第一篇:百分数应用题例4 教案初稿
教学内容:P90例3 教学目标:
1、知识与技能:使学生在已有知识的基础上,掌握求比一个数多(少)百分之几的数是多少的应用题的数量关系,掌握这类应用题的分析和解答的方法。培养学生类推、迁移的能力。
2、过程与方法:感受数学与生活的联系,提高学生解答应用题的能力。
3、情感态度与价值观:通过数学活动,激发学生学习数学的兴趣及运用数学知识的能力。
教学重点: 沟通百分数应用题与相应的分数应用题的联系,并能正确地解答。
教学难点:理解稍复杂的求比一个数多(少)百分之几的数是多少的应用题的数量关系及特点。预习要求:
1.找出关键句,写出单位“1” 2.能否利用线段图帮助分析数量关系 3.列式解答 教学过程: 1.复习
找出下面各题的单位“1”的量。(口答)
(1)三好学生占全班同学的1/3。
(2)六(1)班40名学生参加大扫除,其中37.5%的同学打扫教室。只列式不计算
学校图书室原有图书1400册,今年增加了3/25,增加了多少本图书? 学校图书室原有图书1400册,今年增加了3/25,现在图书室有多少图书? 学校图书室原有图书1400册,今年减少了3/25,减少了多少本图书? 学校图书室原有图书1400册,今年减少了3/25,现在图书室有多少图书? 师:都回答对了,看来同学们对分数应用题掌握的还是不错的。今天我们将要学习一个既新也旧的知识,是什么知识呢?我们一起来看看吧 2.新课
屏幕出示:学校图书室原有图书1400册,今年增加了3/25,现在图书室有多少图书?
师:这是刚才做过的只列式不计算其中的一道分数应用题,现在老师把其中的3/25这个分数,给变一变,看看会变成什么应用题?
屏幕出示:学校图书室原有图书1400册,今年增加了12%,现在图书室有多少图书? 师:现在它成了一道什么应用题? 生:百分数。
师:是的,它现在变成了一道百分数应用题。请同学们初步对比一下,推测有下百分数应用题与分数应用题有什么联系?
生1:或许他们的解题方法是一样的。只是一个是分数一个是百分数,而计算的时候我们把百分数化为分数来计算,最终它还是回归了分数应用题。生2:我还发现3/25就是12%。
师:同学们分析的很有道理,既然如此,那你们能利用这道题的关键句找出单位“1”吗?题目中的12%是谁的12%?并小组合作把这题的线段图简明地画出来借助线段图来分析一下这道题的数量关系自己来列式解答一下吗? 生:能。
师:现在就请同学说小组合作一起来解答一下吧。小组合作时间,老师巡视指导 小组汇报:
整组同学上台,屏幕出示解题过程 汇报:(结合线段图汇报)这道题的关键句是今年增加了12%,单位“1”是原来的图书数量。12%是增加的图书数量是原来的12%数量关系式是原来的图书数量+增加的图书数量=现在的图书数量。也就是求1400的12%是多少,用乘法计算,用1400*12%=168本 求出增加的部分。再把168+1400=1568本 求出现在有图书1568册。谁还有要补充的吗? 生:我还有其他方法
(结合线段图汇报)这道题的关键句是今年增加了12%。单位“1”是原来的图书数量。增加了原来的12%,1+12%=112%就是今年是原来的112%,数量关系式是原来的图书数量乘上今年图书册数占原有图书的(1+12%)=现在的图书数量 也就是求1400的112%是多少,列式1400*112%=1568本求出现在有图书1568本。还有其他补充吗?
师:同学们都用联系了过去的知识,自己喜欢的方法解出了这道题。非常好。那通过解这道题,你们现在能让学生说一说解题感受吗?分数应用题和百分数应用题的相同点和不同点? 生:他们的解题的思路是一样的。不同在于数据,一个是分数一个是百分数。小结:
师:没错,求一个数比另一个数多或少百分之几的应用题(板书课题)。与求一个数比另一个数多或少几分之几的应用题的解题思路一样。
所以说这既是一个新知识又是一个老知识。现在同学们对这样的解题方法是不是掌握的更牢固了呢?老师就出几道题来考考大家,愿意接受挑战吗? 练习:
一、对或错
1.甲数比乙数多35%,乙数比甲数少35%()
2.甲班男生占全班人数的53%,乙班男生也占全班人数的53%,甲,乙两班男生人数相等()3.现价比原价提高了10%,则现价是原价的110%()
二、找朋友
1.一个果园,去年生产了4500千克苹果,今年因为气候好,比去年增产了30%,今年生产了多少苹果?()
A 450 X 30%
B 450 X(1+30%)
2.一种化工原料,原来每吨生产成本是1250元,现在成本降低了20%,现在每吨成本是多少元? A 1250 X 20%
B 1250 X(1+20%)
3.园林工人去年共植树460棵,今年比去年多植树25%。今年比去年多植树多少棵?()两年一共植树多少棵?
