(3)甲数是48,乙数是64,甲数比乙数少多少?甲数比乙数少的数是甲数的百分之几?
4.板书应用题。
一个乡去年计划造林12公顷,实际造林14公顷。实际造林是原计划的百分之几?
分析:通过读题,在这道题中,谁是标准量? 你是从哪句话中找出来的?应怎样列式呢?
如果将这道题的问题变为“实际造林比原计划多百分之几?”,应该怎样分析解答呢?这就是我们这节课要继续研究的比较复杂的百分数应用题。
板书课题:百分数应用题(二)学习新课
1.出示例3。
例3 一个乡去年计划造林12公顷,实际造林14公顷。实际造林比原计划多百分之几?
(1)学生默读题。
(2)例3与复习题4比较,有什么异同?
(两道题条件相同,问题不同。)问题不同在哪儿?(复习题4求的是实际造林是计划造林的百分之几,例3是求实际造林比原计划多百分之几。)教师在例3中用红笔画出“多”字。
(3)在这道题中,谁是单位“1”?是从哪句话中找到的?
教师用双引号画出单位“1”。
(4)求实际造林比原计划造林多百分之几是什么意思?学生分组讨论。(意思是:实际造林比原计划多的公顷数是原计划的百分之几?)板书:多的公顷数是计划的百分之几?
(5)根据多的公顷数是计划的百分之几这句话,怎样列文字表达式? 板书:
多的÷计划的(6)怎样列式计算呢?
板书:
(14-12)÷12 =2÷12 ≈0.167 =16.7%
答:实际造林比原计划多16.7%。问:14-12是在求什么?
问:为什么除以12,而不除以14呢?
(7)还有其它的解法吗?(学生讨论)汇报讨论结果:
板书:
14÷12-1 ≈1.167-1 =0.167 =16.7%
答:实际造林比原计划多16.7%。
问:14÷12得到的是什么?再减去1又得到什么?
2.把例3中的问题改为“原计划造林比实际造林少百分之几?”
问:你怎样理解“原计划造林比实际造林少百分之几”这句话的? 问:谁做单位“1”?(实际公顷数)问:怎样用文字算式表达? 板书:少的÷实际的 问:怎样列式计算? 投影订正:(14-12)÷14 =2÷14 ≈0.143 =14.3%
答:原计划造林比实际造林少14.3%。
问:14-12得到什么?为什么再除以14呢?
问:还有不同的解法吗? 板书:1-12÷14 问:为什么例3与改变后的题得数不同?(单位“1”不同。)问:这两道题有什么相同之处?(解题思路完全一样。)3.把例3的一个条件改变。
一个乡去年计划造林12公顷,实际造林比原计划多2公顷。实际造林比原计划多百分之几?
(1)学生独立思考解答。(2)指名说解题思路。(3)板书算式: 多的公顷数÷计划的 2÷12≈0.167=16.7%
答:实际造林比原计划多16.7%。
问:此题和例3相比较,哪儿相同,哪儿不同?(条件不同,问题相同,解题思路相同。)4.把3题的问题稍作改变。
一个乡去年计划造林12公顷,实际造林比原计划多2公顷。原计划造林比实际造林少百分之几?
(1)学生只列式不计算。(2)说解题思路。板书:少的÷实际的 2÷(12+2)(三)课堂总结
今天我们学习了什么知识?解决这类题的关键是什么?
师述:今天我们学习了求一个数比另一个数多(或少)百分之几的应用题。解决这类题的关键就是要找准单位“1”,然后根据问题列出文字算式来帮助大家列式计算。
(四)巩固反馈
1.分析下面每个问题的含义,然后列出文字表达式。(1)今年的产量比去年的产量增加了百分之几?(2)实际用电比计划节约了百分之几?
(3)十月份的利润比九月份的利润超过了百分之几?(4)1999年电视机的价格比1998年降低了百分之几?
