第一篇:数字逻辑设计及应用课程教学大纲
《数字逻辑设计及应用》课程教学大纲
课程编号:53000540
适用专业:电子信息类专业(包括通信工程、网络工程、信息工程、电子信息工程、信息对抗技术、电磁场与天线技术、电波传播与天线、电子科学技术、集成电路设计与集成系统、微电子学、应用物理学、电子信息科学与技术、真空电子技术、光信息科学与技术、信息显示与光电技术、测控技术与仪器、自动化、自动化(电力系统自动化)、环境工程、机械设计制造及其自动化、电气工程及其自动化、工业工程、生物医学工程、管理-电子工程复合培养实验班。)
学 时 数:64
学 分 数:4
开课学期:第4学期
先修课程:《高等数学》、《电路分析基础》、《模拟电路基础》 执 笔 者: 姜书艳
编写日期:2010.1
审核人(教学副院长):
一、课程性质和目标
授课对象:全日制大学本科二年级 课程类别:学科基础课
教学目标(本课程对实现培养目标的作用;学生通过学习该课程后,在思想、知识、能力和素质等方面应达到的目标):
“数字逻辑设计及应用”课程是电子信息类专业所共有的一门重要学科基础课程,同时也是一门重要工程技术课程,是研究数字系统设计的入门课程。通过本课程的学习,使学生掌握数字逻辑电路的基本理论和基本分析方法,为学习后续课程准备必要的电路知识。本课程在培养学生严肃认真的科学作风和抽象思维能力、分析计算能力、总结归纳能力等方面起重要作用。在本课程中,将介绍数字逻辑电路的分析设计方法和基本的系统设计技巧;培养同学综合运用知识分析解决问题的能力和在工程性设计方面的基本素养。通过实验和课外上机实验的方式,使同学深入了解和掌握数字逻辑电路的设计分析方法和电路的运用过程。
二、课程内容安排和要求
(一)教学内容、要求及教学方法
1.课堂理论教学(64学时)第一章 引论(1学时)
了解:数字逻辑电路的特点、数字逻辑电路在电子系统设计中的地位、数字逻辑电路与模拟电子电路之间的关系、简单介绍EDA设计工具、HDL语言对数字逻辑设计作用和影响。第二章 数系与代码(5学时)
掌握:十进制、二进制、八进制和十六进制数的表示方法以及它们之间的相互转换、非十进制数的加减运算;
掌握:符号数的表达:符号-数值码(Signed-Magnitude System、原码),二进制补码(two's complement,补码)、二进制反码(ones' complement, 反码)表示以及它们之间的相互转换; 掌握:带符号数的补码的加减运算;BCD码(Binary Codes for Decimal numbers)、格雷码(Gray code、葛莱码)的特点,它们与二进制数之间的转换关系; 理解:二进制数的浮点数表达(补充);
了解:字符的代码表示,二进制代码在状态、条件等的表示方面的应用; 第三章 数字电路(6学时)
掌握:正负逻辑的概念;CMOS逻辑电平和噪声容限,扇出特性;
掌握:利用PSPICE仿真CMOS基本逻辑门的静态特性和动态特性、了解电路结构和负载特性对逻辑门静态特性和动态特性的影响。
理解:CMOS逻辑反相器、与非门、或非门、非反相门、与或非门电路的结构;
理解:CMOS逻辑电路的其他稳态电气特性:带电阻性负载的电路特性、非理想输入时的电路特性、负载效应、不用的输入端及等效的输入、输出电路模型; 理解:动态电气特性:转换时间、传播延迟、电流尖峰;
理解:特殊的输入输出电路结构:CMOS传输门、施密特触发器输入结构、三态输出结构、漏极开路输出结构;
了解:作为电子开关运用的二极管、双极型晶体管、MOS场效应管的工作方式; 了解:其他类型的逻辑电路:TTL,ECL等;
了解:不同类型、不同工作电压的逻辑电路的输入输出逻辑电平规范值以及它们之间的连接配合的问题。
第四章 组合逻辑设计原理(10学时)
掌握:逻辑代数的公理、定理,对偶关系、反演关系、香浓展开定理,以及在逻辑代数化简时的作用;
掌握:逻辑函数的表达形式:积之和与和之积标准型、真值表、逻辑表达式,以及各种表达形式之间的关系;
掌握:逻辑函数的基本运算:相加(或)、相乘(与)、对偶、反演;异或、同或运算的公式、性质及其相互关系(补充);
掌握:组合电路的分析:穷举法和代数法;代数法逻辑函数表达式的产生过程及逻辑函数表达式的基本化简方法—函数化简方法和卡诺图化简方法;
掌握:组合电路的综合过程:将功能叙述表达为组合逻辑函数的表达形式、使用与非门、或非门表达的逻辑函数表达式、逻辑函数的最简表达形式及综合设计的其他问题:无关项(don’t-care terms)的处理、多输出(multiple-output)逻辑化简的方法和定时冒险(timing hazards)问题。掌握:学习使用QuatusII(MAX+plusII)工具,利用图形法和波形法进行数字逻辑电路仿真;对定时冒险电路进行仿真分析,加强对定时冒险现象的分析理解能力。理解:组合逻辑电路和时序逻辑电路的基本概念;逻辑代数化简时的几个概念:蕴含项(implicant)、主蕴含项(prime implicant)、奇异“ 1 ”单元(distinguished 1-cell)、质主蕴含项(essential prime implicant);五变量及以上逻辑函数卡诺图化简方法; 了解:开集(on-set)、闭集(off-set)的概念;