()
A 460 X 25%
B 450+ 450 X(1+25%)
三、我是好帮手
小刚星期日和爸爸妈妈逛华强电器城,了解到以下信息:
原价:200元 原价:1000元 原价:280元
现价:降低30% 现价:降低15% 现价:降低25% 提问:小刚爸爸想买一台洗衣机,但身上只带了880元,你能帮他们算一算钱够不够买? 细心作答
四、先找单位1,再列出关系式,列式计算
1.一种小商品的原价是4.8元,现价比原价降低了20%,这种小商品的现价是多少元? 把()看做单位“1” 关系式:_______________________ 列式解答:___________________________ 2.一种小商品的现价是4.8元,现价比原价降低了20%,这种小商品的原价是多少元? 把()看做单位“1” 关系式:_______________________ 列式解答:___________________________ 有的学生用方程解有的用算术解
师:为什么第一题不用方程解?这道题可以用方程解?你是依据哪句话列方程? 请小组内商讨一下汇报
生:依据关键句,关键句是现价比原价降低了20%,他们的单位“1”都是原价,都是求一个数比另一个数多或少百分之几是多少,只是第一题的原价是已知的,直接相乘就可以了,第二题的原价是未知的,我们就把未知当成是已知的,所以设为X。用方程解答。同学们还有补充吗? 4.本课小结。
这节课,你有什么收获?
生:学会如何求一个数比另一个数多(少)百分之几的数是多少的应用题。它的解题方法和求一个数比另一个数多(少)几分之几的数是多少的应用题相同。可以有算数解也可以有方程解。
板书(贴)
求一个数比另一个数多(少)百分之几的数是多少的应用题 1.利用关键句找出单位“1”? 2.12%是谁的12% 3.借助线段图分析数量关系 4.关系式 5.列式解答
第二篇:百分数应用题教案
百分数应用题的练习课教学设计
李良子小学 张 莹
练习目标:
1、通过知识的综合应用,加深学生对三类应用题的数量关系和内在联系的认识,提高学生的分析能力和解答应用题的能力。
2、体验解决问题策略的多样化,灵活解题。
3、培养学生学习数学的兴趣和用数学方法解决问题的意识。练习重点: 能抓住关键句,准确地分析、理解数量关系。练习难点:能正确解答百分数乘、除法应用题。教具准备 :小黑板。练习过程: 一:训练引入。
1、口算练习。
同学们,数学知识是人们在实际生活中产生的,我们学好它也是为了更好地为生活服务。今天我们一块上一节百分数应用题的练习课。(板书课题)
2、解答百分数应用题的方法是什么?(抓住分率句;找准单位“1”;画图来分析;列式不必急.)
二、基本练习
我们解答百分数应用题都是抓住关键句,让我们一块分析几个关键句。
(一)热热身:
读句子,找出单位“1”
1、白兔只数比黑兔多30%。
2、男生人数比女生少20%;
3、期中考试的数学的优秀率为86%
(二)小试身手:
李良子小学六年级有男生16人,女生28人,? 口答,补充条件并列式。
小结::求一个数是另一个数的百分之几用除法计算。
比较量 ÷标准量=分率(板书)
(三)初步展示 :
1、老师想向大家了解一些情况,你们愿意提供吗?你的体重是多少?
2、设问:你知道自己体内大约有多少血液在流动吗?
3、提供资料:人体中血液的质量约占体重的7%。试算自己体内的血液。
4、反馈:我的体重是()千克,体内大约有血液()千克。你是怎样计算的?
5、六年级有女生28人,占全校女生人数的35%,全校女生有多少人? 小结:求一个数的百分之几是多少用乘法计算;已知一个数的百分之几是多少,求这个数用除法,即标准量x分率=比较量、比较量÷分率=标准量(板书)
(四)亲临“沙场”: 只列式不解答:
(1)饲养场有白兔60只,灰兔比白兔少20%,有灰兔多少只?(2)饲养场有白兔60只,比灰兔少20%,有灰兔多少只?(3)饲养场有白兔60只,灰兔比白兔多20%,有灰兔多少只?(4)饲养场有白兔60只,比灰兔多20%,有灰兔多少只?