(5)现在生产一个零件的时间比原来缩短了百分之几?(6)第二季度的产值比第一季度提高了百分之几?(7)十一月份比十月份超额完成了百分之几?(8)男生人数比女生人数多百分之几? 2.在练习本上只列式不计算。(投影出示)(1)某校有男生500人,女生450人。男生比女生多百分之几?
(2)某校有男生500人,女生450人。女生比男生少百分之几?
(3)一种机器零件,成本从2.4元降低到0.8元。成本降低了百分之几?
(4)某工厂计划制造拖拉机550台,比原计划超额了50台。超额了百分之几?
3.判断题。
男生比女生多20%,女生就比男生少20%。()课堂教学设计说明
本节课是在学生学习了一个数是另一个数的百分之几的基础上进行的。教学时抓住这一知识的连接点以旧引新,使学生很自然地由旧知识过渡到新知识。两个知识点连成一线,融会贯通。在新课教学中引导学生思考求比一个数多(或少)百分之几的题的解题思路,培养学生的分析能力。在教学方法上采取一题多变的方法,让学生在比较、区别中理解数量之间的关系,提高学生的辨别能力和思维水平。
板书设计
第四篇:百分数应用题教案
百分数应用题教案
教学目标
1.在学生学习了解答“一个数是另一个数的百分之几”的应用题的基础上,学习“求一个数比另一个数多(或少)百分之几”的应用题,使学生初步掌握分析方法,能够正确解答此类应用题。
2.进一步提高学生分析、比较、解答应用题的能力,培养认真审题的好习惯。
教学重点和难点
掌握求一个数比另一个数多(或少)百分之几这类应用题的分析方法;能够正确地进行列式。
教学准备:课 件 教学过程设计(一)复习准备 教师提问
1解答“一个数是另一个数的百分之几”用什么方法?(用除法)2.解答“一个数是另一个数的百分之几”的应用题,关键是什么?(找应用题中的标准量,也就是单位“1”,谁是标准量,谁就做除数。)3.口答,只列式不计算。(课件出示)
(1)、5是4的百分之几?4是5的百分之几?
(2)、六年级(1)班有男生20人,女生25人,男生是女生的百分之几?女生是全班的百分之几?
4.根据下列问句,先说就是求什么,再说数量关系,然后口头列式。(课件出示)
甲数是50,乙数是40。甲数比乙数多几分之几?
就是求 是 的几分之几。乙数比甲数少几分之几?
就是求 是 的几分之几。
一个乡去年计划造林12公顷,实际造林14公顷。实际造林是原计划的百分之几?
分析:通过读题,在这道题中,谁是标准量? 你是从哪句话中找出来的?应怎样列式呢? 如果将这道题的问题变为“实际造林比原计划多百分之几?”,应该怎样分析解答呢?这就是我们这节课要继续研究的比较复杂的百分数应用题。
板书课题:百分数应用题(二)学习新课 1.出示例3。
例3 一个乡去年计划造林12公顷,实际造林14公顷。实际造林比原计划多百分之几?
(1)学生默读题。
(2)例3与复习题4比较,有什么异同?(两道题条件相同,问题不同。)问题不同在哪儿?
(复习题4求的是实际造林是计划造林的百分之几,例3是求实际造林比原计划多百分之几。)教师在例3中用红笔画出“多”字。
(3)在这道题中,谁是单位“1”?是从哪句话中找到的? 教师用双引号画出单位“1”。
(4)求实际造林比原计划造林多百分之几是什么意思?学生分组讨论。
(意思是:实际造林比原计划多的公顷数是原计划的百分之几?)板书:多的公顷数是计划的百分之几?
(5)根据多的公顷数是计划的百分之几这句话怎样列文字表达式?
板书:多的÷计划的(6)怎样列式计算呢? =2÷12 ≈0.167 =16.7%
答:实际造林比原计划多16.7%。问:14-12是在求什么?