第五章 硬件描述语言(4学时)了解:HDL工具组、设计流程
掌握:Verilog语言的语法结构和特点,会使用Verilog语言编写数字逻辑电路相关的程序 第五章 组合逻辑设计实践(12学时)
掌握:利用基本的逻辑门完成规定的组合逻辑电路的设计任务:如译码器、编码器、多路选择器、多路分配器、异或门、比较器、全加器;
掌握:利用基本的逻辑门和已有的中规模集成电路(MSI)逻辑器件如译码器、编码器、多路选择器、多路分配器、异或门、比较器、全加器、三态器件等作为设计的基本元素完成更为复杂的组合逻辑电路设计的方法; 掌握:利用QuatusII文本法等(Verilog语言)进行组合电路基本功能单元仿真,加深对基本功能单元功能作用的理解;对教材中大型例题进行仿真分析,加强对大型综合性设计的分析理解能力。理解:等效门符号(摩根定理)(Equivalent Gate Symbols under the Generalized Demorgan’s Theorem);信号名和有效电平(Signal Name and Active Levels);“圈到圈”的逻辑设计(Bubble-to-Bubble Logic Design);电路定时(Circuit Timing);Parity Circuit(奇偶校验电路)的原理、应用; 了解:文档标准。
第七章 时序逻辑设计原理(10学时)
掌握:基本时序元件R-S型、D型锁存器以及D型、J-K型、T型触发器的电路结构、工作原理、时序特性、功能表、特征方程表达式,不同触发器之间的相互转换;
掌握:钟控同步状态机的模型图,状态机类型及基本分析方法和步骤,使用状态图表示状态机状态转换关系;
掌握:时序状态机的设计:状态转换过程的建立,状态的化简与编码赋值、未用状态的处理-最小风险方案和最小代价方案、使用状态转换表的设计方法、使用状态图的设计方法。
掌握:利用QuatusII文本法等(Verilog语言)对各种类型触发器进行仿真,加深对各种类型触发器功能作用的理解;学会用Verilog语言设计时序电路。理解:扫描触发器(Scan Flip-Flop)特性及基本应用;
理解:组合逻辑电路和时序逻辑电路的基本概念;有限状态机(Finite-State Machine)、时钟触发沿(Clock Tick)、占空比(Duty Cycle)的含义;基本双稳态元件(Bistable Elements)的结构和亚稳态特性(Metastable Behavior);锁存器(Latches)与触发器(Flip-Flops)的区别;主从触发器与边沿结构触发器的区别;触发器的定时参数(Timing Parameters):建立时间和保持时间的概念;时序逻辑电路的分类; 了解:时序电路设计中的其他的设计方法。第八章 时序逻辑设计实践(10学时)
掌握:利用基本的逻辑门、时序元件作为设计的基本元素完成规定的钟控同步状态机电路的设计任务:计数器、位移寄存器、序列检测电路和序列发生器的设计;
掌握:利用基本的逻辑门和已有的中规模集成电路(MSI)时序功能器件作为设计的基本元素完成更为复杂的时序逻辑电路设计的方法。
掌握:利用QuatusII(MAX+plusII)文本法等(Verilog语言)进行时序电路基本功能单元仿真,加深对基本功能单元功能作用的理解;对教材中大型例题进行仿真分析,加强对大型综合性设计的分析理解能力。
理解:开关消抖(Switch Debouncing)电路、总线保持电路(Bus Holder Circuit)原理;寄存器(register)和锁存器(latch)的区别;计数器的分类;移位寄存器型计数器(Shift-Register Counters):环形计数器(Ring Counter)和扭环计数器(Twisted-Ring Counters)的电路结构工作原理及应用;修改成自启动的方法;线性反馈移位寄存器(LFSR)计数器的特点、设计方法及应用;串/并转换(Serial-to-Parallel Conversion)原理;迭代与时序电路(Iterative versus Sequential Circuits);
了解:时序电路文档标准(Sequential-Circuit Documentation Standards);时序电路设计中的其他问题:大型时序电路的结构划分,时钟偏移(Clock Skew),异步输入处理等。第十章 存储器及其在数字逻辑系统实现中的运用(2学时)
了解:存储器(ROM,SRAM)的基本工作原理和结构; 理解:存储器在数字逻辑系统设计的硬件实现中的运用。第十一章 其他的实际问题(2学时)
了解:数字逻辑电路(组合电路和时序逻辑电路)设计的描述说明方法;
了解:数字逻辑系统设计的其他问题:数字逻辑设计中设计工具的作用、设计的可测试性问题、数字逻辑系统可靠性的问题、高速数字逻辑系统中信号传输的相关问题。
补充内容 模数转换器、数模转换器(ADC/DAC)原理及应用简介(2学时)