1、生画示意图、列式
2、分小组合作讨论,说说相同点,不同点。
(五)思如泉涌:看图编百分数应用题(学生口头编题)
(六)学以致用:
有一天,老师带了5000元钱到家电市场买电器,看见有一款家电组合,TCL彩电2000元,比音箱的价钱贵60%.DVD的价钱是彩电的80%,请你帮老师预算一下,老师带的钱够吗?
三、总结收获。
说说这节课你有什么收获。
第三篇:百分数应用题教案
百分数应用题(四)(参考教案二)
六年级数学教案 来源:网友提供 阅读:
百分数应用题(四)(参考教案二)
教学目标
1.在学生学习了解答“一个数是另一个数的百分之几”的应用题的基础上,学习“求一个数比另一个数多(或少)百分之几”的应用题,使学生初步掌握分析方法,能够正确解答此类应用题。
2.进一步提高学生分析、比较、解答应用题的能力,培养认真审题的好习惯。教学重点和难点
掌握求一个数比另一个数多(或少)百分之几这类应用题的分析方法;能够正确地进行列式。
教学过程设计(一)复习准备
1.解答“一个数是另一个数的百分之几”用什么方法?(用除法)2.解答“一个数是另一个数的百分之几”的应用题,关键是什么?(找应用题中的标准量,也就是单位“1”,谁是标准量,谁就做除数。)3.口答,只列式不计算。(用投影出示)(1)5是4的百分之几?4是5的百分之几?(2)甲数是50,乙数是40,甲数比乙数多多少?甲数比乙数多的数是乙数的百分之几?
(3)甲数是48,乙数是64,甲数比乙数少多少?甲数比乙数少的数是甲数的百分之几?
4.板书应用题。
一个乡去年计划造林12公顷,实际造林14公顷。实际造林是原计划的百分之几?
分析:通过读题,在这道题中,谁是标准量? 你是从哪句话中找出来的?应怎样列式呢?
如果将这道题的问题变为“实际造林比原计划多百分之几?”,应该怎样分析解答呢?这就是我们这节课要继续研究的比较复杂的百分数应用题。
板书课题:百分数应用题(二)学习新课
1.出示例3。
例3 一个乡去年计划造林12公顷,实际造林14公顷。实际造林比原计划多百分之几?
(1)学生默读题。
(2)例3与复习题4比较,有什么异同?
(两道题条件相同,问题不同。)问题不同在哪儿?(复习题4求的是实际造林是计划造林的百分之几,例3是求实际造林比原计划多百分之几。)教师在例3中用红笔画出“多”字。
(3)在这道题中,谁是单位“1”?是从哪句话中找到的?
教师用双引号画出单位“1”。
(4)求实际造林比原计划造林多百分之几是什么意思?学生分组讨论。(意思是:实际造林比原计划多的公顷数是原计划的百分之几?)板书:多的公顷数是计划的百分之几?
(5)根据多的公顷数是计划的百分之几这句话,怎样列文字表达式? 板书:
多的÷计划的(6)怎样列式计算呢?
板书:
(14-12)÷12 =2÷12 ≈0.167 =16.7%
答:实际造林比原计划多16.7%。问:14-12是在求什么?
问:为什么除以12,而不除以14呢?
(7)还有其它的解法吗?(学生讨论)汇报讨论结果:
板书:
14÷12-1 ≈1.167-1 =0.167 =16.7%
答:实际造林比原计划多16.7%。
问:14÷12得到的是什么?再减去1又得到什么?
2.把例3中的问题改为“原计划造林比实际造林少百分之几?”
问:你怎样理解“原计划造林比实际造林少百分之几”这句话的? 问:谁做单位“1”?(实际公顷数)问:怎样用文字算式表达? 板书:少的÷实际的 问:怎样列式计算? 投影订正:(14-12)÷14 =2÷14 ≈0.143 =14.3%
答:原计划造林比实际造林少14.3%。
问:14-12得到什么?为什么再除以14呢?
问:还有不同的解法吗? 板书:1-12÷14 问:为什么例3与改变后的题得数不同?(单位“1”不同。)问:这两道题有什么相同之处?(解题思路完全一样。)3.把例3的一个条件改变。
一个乡去年计划造林12公顷,实际造林比原计划多2公顷。实际造林比原计划多百分之几?