问:为什么除以12,而不除以14呢?(7)还有其它的解法吗?(学生讨论)汇报讨论结果: 板书: 14÷12-1 ≈1.167-1 =0.167 =16.7%
答:实际造林比原计划多16.7%。
问:14÷12得到的是什么?再减去1又得到什么? 2.把例3中的问题改为“原计划造林比实际造林少百分之几?” 问:你怎样理解“原计划造林比实际少百分之几”这句话的? 问:谁做单位“1”?(实际公顷数)问:怎样用文字算式表达? 板书:少的÷实际的 问:怎样列式计算? 投影订正:(14-12)÷14 =2÷14 ≈0.143 =14.3%
答:原计划造林比实际造林少14.3%。
问:14-12得到什么?为什么再除以14呢? 问:还有不同的解法吗? 板书:1-12÷14 问:为什么例3与改变后的题得数不同?(单位“1”不同。)问:这两道题有什么相同之处?(解题思路完全一样。)3.把例3的一个条件改变。
一个乡去年计划造林12公顷,实际造林比原计划多2公顷。实际造林比原计划多百分之几?
(1)学生独立思考解答。(2)指名说解题思路。(3)板书算式:
多的公顷数÷计划的 2÷12≈0.167=16.7%
答:实际造林比原计划多16.7%。
问:此题和例3相比较,哪儿相同,哪儿不同?(条件不同,问题相同,解题思路相同。)4.把3题的问题稍作改变。一个乡去年计划造林12公顷,实际造林比原计划多2公顷。原计划造林比实际造林少百分之几?
(1)学生只列式不计算。(2)说解题思路。板书:少的÷实际的 2÷(12+2)(三)课堂总结
今天我们学习了什么知识?解决这类题的关键是什么?
师述:今天我们学习了求一个数比另一个数多(或少)百分之几的应用题。解决这类题的关键就是要找准单位“1”,然后根据问题列出文字算式来帮助大家列式计算。
(四)巩固反馈
.分析下面每个问题的含义,然后列出文字表达式。(1)今年的产量比去年的产量增加了百分之几?(2)实际用电比计划节约了百分之几?
(3)十月份的利润比九月份的利润超过了百分之几?(4)1999年电视机的价格比1998年降低了百分之几?(5)现在生产一个零件的时间比原来缩短了百分之几?(6)第二季度的产值比第一季度提高了百分之几?(7)十一月份比十月份超额完成了百分之几?(8)男生人数比女生人数多百分之几?
2.在练习本上只列式不计算。(投影出示)(1)某校有男生500人,女生450人。男生比女生多百分之几?(2)某校有男生500人,女生450人。女生比男生少百分之几?(3)一种机器零件,成本从2.4元降低到0.8元。成本降低了百分之几?
(4)某工厂计划制造拖拉机550台,比原计划超额了50台。超额了百分之几?
3.判断题。
男生比女生多20%,女生就比男生少20%。()
第五篇:百分数应用题教案
百分数应用题教案
教学目标
1.在学生学习了解答“一个数是另一个数的百分之几”的应用题的基础上,学习“求一个数比另一个数多(或少)百分之几”的应用题,使学生初步掌握分析方法,能够正确解答此类应用题。
2.进一步提高学生分析、比较、解答应用题的能力,培养认真审题的好习惯。
教学重点和难点
掌握求一个数比另一个数多(或少)百分之几这类应用题的分析方法;能够正确地进行列式。
教学准备:课 件 教学过程设计(一)复习准备 教师提问
1解答“一个数是另一个数的百分之几”用什么方法?(用除法)2.解答“一个数是另一个数的百分之几”的应用题,关键是什么?(找应用题中的标准量,也就是单位“1”,谁是标准量,谁就做除数。)3.一个乡去年计划造林12公顷,实际造林14公顷。实际造林是原计划的百分之几?
分析:通过读题,在这道题中,谁是标准量? 你是从哪句话中找出来的?应怎样列式呢?
如果将这道题的问题变为“实际造林比原计划多百分之几?”,应该怎样分析解答呢?这就是我们这节课要继续研究的比较复杂的百分数应用题。
板书课题:百分数应用题(二)学习新课 1.出示例3。
例3 一个乡去年计划造林12公顷,实际造林14公顷。实际造林比原计划多百分之几?