理解:数字-模拟转换器(Digit to Analog Convertor,DAC))的基本电路结构(R-2R结构的DAC),工作原理;
理解:模拟-数字转换器(Analog to Digit Convertor,ADC)的基本电路结构(逐次逼近式的ADC),工作原理;
理解:模拟-数字转换器、数字-模拟转换器(ADC/DAC)在电子系统中的作用和应用,特别是在波形发生方面的运用。
(关于应达到要求的说明:“了解”:是指学生应能辨认的科学事实、概念、原则、术语,知道事物的分类、过程及变化倾向,包括必要的记忆;“理解”:是指学生能用自己的语言把学过的知识加以叙述、解释、归纳,并能把某一事实或概念分解为若干部分,指出它们之间的内在联系或与其他事物的相互关系;“掌握”:是指学生能根据不同情况对某些概念、定律、原理、方法等在正确理解的基础上结合事例加以运用,包括分析和综合。)
(二)自学内容和要求
1、学习使用PSPICE电路CAD工具,利用PSPICE仿真CMOS基本逻辑门的静态特性和动态特性、了解电路结构和负载特性对逻辑门静态特性和动态特性的影响。
2、学习使用QuatusII(MAX+plusII)等工具,利用QuatusII(MAX+plusII)等工具进行数字逻辑电路仿真的基本方法;进行基本组合电路基本功能单元,时序电路的基本功能单元进行仿真,加深对基本功能单元功能作用的理解;对教材中大型例题进行仿真分析,加强对大型综合性设计的分析理解能力。
(三)实践性教学环节和要求
实验教学(12学时)
实验目的:研究典型数字集成电路的功能及扩展方法;掌握其测试方法;根据实验要求进行电路设计和测试。实验内容:根据数字集成电路的特点,进行基本功能单元试验,包括组合电路基本功能单元的实验,时序电路的基本功能单元的实验及数字电路综合设计性设计试验。实验上机(课外)(16学时)
实验目的:通过使用CAD设计工具 PSPICE、QuatusII(MAX+plusII)等对教材中相关例题的分析,加深对教材内容的理解,更好地掌握相关知识。实验内容见自学内容和要求。
三、考核方式
本课程的考核方式为:平时考核10%:包括平时作业及随堂考核成绩;课程设计10%;中期考核20%;期末考核60%。
平时作业习题:基本采用教材习题,每章结束上交,批改后进行针对性讲解,并给出参考解答;随堂考核:每课一题,每次内容讲解的课上布置,自备一页纸完成,要求当堂完成上交,只检查,不返回;课程设计:综合性考查,组合电路和时序电路各进行一次,要求完成后上交;
四、建议教材及参考资料
教材:
数字设计—原理与实践(第4版 影印版),John F.Wakerly,高等教育出版社
2007 参考资料:
1.数字逻辑设计及应用,姜书艳主编,清华大学出版社,2007
2.数字电子技术基础(第5版),阎石主编,高等教育出版社,2007 3.数字设计—原理与实践(第4版),John F.Wakerly,林生 等译,机械工业出版社,2007 4.数字电路与系统(第2版),刘宝琴等编著,清华大学出版社,2007 相关学习网站:
http://125.71.228.222/wlxt/listcourse.asp?courseid=0170:电子科技大学/互动教学空间/网络学堂/电子工程学院/数字逻辑设计及应用
www.xiexiebang.com/onekey/:包含教材中的所有图表、占教材中半数以上的部分习题解答 www.xiexiebang.com: 部分习题解答
www.xiexiebang.com/programs.univ:Xilinx的大学计划,提供了大量的产品资料、课程资料以及用于数字设计实验课程的芯片和插件
www.xiexiebang.com/education/university:Aldec的教育计划,提供了Aldec自己的软件包和第三方的兼容工具以及原型系统。
第二篇:数字逻辑设计及应用教学大纲
《电子信息工程》专业教学大纲
《数字逻辑设计及应用》课程教学大纲
课程编号:53000540 学时:64 学分:4 课外上机:16学时
先修课程:《高等数学》、《电路分析基础》、《模拟电路基础》 教材: 《DIGITAL DESIGN---Principles & Practices》(Third Edition),John F.Wakerly,高等教育出版社,2001年5月
《数字设计—原理与实践》(原书第三版)John F.Wakerly 林生 等译 机械工业出版社 2003年8月
一、课程的性质和任务
本课程是通讯工程、电子信息工程、测控技术与仪器、自动化、生物医学工程等多个专业方向所共有的一门重要技术基础课。
要求学生通过本课程学习掌握数字逻辑电路的基本原理与特性、数字逻辑电路的基本分析方法、数字逻辑电路设计和综合的基本技能、常用数字电路功能单元的实际应用技巧。
同时要求同学能够理解数字逻辑电路与模拟电路之间的密切关系,了解EDA技术对于数字逻辑电路设计分析的重大意义。
二、教学内容和要求
1.课堂理论教学(62学时)第一章 引论(2学时)
介绍数字逻辑电路的特点、数字逻辑电路在电子系统设计中的地位、数字逻辑电路与模拟电子电路之间的关系、简单介绍EDA设计工具、VHDL语言对数字逻辑设计作用和影响。