(1)学生独立思考解答。(2)指名说解题思路。(3)板书算式: 多的公顷数÷计划的 2÷12≈0.167=16.7%
答:实际造林比原计划多16.7%。
问:此题和例3相比较,哪儿相同,哪儿不同?(条件不同,问题相同,解题思路相同。)4.把3题的问题稍作改变。
一个乡去年计划造林12公顷,实际造林比原计划多2公顷。原计划造林比实际造林少百分之几?
(1)学生只列式不计算。(2)说解题思路。板书:少的÷实际的 2÷(12+2)(三)课堂总结
今天我们学习了什么知识?解决这类题的关键是什么?
师述:今天我们学习了求一个数比另一个数多(或少)百分之几的应用题。解决这类题的关键就是要找准单位“1”,然后根据问题列出文字算式来帮助大家列式计算。
(四)巩固反馈
1.分析下面每个问题的含义,然后列出文字表达式。(1)今年的产量比去年的产量增加了百分之几?(2)实际用电比计划节约了百分之几?
(3)十月份的利润比九月份的利润超过了百分之几?(4)1999年电视机的价格比1998年降低了百分之几?
(5)现在生产一个零件的时间比原来缩短了百分之几?(6)第二季度的产值比第一季度提高了百分之几?(7)十一月份比十月份超额完成了百分之几?(8)男生人数比女生人数多百分之几? 2.在练习本上只列式不计算。(投影出示)(1)某校有男生500人,女生450人。男生比女生多百分之几?
(2)某校有男生500人,女生450人。女生比男生少百分之几?
(3)一种机器零件,成本从2.4元降低到0.8元。成本降低了百分之几?
(4)某工厂计划制造拖拉机550台,比原计划超额了50台。超额了百分之几?
3.判断题。
男生比女生多20%,女生就比男生少20%。()课堂教学设计说明
本节课是在学生学习了一个数是另一个数的百分之几的基础上进行的。教学时抓住这一知识的连接点以旧引新,使学生很自然地由旧知识过渡到新知识。两个知识点连成一线,融会贯通。在新课教学中引导学生思考求比一个数多(或少)百分之几的题的解题思路,培养学生的分析能力。在教学方法上采取一题多变的方法,让学生在比较、区别中理解数量之间的关系,提高学生的辨别能力和思维水平。
板书设计
第四篇:百分数应用题教案
百分数应用题教案
教学目标
1.在学生学习了解答“一个数是另一个数的百分之几”的应用题的基础上,学习“求一个数比另一个数多(或少)百分之几”的应用题,使学生初步掌握分析方法,能够正确解答此类应用题。
2.进一步提高学生分析、比较、解答应用题的能力,培养认真审题的好习惯。
教学重点和难点
掌握求一个数比另一个数多(或少)百分之几这类应用题的分析方法;能够正确地进行列式。
教学准备:课 件 教学过程设计(一)复习准备 教师提问
1解答“一个数是另一个数的百分之几”用什么方法?(用除法)2.解答“一个数是另一个数的百分之几”的应用题,关键是什么?(找应用题中的标准量,也就是单位“1”,谁是标准量,谁就做除数。)3.口答,只列式不计算。(课件出示)
(1)、5是4的百分之几?4是5的百分之几?
(2)、六年级(1)班有男生20人,女生25人,男生是女生的百分之几?女生是全班的百分之几?
4.根据下列问句,先说就是求什么,再说数量关系,然后口头列式。(课件出示)
甲数是50,乙数是40。甲数比乙数多几分之几?
就是求 是 的几分之几。乙数比甲数少几分之几?
就是求 是 的几分之几。
一个乡去年计划造林12公顷,实际造林14公顷。实际造林是原计划的百分之几?
分析:通过读题,在这道题中,谁是标准量? 你是从哪句话中找出来的?应怎样列式呢? 如果将这道题的问题变为“实际造林比原计划多百分之几?”,应该怎样分析解答呢?这就是我们这节课要继续研究的比较复杂的百分数应用题。
板书课题:百分数应用题(二)学习新课 1.出示例3。
例3 一个乡去年计划造林12公顷,实际造林14公顷。实际造林比原计划多百分之几?
(1)学生默读题。
(2)例3与复习题4比较,有什么异同?(两道题条件相同,问题不同。)问题不同在哪儿?