(1)学生默读题。
(2)例3与复习题4比较,有什么异同?(两道题条件相同,问题不同。)问题不同在哪儿?
(复习题4求的是实际造林是计划造林的百分之几,例3是求实际造林比原计划多百分之几。)
锦江小学 桂珍 教师在例3中用红笔画出“多”字。
(3)在这道题中,谁是单位“1”?是从哪句话中找到的? 教师用双引号画出单位“1”。
(4)求实际造林比原计划造林多百分之几是什么意思?学生分组讨论。
(意思是:实际造林比原计划多的公顷数是原计划的百分之几?)板书:多的公顷数是计划的百分之几?
(5)根据多的公顷数是计划的百分之几这句话怎样列文字表达式?
板书:多的÷计划的(6)怎样列式计算呢?(14-12)÷12 ≈0.167 =16.7%
答:实际造林比原计划多16.7%。问:14-12是在求什么?
问:为什么除以12,而不除以14呢?(7)还有其它的解法吗?(学生讨论)汇报讨论结果: 板书:
14÷12-1 ≈1.167-1 =0.167 =16.7%
答:实际造林比原计划多16.7%。
问:14÷12得到的是什么?再减去1又得到什么?
2.把例3中的问题改为“原计划造林比实际造林少百分之几?” 问:你怎样理解“原计划造林比实际少百分之几”这句话的? 问:谁做单位“1”?(实际公顷数)问:怎样用文字算式表达? 板书:少的÷实际的 问:怎样列式计算? 投影订正:(14-12)÷14 =2÷14 ≈0.143 =14.3%
答:原计划造林比实际造林少14.3%。问:14-12得到什么?为什么再除以14呢? 问:还有不同的解法吗? 板书:1-12÷14 问:为什么例3与改变后的题得数不同?(单位“1”不同。)问:这两道题有什么相同之处?(解题思路完全一样。)3.把例3的一个条件改变。
一个乡去年计划造林12公顷,实际造林比原计划多2公顷。实际造林比原计划多百分之几?
(1)学生独立思考解答。(2)指名说解题思路。(3)板书算式:
多的公顷数÷计划的 2÷12≈0.167=16.7%
答:实际造林比原计划多16.7%。
问:此题和例3相比较,哪儿相同,哪儿不同?(条件不同,问题相同,解题思路相同。)4.把3题的问题稍作改变。
一个乡去年计划造林12公顷,实际造林比原计划多2公顷。原计划造林比实际造林少百分之几?
(1)学生只列式不计算。(2)说解题思路。板书:少的÷实际的 2÷(12+2)(三)课堂总结
今天我们学习了什么知识?解决这类题的关键是什么?
师述:今天我们学习了求一个数比另一个数多(或少)百分之几的应用题。解决这类题的关键就是要找准单位“1”,然后根据问题列出文字算式来帮助大家列式计算。
(四)巩固反馈
.分析下面每个问题的含义,然后列出文字表达式。(1)今年的产量比去年的产量增加了百分之几?(2)实际用电比计划节约了百分之几?
(3)十月份的利润比九月份的利润超过了百分之几?(4)1999年电视机的价格比1998年降低了百分之几?(5)现在生产一个零件的时间比原来缩短了百分之几?(6)第二季度的产值比第一季度提高了百分之几?(7)十一月份比十月份超额完成了百分之几?(8)男生人数比女生人数多百分之几? 2.在练习本上只列式不计算。(投影出示)(1)某校有男生500人,女生450人。男生比女生多百分之几?(2)某校有男生500人,女生450人。女生比男生少百分之几?(3)一种机器零件,成本从2.4元降低到0.8元。成本降低了百分之几?
(4)某工厂计划制造拖拉机550台,比原计划超额了50台。超额了百分之几?
3.判断题。
男生比女生多20%,女生就比男生少
20%。)(