第二章 数系与代码(6学时)
重点学习掌握: 《电子信息工程》专业教学大纲
十进制、二进制、八进制和十六进制数的表示方法以及它们之间的相互转换、非十进制数的加减运算;
符号数的表达:符号-数值码(Signed-Magnitude System、原码),二进制补码(two's complement,补码)、二进制反码(ones' complement, 反码)表示以及它们之间的相互转换;带符号数的补码的加减运算;
BCD码(Binary Codes for Decimal numbers)、格雷码(Gray code、葛莱码)的特点,它们与二进制数之间的转换关系;
二进制数的浮点数表达(补充); 学习了解:
字符的代码表示,二进制代码在状态,条件等的表示方面的应用;
第三章 数字电路(4学时)
重点学习掌握:
作为电子开关运用的二极管、双极型晶体管、MOS场效应管的工作方式;以CMOS倒相器电路的构成及工作状态分析;
逻辑电路的静态、动态特性分析,等价的输入、输出模型; 学习理解:
特殊的输入输出电路结构:CMOS传输门、施密特触发器输入结构、三态输出结构、漏极开路输出结构;学习了解其他类型的逻辑电路: TTL,ECL等;
不同类型、不同工作电压的逻辑电路的输入输出逻辑电平规范值以及它们之间的连接配合的问题。
第四章 组合逻辑设计原理(10学时)
重点学习掌握: 逻辑代数的公理、定理,对偶关系,以及在逻辑代数化简时的作用; 逻辑函数的表达形式:积之和与和之积标准型、真值表; 组合电路的分析:逻辑函数表达式的产生过程及逻辑函数表达式的基本化简方法—函数化简方法;
组合电路的综合过程:将功能叙述表达为组合逻辑函数的表达形式、逻辑函数表达式的化简—函数化简方法和卡诺图化简方法、使用与非门、或非门表达的逻辑函数表达式、逻辑函数的最简表达形式及综合设计的其他问题:无关项的处理、冒险问题和多输出逻辑化简的方法。第五章 组合逻辑设计实践(10学时)
重点学习掌握:
利用基本的逻辑门完成规定的组合逻辑电路的设计任务:如译码器、编码器、多路选择器、多路分配器、异或门、比较器、全加器;
利用基本的逻辑门和已有的中规模集成电路(MSI)逻辑器件如译码器、编码器、多路选择器、多路分配器、异或门、比较器、全加器、三态器件等作为设计的基本元素完成更为复杂的组合逻辑电路设计的方法。《电子信息工程》专业教学大纲
第七章 时序逻辑设计原理(10学时)重点学习掌握: 基本时序元件R-S型,D型,J-K型,T型锁存器、触发器的电路结构,工作原理,时序特性, 功能表,特征方程表达式,不同触发器之间的相互转换;
扫描触发器(Scan Flip-Flop)特性及基本应用;
钟控同步状态机的模型图,状态机类型及基本分析方法和步骤,使用状态图表示状态机状态转换关系;
时序状态机的设计:状态转换过程的建立,状态的化简与编码赋值、未用状态的处理-最小风险方案和最小代价方案、使用状态转换表的设计方法、使用状态图的设计方法。
学习了解:
时序电路设计中的其他的设计方法。
第八章 时序逻辑设计实践(10学时)
重点学习掌握:
利用基本的逻辑门、时序元件作为设计的基本元素完成规定的钟控同步状态机电路的设计任务:计数器、位移寄存器、序列检测电路和序列发生器的设计;
利用基本的逻辑门和已有的中规模集成电路(MSI)时序功能器件作为设计的基本元素完成更为复杂的时序逻辑电路设计的方法。学习了解:
时序电路设计中的其他问题:组合电路与时序电路的比较,大型时序电路的结构划分,时钟歪斜,异步输入处理等。
第十章 存储器及其在数字逻辑系统实现中的运用(4学时)
学习了解:存储器(ROM,SRAM)的基本工作原理和结构;
学习掌握:存储器在数字逻辑系统设计的硬件实现中的运用。第十一章 其他的实际问题(3学时)
学习了解:
数字逻辑电路(组合电路和时序逻辑电路)设计的描述说明方法;
数字逻辑系统设计的其他问题:数字逻辑设计中设计工具的作用、设计的可测试性问题、数字逻辑系统可靠性的问题、高速数字逻辑系统中信号传输的相关问题。
补充内容
模数转换器、数模转换器(ADC/DAC)原理及应用简介
(3学时)重点学习理解:
数字-模拟转换器(Digit to Analog Convertor,DAC))的基本电路结构(R-2R结构的DAC),工作原理;
模拟-数字转换器(Analog to Digit Convertor,ADC)的基本电路结构(逐次逼近式的ADC),工作原理;、《电子信息工程》专业教学大纲
模拟-数字转换器、数字-模拟转换器(ADC/DAC)在电子系统中的作用和应用,特别是在波形发生方面的运用。
2.实验教学
实验教学(12学时)
实验目的:研究典型数字集成电路的功能及扩展方法;掌握其测 试方法;根据实验要求进行电路设计和测试。
实验内容:根据数字集成电路的特点,进行基本功能单元试验,包括组合电路基本功能单元的实验,时序电路的基本功能单元的实验及数字电路综合设计性设计试验。实验上机(课外)(16学时)
实验目的:通过使用CAD设计工具 PSPICE、MAX+plusII对教材中相关例题的分析,加深对教材内容的理解,更好地掌握相关知识。