(复习题4求的是实际造林是计划造林的百分之几,例3是求实际造林比原计划多百分之几。)教师在例3中用红笔画出“多”字。
(3)在这道题中,谁是单位“1”?是从哪句话中找到的? 教师用双引号画出单位“1”。
(4)求实际造林比原计划造林多百分之几是什么意思?学生分组讨论。
(意思是:实际造林比原计划多的公顷数是原计划的百分之几?)板书:多的公顷数是计划的百分之几?
(5)根据多的公顷数是计划的百分之几这句话怎样列文字表达式?
板书:多的÷计划的(6)怎样列式计算呢? =2÷12 ≈0.167 =16.7%
答:实际造林比原计划多16.7%。问:14-12是在求什么?
问:为什么除以12,而不除以14呢?(7)还有其它的解法吗?(学生讨论)汇报讨论结果: 板书: 14÷12-1 ≈1.167-1 =0.167 =16.7%
答:实际造林比原计划多16.7%。
问:14÷12得到的是什么?再减去1又得到什么? 2.把例3中的问题改为“原计划造林比实际造林少百分之几?” 问:你怎样理解“原计划造林比实际少百分之几”这句话的? 问:谁做单位“1”?(实际公顷数)问:怎样用文字算式表达? 板书:少的÷实际的 问:怎样列式计算? 投影订正:(14-12)÷14 =2÷14 ≈0.143 =14.3%
答:原计划造林比实际造林少14.3%。
问:14-12得到什么?为什么再除以14呢? 问:还有不同的解法吗? 板书:1-12÷14 问:为什么例3与改变后的题得数不同?(单位“1”不同。)问:这两道题有什么相同之处?(解题思路完全一样。)3.把例3的一个条件改变。
一个乡去年计划造林12公顷,实际造林比原计划多2公顷。实际造林比原计划多百分之几?
(1)学生独立思考解答。(2)指名说解题思路。(3)板书算式:
多的公顷数÷计划的 2÷12≈0.167=16.7%
答:实际造林比原计划多16.7%。
问:此题和例3相比较,哪儿相同,哪儿不同?(条件不同,问题相同,解题思路相同。)4.把3题的问题稍作改变。一个乡去年计划造林12公顷,实际造林比原计划多2公顷。原计划造林比实际造林少百分之几?
(1)学生只列式不计算。(2)说解题思路。板书:少的÷实际的 2÷(12+2)(三)课堂总结
今天我们学习了什么知识?解决这类题的关键是什么?
师述:今天我们学习了求一个数比另一个数多(或少)百分之几的应用题。解决这类题的关键就是要找准单位“1”,然后根据问题列出文字算式来帮助大家列式计算。
(四)巩固反馈
.分析下面每个问题的含义,然后列出文字表达式。(1)今年的产量比去年的产量增加了百分之几?(2)实际用电比计划节约了百分之几?
(3)十月份的利润比九月份的利润超过了百分之几?(4)1999年电视机的价格比1998年降低了百分之几?(5)现在生产一个零件的时间比原来缩短了百分之几?(6)第二季度的产值比第一季度提高了百分之几?(7)十一月份比十月份超额完成了百分之几?(8)男生人数比女生人数多百分之几?
2.在练习本上只列式不计算。(投影出示)(1)某校有男生500人,女生450人。男生比女生多百分之几?(2)某校有男生500人,女生450人。女生比男生少百分之几?(3)一种机器零件,成本从2.4元降低到0.8元。成本降低了百分之几?
(4)某工厂计划制造拖拉机550台,比原计划超额了50台。超额了百分之几?
3.判断题。
男生比女生多20%,女生就比男生少20%。()
第五篇:百分数应用题教案
百分数应用题教案
教学目标
1.在学生学习了解答“一个数是另一个数的百分之几”的应用题的基础上,学习“求一个数比另一个数多(或少)百分之几”的应用题,使学生初步掌握分析方法,能够正确解答此类应用题。
2.进一步提高学生分析、比较、解答应用题的能力,培养认真审题的好习惯。
教学重点和难点
掌握求一个数比另一个数多(或少)百分之几这类应用题的分析方法;能够正确地进行列式。
教学准备:课 件 教学过程设计(一)复习准备 教师提问
1解答“一个数是另一个数的百分之几”用什么方法?(用除法)2.解答“一个数是另一个数的百分之几”的应用题,关键是什么?(找应用题中的标准量,也就是单位“1”,谁是标准量,谁就做除数。)3.一个乡去年计划造林12公顷,实际造林14公顷。实际造林是原计划的百分之几?