实验内容:
1、学习使用PSPICE电路CAD工具,利用PSPICE仿真CMOS基本逻辑门的静态特性和动态特性、了解电路结构和负载特性对逻辑门静态特性和动态特性的影响。
2、学习使用MAX+plusII工具,利用MAX+plusII工具进行数字逻辑电路仿真的基本方法;进行基本组合电路基本功能单元,时序电路的基本功能单元进行仿真,加深对基本功能单元功能作用的理解;对教材中大型例题进行仿真分析,加强对大型综合性设计的分析理解能力。
3.课堂习题课
由教师根据课程进展情况自行安排。
三、主要教学参考资料
1.Alan B.Marcovitz.Introduction to Logic Design(影印版),清华大学出版社,2002 2.Victor P.Nelson H.Troy Nagle Bill D.Carroll J.David Irwin.Digital Logic Circuit Analysis & Design 清华大学出版社,Prentice Hall, Inc, 1997 3.John M.Yarbrough.Digital Logic Applicatons and Design 机械工业出版社 2002 4.阎 石,数字电子技术基础(第四版),高等教育出版社,1998 5.王毓银,数字逻辑设计,高等教育出版社,2001 6.龙忠琪,贾立新,数字集成电路教程,科学出版社,2001 《电子信息工程》专业教学大纲
7.毛法尧,欧阳星明,任宏萍,数字逻辑,华中科技大学出版社,1996 8.沈嗣昌,数字系统设计,北京航空工业出版社,1996 9.何绪芃,曾发祚,脉冲与数字电路,电子科技大学出版社,1995 10.万栋义,脉冲与数字电路(第二版),11.刘宝琴,数字电路与系统,清华大学出版社,1993 12.陈贵灿,邵志标,程军,林长贵,CMOS集成电路设计,西安交通大学出版社,2000
第三篇:《数字电路与逻辑设计》课程教学大纲
《数字电路与逻辑设计》课程教学大纲
先修课程:高等数学、普通物理、电路与电子学
(一)课程地位、性质和任务
《数字电路与逻辑设计》是计算机科学与技术专业的主干课程,是一门专业技术基础课。它不仅为《计算机组成原理与汇编程序设计》、《微机接口技术》、《计算机系统结构》、《数据通信与计算机网络》等后续课程提供必要的基础知识,而且是一门理论与实践结合密切的硬件基础课程。
(二)课程教学基本要求
本课程是计算机科学与技术专业的一门专业基础课程,通过本课程的学习,使学生熟悉数字电路的基础理论知识,理解基本数字逻辑电路的工作原理,掌握数字逻辑电路的基本分析和设计方法,具有应用数字逻辑电路,初步解决数字逻辑问题的能力,为学习计算机硬件打下扎实的基础。
(三)课程主要内容及学时分配
第一章 逻辑代数基础
逻辑代数是分析和设计数字电路的数学工具,本章主要介绍逻辑代数的公式、定理及逻辑函数的化简方法,要求掌握常用进制及其转换,基本和常用逻辑运算,逻辑代数的公式、定理,逻辑函数的公式、图形化简化,逻辑函数的五种表示方法及相互之间的转换。教学重点:
逻辑代数的公式、定理,逻辑函数的公式、图形化简法。教学难点:
公式、定理、规则的正确应用,逻辑函数化简的准确性。方法提示:
通过多举例子,多做练习以提高对公式应用的熟练性。
第二章 逻辑门电路
集成逻辑门是构成数字电路的基本单元,本章主要介绍MOS和TTL集成逻辑门的逻辑功能的电气特性。要求掌握高、低电平与正、负逻辑的概念,二极管、三极管、MOS管的开关特性,熟悉二极管与门和或门,三极管非门的电路结构及工作原理,掌握其电气特性和功能。掌握与门、或门、非门、与非门、或非门、与或非门、异或门、三态门、OC门、CMOS传输门的逻辑符号、逻辑功能,熟悉各种门电路的特点和使用方法。教学重点:
CMOS和TTL集成门电路重点是外部特性,即逻辑功能和电气特性。教学难点:
CMOS和TTL集成门电路的电气特性
方法提示:
理论与实践相结合,加深对TTL集成门电路的电气特性的理解掌握。
第三章 组合逻辑电路
本章主要介绍组合逻辑电路的分析和设计方法以及常用典型组合电路的功能、应用。要求掌握组合电路的特点、基本分析和设计方法。掌握编码器、译码器、数值比较器、数据分配器、数据选择器、加法器等常用组合电路的功能、应用及实现方法。熟悉典型中规模集成组合逻辑器件的功能及用中规模集成器件实现组合逻辑函数的方法,了解组合电路中的竞争冒险。
教学重点:
组合逻辑电路的分析和设计方法,常用中规模集成器件的功能和应用。教学难点:
组合逻辑电路的设计
方法提示:理论联系实际,加深理解记忆。
第四章 触发器
本章主要介绍各类触发器的逻辑功能及触发公式,它是构成时序电路的基本单元,要求熟悉RS、JK、D、T触发器的电路结构、工作原理,掌握RS、JK、D、T触发器的逻辑符号、逻辑功能表示方法、触发方式及触发器间的相互转换。教学重点:
各类触发器的逻辑功能及触发方式。教学难点:
触发器的触发方式。方法提示:
多举例、多看、多练习,在第五章时序逻辑电路的教学中再强调。
第五章
时序逻辑电路
本章主要介绍时序电路的分析和设计方法,以及计数器等常用典型时序电路的功能及应用。要求:掌握时序电路的特点、分类、功能描述方法,时序电路的基本分析和设计方法。熟悉计算器、寄存器、移位寄存器、顺序脉冲发生器的功能、应用。掌握同步、异步计数器的工作原理,常用中规模集成计数器的功能、应用以及用中规模集成计数器构成N进制计数器的方法。
教学重点:
时序电路的分析和设计方法,计数器、寄存器的功能、分类,常用中规模集成计数器功能、应用。
教学难点:
时序逻辑电路的设计方法。
第六章
半导体存储器
本章介绍只读存储器(ROM)、随机存储器(RAM)以及存储器的扩展。教学重点:
存储器的扩展 教学难点:
存储器内部结构、原理
第七章 数模、模数转换电路
本章主要介绍D/A转换器和A/D转换器的基本原理,几种典型D/A,A/D转换器电路。要求熟悉D/A,A/D转换器的基本原理及倒T型电阻网络D/A转换器,逐次逼近型、双积分型A/D转换器的基本工作原理。教学重点:
典型D/A,,A/D转换器的基本工作原理。教学难点:
典型D/A,A/D转换器的基本工作原理。
第八章 可编辑逻辑器件
本章介绍可编程逻辑器件(PLD)的基本结构及分类,PLA,PAL,GAL的基本原理特点及应用。
教学重点:
PLD的基本结构,PLA的基本原理、特点及应用。教学难点: PLA、GAL的基本原理、特点及应用。
第九章 可编程逻辑器件的开发及应用
自学提高
第十章 数字电路CAD技术
自学提高
(四)使用教材及参考书目:
1、使用教材
《数字电路与逻辑设计》
子节涛等编著
国防科技大学出版社
2、参考书目
《数字电子技术基础》
阎石主编
高等教育出版社 《数字电子技术基本教程》
宋樟林等主编著
《电子技术基础》(数字部分)
康华光主编
高等教育出版社
《操作系统》课程教学大纲
(一)本课程地位、性质和任务
《操作系统》是计算机专业的必修主要课程之一,是研究如何有效地管理、使用计算机的一门学科,为《编译系统》、《计算机网络》、《分布式操作系统》等课程提供必要的基础知识。操作系统是计算机系统必须配置的一种系统软件,几乎所有的计算机系统都离不开操作系统,它在计算机系统中具有举足轻重的地位,它向下隐藏了计算机系统的具体细节,向上为计算机系统中其他软件提供一致的服务和使用界面,为用户提供一个良好的操作环境。通过学习和研究操作系统,可以打破操作系统的神秘性,了解操作系统的内部结构。掌握操作系统的设计方法,熟悉操作系统的操作和使用。为锻炼学生开发系统的综合能力打下扎实的基础。
(二)课程教学的基本要求
该课程采用讲授和上机实验相结合的教学方法,要求学生通过该课程的学习: 正确理解操作系统的概念,分类和形成与发展;特别是操作系统的基本特征和操作系统的功能结构;
正确理解系统的基本工作单位和进程的五大特征,熟悉掌握操作系统中进程管理的功能;
掌握操作系统存储管理有关的基本概念,深入理解几种常用存储管理的基本原理及实现方法;
理解操作系统设备管理的任务,掌握中断技术、通道技术和缓冲技术实现中央处理器与外部设备的并行工作,理解设备的调度和分配;
理解文件系统的功能和文件的安全性,掌握文件系统中文件的组织和存储; 正确理解作业的调度和控制、操作系统的接口;
所学的操作系统原理对现行主流操作系统进行实例分析;
(三)课程主要内容及学时分配
1、操作系统概论
知识点:操作系统的定义、视点及认识;操作系统的基本类型及其特点;操作系统的形成与发展;
重点:掌握操作系统的基本特征和操作系统的地位、作用和效果; 教学难点:虚拟机概念的讲解。
2、处理器管理 知识点:中断、多道程序设计、并发程序设计、进程的概念;进程管理功能;进程的控制及调度;处理器基本工作单位的控制粒度;进程并发的含义;进程的同步机制;进程通信;死锁。
重点难点:处理器管理
3、存储器管理
知识点:存储器管理的基本概念;连续存储空间存储管理的原理实现;非连续存储空间存储管理的原理及实现;虚拟存储空间的概念及实现。重点难点:存储管理
4、文件系统管理
知识点:文件及文件系统的概念;文件目录;文件的共享、保护及保密。重点:文件的组织与存储 难点:文件操作的执行过程。
5、设备管理
知识点:I/O操作与设备和概念;缓冲技术及PnP技术;中断处理及驱动程序。
重点:设备的分配和调度
难点:I/O控制方式及具有通道的I/O系统管理;虚拟设备、设备一致性、设备无关性的概念。
6、作业管理
知识点:操作系统的结构模型;作业管理的概念;作业管理的功能;作业的状态,调度控制等问题;
重点:作业管理的功能;
难点:作业调度与控制。
7、用户接口与操作环境
知识点:操作系统的用户接口的分类;命令接口,程序接口,环境接口的功能与实现; 重点难点:三种接口的功能。
8、操作系统的安全
知识点:操作系统安全性概念;安全机制;安全系统的设计; 重点:系统安全概念与机制; 难点:安全系统的设计。
(四)使用教材与参考书目
1、建议选用教材:刘乃琦,吴跃编著《计算机操作系统》 电子工业出版社。
2、主要参考书:
史美林等编著《计算机操作系统教程》 清华大学出版社。
第四篇:数字逻辑设计报告
《数字逻辑课程设计》
姓名: 宋国正 班级:计142 学号:149074056
2016年9月25日
一、设计任务要求