分析:通过读题,在这道题中,谁是标准量? 你是从哪句话中找出来的?应怎样列式呢?
如果将这道题的问题变为“实际造林比原计划多百分之几?”,应该怎样分析解答呢?这就是我们这节课要继续研究的比较复杂的百分数应用题。
板书课题:百分数应用题(二)学习新课 1.出示例3。
例3 一个乡去年计划造林12公顷,实际造林14公顷。实际造林比原计划多百分之几?
(1)学生默读题。
(2)例3与复习题4比较,有什么异同?(两道题条件相同,问题不同。)问题不同在哪儿?
(复习题4求的是实际造林是计划造林的百分之几,例3是求实际造林比原计划多百分之几。)
锦江小学 桂珍 教师在例3中用红笔画出“多”字。
(3)在这道题中,谁是单位“1”?是从哪句话中找到的? 教师用双引号画出单位“1”。
(4)求实际造林比原计划造林多百分之几是什么意思?学生分组讨论。
(意思是:实际造林比原计划多的公顷数是原计划的百分之几?)板书:多的公顷数是计划的百分之几?
(5)根据多的公顷数是计划的百分之几这句话怎样列文字表达式?
板书:多的÷计划的(6)怎样列式计算呢?(14-12)÷12 ≈0.167 =16.7%
答:实际造林比原计划多16.7%。问:14-12是在求什么?
问:为什么除以12,而不除以14呢?(7)还有其它的解法吗?(学生讨论)汇报讨论结果: 板书:
14÷12-1 ≈1.167-1 =0.167 =16.7%
答:实际造林比原计划多16.7%。
问:14÷12得到的是什么?再减去1又得到什么?
2.把例3中的问题改为“原计划造林比实际造林少百分之几?” 问:你怎样理解“原计划造林比实际少百分之几”这句话的? 问:谁做单位“1”?(实际公顷数)问:怎样用文字算式表达? 板书:少的÷实际的 问:怎样列式计算? 投影订正:(14-12)÷14 =2÷14 ≈0.143 =14.3%
答:原计划造林比实际造林少14.3%。问:14-12得到什么?为什么再除以14呢? 问:还有不同的解法吗? 板书:1-12÷14 问:为什么例3与改变后的题得数不同?(单位“1”不同。)问:这两道题有什么相同之处?(解题思路完全一样。)3.把例3的一个条件改变。
一个乡去年计划造林12公顷,实际造林比原计划多2公顷。实际造林比原计划多百分之几?
(1)学生独立思考解答。(2)指名说解题思路。(3)板书算式:
多的公顷数÷计划的 2÷12≈0.167=16.7%
答:实际造林比原计划多16.7%。
问:此题和例3相比较,哪儿相同,哪儿不同?(条件不同,问题相同,解题思路相同。)4.把3题的问题稍作改变。
一个乡去年计划造林12公顷,实际造林比原计划多2公顷。原计划造林比实际造林少百分之几?
(1)学生只列式不计算。(2)说解题思路。板书:少的÷实际的 2÷(12+2)(三)课堂总结
今天我们学习了什么知识?解决这类题的关键是什么?
师述:今天我们学习了求一个数比另一个数多(或少)百分之几的应用题。解决这类题的关键就是要找准单位“1”,然后根据问题列出文字算式来帮助大家列式计算。
(四)巩固反馈
.分析下面每个问题的含义,然后列出文字表达式。(1)今年的产量比去年的产量增加了百分之几?(2)实际用电比计划节约了百分之几?
(3)十月份的利润比九月份的利润超过了百分之几?(4)1999年电视机的价格比1998年降低了百分之几?(5)现在生产一个零件的时间比原来缩短了百分之几?(6)第二季度的产值比第一季度提高了百分之几?(7)十一月份比十月份超额完成了百分之几?(8)男生人数比女生人数多百分之几? 2.在练习本上只列式不计算。(投影出示)(1)某校有男生500人,女生450人。男生比女生多百分之几?(2)某校有男生500人,女生450人。女生比男生少百分之几?(3)一种机器零件,成本从2.4元降低到0.8元。成本降低了百分之几?
(4)某工厂计划制造拖拉机550台,比原计划超额了50台。超额了百分之几?
3.判断题。
男生比女生多20%,女生就比男生少
20%。)(