数字时钟是由振荡器、分频器、计秒电路、计分电路、计时电路组成。计时采用24h和12h两种。当接通电源或数字钟走时出现误差,都需要对数字钟作时、分、秒时间校正。本次设计的具体要求如下:
1、显示时、分、秒的十进制显示,采用24小时制。
2、校时功能。
3、整点报时。
二、设计思路
1、数字钟的组成原理图
数字式电子钟实际上是一个对标准1Hz 进行计数的计数电路!秒计数器满60 后向分计数器进位,分计数器满60 后向时计数器进位, 时计数器按24翻1 规律计数, 计数输出经译码器送LED 显示器,由于计数的起始时间不可能与标准时间一致,故需要在电路上加上一个校时电路。
同时标准的1Hz时间信号必须做到准确、稳定,通常使用石英晶体振荡器电
路构成。
时显示器
分显示器 秒显示器
时译码器
分译码器
秒译码器
时计数器
时计数器 时计数器
校时电路
振荡器
分频器
2、数字钟设计方案
为完成上述功能,可以把数字钟系统划分为三部分:时针源(即标准秒钟的产生电路)主体电路,扩展电路。主体电路EDA 设计又可划分为计时电路、校时电路、译码显示电路3部分。
3、底层电路设计
时针源——晶体振荡器电路给数字式电子钟提供一个频率稳定、准确的32768Hz的方波信号,将32768Hz的高频方波信号经32768次分频后得到1Hz 的方波信号供秒计数器进行计数,实现该分频功能的计数器相当于15 级二进制计数器。
计时电路——时间计数器电路由秒个位、秒十位计数器,分个位、分十位计数及时个位、时十位计数电路构成。其中,秒个位和秒十位计数器,分个位和分十位计数为六十进制计数器,而根据设计要求时个位和时十位构成的为二十四进制计数器,时间计数单元共有:时计数,分计数和秒计数3部分,根据设计要求时计数单元为一个二十四进制计数器,共输出为两位8421BCD码形式;分计数和秒计数单元为六十进制计数器!共输出也为两位8421BCD码。图1和图2 分别给出了60进制计数器和24进制逻辑图。
图
一、60进制计数器
图
二、24进制计数器
校时电路——当刚接通电源或走时出现误差时都需要对时间进行校正。对时间的校正是通过截断正常的计数通路,而用频率较高的方波信号加到其需要校正的计数单元的输入端!这样可以很快使校正的时间调整到标准时间的数值,这时再将选择开关打向正常时就可以准确走时了。如图3所示为时、分、秒校时的校时电路。在校时电路中,其实现方法是采用计数脉冲和计数使能来实现校时的。
译 码 显 示 电 路——为了将计数器输出的8421BCD码显示出来,须用显示译码电路将计数器的输出数码转换为数码显示器件所需要的输出逻辑和一定的电流,这种译码器通常称为七段译码显示驱动器电路,本设计可选器件7447为译码驱动电路。译码驱动电路将计数器输出的8421BCD码转换为数码管需要的逻辑状态,并且为保证数码管正常工作提供足够的工作电流。
4、数字钟顶层电路设计
首先按前面的设计方案进行低层模块的设计与编辑仿真,正确无误后,即可将设计的低层模块转化为与之相对应的元件符号,而后我们就可以用这些元件符号来设计数字钟的顶层原理图,如图4所示。本设计中要仿真的对象为数字钟,须设定一个1Hz的输入时钟信号和一个校时脉冲SET,模拟的设置开关信号MODE的波形,为了能够看到合适的仿真结果,假定网络时间(Girl Size)为10.0ns,总模
拟的时间(END TIME)为3ms。
三、软件仿真 1、60进制计数器的仿真结果如下:
60进制计数器仿真波形图 2、24进制计数器仿真结果如下:
24进制计数器仿真波形图
3、数字钟的顶层电路仿真结果如下:
数字钟的顶层电路波形仿真图
四、讨论
数字时钟基于MAX+ plus II设计, 经过软件仿真并下载到硬件(电子EDA 10
实验开发系统)实现, 结果表明本设计是合理可行的,但是感觉很繁琐,是不是可以考虑一种过程简单一点的呢?通过查阅大量资料发现是可以的。其另一种设计思想及方法是以语言描述为主, 原理图设计相结合。但是使用过多可能会导致编译失败。所以在设计的过程中,如何取舍是一个难题,本人认为对于我这样基础不是很扎实的,采用前者是比较合理的。
五、参考文献
(1)张辉宜,数字逻辑 中国科学技术大学出版社
(2)廖裕评,陆瑞强,CPLD数字电路设计__使用 MAX+Plus II[M],北京:清华大学出版社
六、心得体会
我学到了很多东西,掌握了数字逻辑的各种设计方法
第五篇:《数字逻辑电路》课程教学大纲
《数字逻辑电路》课程教学大纲
第一章 数制与编码
在数字电路和计算机中,只用0和1两种符号来表示欣喜,参与运算的数也是由0和1构成的,即二进制数。考虑到人类计数习惯,在计算机操作时,一般都要把输入的十进制数转换为二进制数后再由计算机处理;而计算机处理的二进制结构也需要转换为便于人类识别的十进制数然后显示出来,因此,需要学习不同的数值及转换方法。
通过这一章的学习,学习者要理解数字电路的特点以及几种数制之间的转换方法 进一步学习后续内容打好基础;
本章的主要教学内容(教学时数安排:8学时): §1.1 概述
§1.2 数制与编码 §1.3 编码
第二章 逻辑代数
本章主要介绍逻辑代数的基本定理和定律,常用公式及三大规则(代入、反演、对偶)。
通过本章的学习熟悉逻辑代数的各种表示方法(真值表、表达式及逻辑图等),理解各种逻辑门的图形符号,理解最小项的基本概念及标准与或式的表示方法。掌握逻辑代数变换技巧及逻辑代数化简方法。
本章的主要教学内容(教学时数安排:8学时): §2.1 逻辑代数的基本概念 §2.2 逻辑代数的运算法则 §2.3 逻辑代数的表达式 §2.4 逻辑代数的公式简化法
第三章 门电路
本章介绍典型TTL集成电路的基本工作原理,典型TTL与非门主要外部特性(电压传输特性、输入特性、输出特性),OC门和TS门的图形符号及逻辑功能,及其正确应用的注意事项。
要了解典型TTL集成电路的基本工作原理,要求掌握典型TTL与非门主要外部特性(电压传输特性、输入特性、输出特性),熟悉一些主要参数,理解OC门和TS门的图形符号及逻辑功能,了解其正确应用及注意事项。了解MOS门电路(特别是CMOS门电路)的构成,熟悉逻辑特性。
本章的主要教学内容(教学时数安排:8学时): §3.1 概述
§3.2 体二极管和三极管的开关特性 §3.3 分立元件门 §3.4 TTL集成门
§3.5 其他类型的双极型集成电路 §3.6 MOS集成们
第四章 组合逻辑电路
本章主要介绍了掌握组合逻辑电路的分析方法,一些常用的组合逻辑电路,如加法器、数据选择器、数据分配器等,以及半导体数码管的基本结构和引脚符号的含义,组合逻辑电路的竞争冒险现象。
通过本章的学习,要掌握组合逻辑电路的分析方法,以识别给定电路的逻辑功能,能设计一些简单的,常用的组合逻辑电路,掌握编码器、译码器的基本概念及应用方法,了解半导体数码管的基本结构和引脚符号的含义,了解加法器、数据选择器、数据分配器的基本原理和应用,了解组合逻辑电路的竞争冒险现象。
本章的主要教学内容(教学时数安排:8学时): §4.1 概述
§4.2 若干常用的组合逻辑电路
§4.3 基于Verilog HDL的组合逻辑电路设计 §4.4 组合逻辑电路的竞争——冒险现象
第五章 触发器
本章主要介绍了基本RS触发器的组成、工作原理、逻辑功能及逻辑功能的描述方法,还有同步触发器的电路结构,逻辑功能,主要介绍了边沿JK触发器、T触发器、维持阻塞D触发器集成JK、D触发器。
通过本章的学习,要理解掌握基本RS触发器的组成、工作原理、逻辑功能及逻辑功能的描述方法,了解同步触发器的电路结构,熟记其逻辑符号、逻辑功能,并会熟练运用,掌握主从JK触发器、T触发器、维持阻塞D触发器的逻辑符号,逻辑功能;掌握集成JK、D触发器的使用常识。
本章的主要教学内容(教学时数安排:8学时): §5.1概述
§5.2 基本RS触发器 §5.3 钟控触发器 §5.4 集成触发器
§5.6 触发器之间的转换
§5.7 基于Verilog HDL的触发器设计
第六章 时序逻辑电路
本章主要介绍了时序逻辑电路的概念及与组合逻辑电路的区别,寄存器的电路组成、常见类型及逻辑功能,以及时序逻辑电路的分析方法和设计方法,重点介绍了常见的二进制、十进制计数器工作原理及功能,集成寄存器、计数器的工作原理与设计方法。本章是本课程的重要部分。
通过本章的学习,掌握时序逻辑电路的概念及与组合逻辑电路的区别,掌握寄存器的电路组成、常见类型及逻辑功能,熟练掌握时序逻辑电路的分析方法和设计方法,掌握常见的二进制、十进制计数器工作原理及功能,了解集成寄存器、计数器的使用常识。
本章的主要教学内容(教学时数安排:8学时): §6.1 概述
§6.2 数码寄存器和移位寄存器 §6.3 计数器 §6.4 基于Verilog HDL的时序逻辑电路的设计
第七章 脉冲单元电路
本章主要介绍脉冲波形的主要参数,555定时器、单稳态触发器、施密特触发器、多谐振荡器的电路组成、工作原理以及各种触发器的应用。
通过本章的学习后,要掌握脉冲产生和变换电路的调试方法熟悉脉冲波形的主要参数,掌握单稳态触发器、施密特触发器、多谐振荡器的电路组成和工作特点,掌握555定时器的功能。
本章的主要教学内容(教学时数安排:6学时): §7.1 概述
§7.2 施密特触发器 §7.3 单稳态触发器 §7.4 多谐振荡器
第八章 数模和模数转换
本章主要介绍了 A/D与D/A转换电路的概念及A/D与D/A转换的区别,A/D与D/A转换电路组成、常用参数、分辨率和误差。
通过本章的学习后,要掌握A/D与D/A转换电路的概念及A/D与D/A转换的区别,掌握A/D与D/A转换电路组成、常用参数、分辨率和误差,熟练掌握转换的使用环境和特定型号。
本章的主要教学内容(教学时数安排:6学时): §8.1 概述 §8.2 数模转换 §8.3 模数转换
第九章 程序逻辑电路
半导体存储器是程序逻辑电路中的主要组成部分。本章主要介绍了程序逻辑电路的结构和特点,然后系统的介绍了半导体存储器的工作原理和使用方法。
通过本章的学习后,要了解程序逻辑电路的结构和特点,并掌握半导体存储器的工作原理和使用方法
本章的主要教学内容(教学时数安排:4学时): §9.1 概述
§9.2 随机存储器 §9.3 只读存储器
§9.4 程序逻辑电路的应用
制定者:
执笔 校对者: 审定者:
批准者: