第一篇:不等式的性质第一课时教案
不等式的性质
【教学内容】
课本P123-126不等式的三个基本性质,并学会应用。【教学目标】
1、掌握不等式的三个基本性质并且能正确应用。
2、经历探究不等式基本性质的过程,体会不等式与等式的异同点,发展学生分析问题和解决问题的能力。
3、开展研究性学习,使学生初步体会学习不等式基本性质的价值。【重点难点】
重点:理解不等式的三个基本性质。难点:对不等式的基本性质3的认识。【教学方法】
本节课采用“类比-实验-交流”的教学方法。【教学过程】
一、课前热身
1、等式有哪些性质?用数学式子怎样表示? 解一元一次方程的基本步骤(集体回顾)
二、自学探究,合作交流 活动1,用“﹥”或“﹤”填空,并总结其中的规律:
(1)5>3, 5+2 3+2 , 5-2 3-2;(2)1<3 ,-1+2 3+2 ,-1-3 3-3;
三、巩固训练
利用不等式的性质解下列不等式.
(1)x-7>26(2)3x<2x+1(3)-4x﹥3
组织学生先独立思考,再分组讨论,并由小组代表发言在全班交流,最后由教师统一规范写法。
在用数轴表示不等式解集时,要引导学生注意规律:大于向右画,小于向左画;有等号的画实心圆点,无等号的画空心圆圈。通过用数轴表示不等式解集一方面可以加深对不等式解集以及解不等式的理解,另一方面也为学习不等式组时用数轴确定不等式组的解集做准备。
四、自我总结
本节课你的收获是什么?
五、当堂检测
用不等式的性质解下列不等式,并在数轴上表示解集:(1)X+5>-1;(2)4X<3X-5;(3)-8X>10
六、作业
课本P128第5、6题
第二篇:“基本不等式”(第一课时)教案
基本不等式教学设计(第一课时)
阮
晓
锋
一、教学目标
1.知识与技能目标: 学会推证基本不等式,了解基本不等式的应用。
2.过程与方法目标:通过代数、几何背景探究抽象出基本不等式;
3.情感与价值目标:通过学习,体会数学来源于生活,提高学习数学的兴趣。
二、教学重点和难点
重点:应用数形结合的思想理解基本不等式,并从不同角度探索其证明过程; 难点:在几何背景下抽象出基本不等式,并理解基本不等式.
三、教学过程:
1.设置情景,引入新课
如图是2002年在北京召开的第24届国际数学家大会会标,会标是根据我国古代数学家赵爽的“弦图”设计的,该图给出了迄今为止对勾股定理最早、最简洁的证明。
探究一:在这张“弦图”中借助面积能找出一些相等关系和不等关系吗?
问题1:它们有相等的情况吗?何时相等?
结论:一般地,对于正实数a、b,我们有ab2ab 当且仅当a=b时等号成立.2.代数证明,推出结论
问题2:你能给出它的代数证明吗?(请同学们用代数方法这个不等式的证明.)
证明(作差法):
∵,当(在该过程中,可发现a,b取值可以是全体实数)问题3:当 a,b为任意实数时,上式还成立吗?
2222给出
时取等号.
重要不等式:对任意实数a、b,我们有ab2ab(当且仅当a=b时等号成立)特别地,若a>0且b>0可得abab,即基本不等式:若a>0且b>0,则
abab(当且仅当a=b时等号成立)2abab(当且仅当a=b时等号成立)2深化认识:
(1)两个正数的等差中项不小于它们的等比中项.(2)若称ab为a、b的算术平均数,称ab为它们的几何平均数,则基本不等式又可2叙述为:两个正数的几何平均数不大于它们的算术平均数 3.动手操作、几何证明,相见益彰 探究二:先将两张正方形纸片沿它们的对角线折成两个等腰直角三角形,再用这两个三角形拼接构造出一个矩形(两边分别等于两个直角三角形的直角边,多余部分折叠).假设两个正方形的面积分别为a和b(ab),考察两个直角三角形的面积与矩形的面积,你能发现一个不等式吗?(通过学生动手操作,探索发现)
探究三:如图,AB是圆O的直径,点C是AB上一点,AC=a,BC=b.过点C作垂直于AB的弦DE,连接AD、BD.根据射影定理可得:CD大于直角边CD,于是有
ACBCab由于RtCOD中斜边OD
abab当且仅当点C与圆心O重合时,即a=b时等号成立.2(进一步加强数形结合的意识,提升思维的灵活性)4.应用举例,巩固新知 例1.(1)用篱笆围一个面积为100平方米的矩形菜园,问这个矩形的长、宽各为多少时,所用篱笆最短,最短的篱笆是多少?
(2)一段长为36米的篱笆围成一个矩形菜园,问这个矩形的长、宽为多少时,菜园的面积最大,最大面积是多少?
(通过例1的讲析,总结归纳利用基本不等式求最值问题的特征,实现积与和的转化)方法:一般地,对于x,yR我们有:
142(1)若xy=p(p为定值),则当且仅当a=b时,x+y有最小值2xy;(2)若x+y=s(s为定值),则当且仅当a=b时,xy有最大值s. 上述应用基本不等式求最值的方法可简记为:
在“一证、二定、三相等”的前提下有“积定和最小,和定积最大”。
例2.设x0,y0,且2xy2,求xy的最大值.
1的最小值.x21思考题:若x2,你能求出x的最小值吗?能求出其最大值吗?若能请求出来.x2变式题.若x2,求x5.归纳小结,反思提高
22重要不等式:若a、bR,则ab2ab(当且仅当ab时等号成立)
基本不等式:若a、bR,则
abab(当且仅ab等号成立)2运用基本不等式解决简单最值问题的基本方法.
在“一证、二定、三相等”的前提下有“积定和最小,和定积最大”。
6.布置作业,课后延拓
(1)基本作业:课本P100-101习题组2、4题(2)提高作业:求yx1的值域. x(3)探究作业:
现有一台天平,两臂长不相等,其余均精确,有人说要用它称物体的重量,只需将物体放在左右托盘各称一次,则两次所称重量的和的一半就是物体的真实重量.这种说法对吗?并说明你的结论.
第三篇:第一课时 不等式练习
七年级数学练习题
班别学号姓名成绩
一、列不等式表示:
(1)x的2倍是负数;
(2)x与3的和是非负数;
(3)x与6的差小于-3
(4)n的6倍不小于5
1(5)m的与8的和大于55
(6)a与8的差的一半不大于5
二、在数轴上表示不等式的解集。
(1)x>-4(2)x≤
3(3)x<-3(4)x≥-2.5三、求下列不等式的解
(1)不等式x>-4的所有负整数解;
(2)不等式x≤3的所有自然数解;
(3)不等式x<3.5的所有正整数解
(4)不等式x≥-2.5的所有负整数解
(5)不等式x<3.9的最大正整数解
(6)不等式x≥-3.1的最小负整数解
第四篇:不等式的性质教案
不等式性质教案
西南大学2010级4班 孙丹 【课标要求】
1.不等关系
通过具体情境,感受在现实世界和日常生活中存在着大量的不等关系;
2不等式的性质
了解不等式的性质,并会用其证明不等式;
【教学重难点】
1、教学重点:掌握不等式性质的三条公理,并运用公理进行比较大小。
2、教学难点:正确运用不等式的三条公理进行不等式变形。
【教学目标】
1、探索并掌握不等式的基本性质;
2、会用不等式的基本性质进行简单化简。
【教学方法】
通过观察、分析、讨论,引导学生归纳总结出不等式的三条公理,从具体上升到理论,再由理论指导具体的练习,从而加强学生对知识的理解和掌握。【命题走向】
不等式历来是高考的重点内容。对于本将来讲,考察有关不等式性质的基础知识、基本方法,而且还考察逻辑推理能力、分析问题、解决问题的能力。本将内容在复习时,要在思想方法上下功夫.预测高考命题趋势:
1.从题型上来看,选择题、填空题都有可能考察,把不等式的性质与函数、三角结合起来综合考察不等式的性质、函数单调性等,多以选择题的形式出现,解答题以含参数的不等式的证明、求解为主;2.利用基本不等式解决像函数f(x)x
考察的重点和热点,应加强训练。a,(a0)的单调性或解决有关最值问题是x
【教学过程】
一、创设情境 复习引入
(设计说明:设置以下习题是为了温故而知新,为学习本节内容提供必要的知识准备.)问题:
1、什么是等式?等式的基本性质是什么?
2、什么是不等式?
1.不等式的性质比较两实数大小的方法——求差比较法
公理: abab0;
abab0;
abab0。
性质1:若ab,则ba;若ba,则ab.即abba。
说明:把不等式的左边和右边交换,所得不等式与原不等式异向,称为不等式的对称性。性质2:若ab,且bc,则ac。
说明:此定理证明的主要依据是实数运算的符号法则及两正数之和仍是正数,定理2称不等式的传递性。
性质3:若ab,则acbc。
说明:(1)不等式的两边都加上同一个实数,所得不等式与原不等式同向;
(2)定理3的证明相当于比较ac与bc的大小,采用的是求差比较法;
(3)定理3的逆命题也成立;
(4)不等式中任何一项改变符号后,可以把它从一边移到另一边。
推论1:不等式中的任意一项都可以把它的符号变成相反的符号后,从不等式的一边移到另一边。(移项法则)
推论2:若ab,且cd,则acbd。
说明:(1)推论2的证明连续两次运用定理3然后由定理2证出;(2)这一推论可以推广到任意有限个同向不等式两边分别相加,即:两个或者更多个同向不等式两边分别相加,所得不等式与原不等式同向;(3)同向不等式:两个不等号方向相同的不等式;异向不等式:两个不等号方向相反的不等式.定理4.如果ab且c0,那么acbc;如果ab且c0,那么acbc。推论1:如果ab0且cd0,那么acbd。
证明:∵ab0,c0,acbc,又∵cd0,b0,bcbd,∴由传递性,有acbd,得证。
说明:(1)不等式两端乘以同一个正数,不等号方向不变;乘以同一个负数,不等号方向改变;(2)两边都是正数的同向不等式的两边分别相乘,所得不等式与原不等式同向;(3)推论1可以推广到任意有限个两边都是正数的同向不等式两边分别相乘。这就是说,两个或者更多个两边都是正数的同向不等式两边分别相乘,所得不等式与原不等式同向。
nn推论2:如果ab0,那么ab(nN且n1)。
推论3:如果ab0,那么ab(nN且n1)。【典例解析】
例1:应用不等式的性质,证明下列不等式:
(1)已知a>b,ab>0,求证:1/a>1/b;
(2)已知a>b,c
(3)已知a>b>0,0
证明:
(1)因为ab>0,所以 1/ab>0又因为a>b,所以 a.1/ab>b.1/ab即1/b>1/a因此 1/a>1/b
(2)因为a>b,c
例2.已知a>b,不等式:(1)a2>b2;(2)1/a>1/b ;(3)1/(a-b)>1/a
成立的个数是()
(A)0(B)1(C)2(D)
3答案:A
例3.设A=1+2x4,B=2x3+x2,x∈R,则A,B的大小关系是。
答案:A≥B
例4.(1)如果30 (2)若-3 答案:(1)18 (2)因为-4 例5.若-π/2 ≤a<b≤π/2,求(a +b)/2 ,(a-b)/2的取值范围。 -π/2<(a +b)/2<π/2,-π/2 ≤(a-b)/2<0 练习1已知函数f(x)= a x²-c,-4≤f(1)≤-1,-1≤f(2)≤5,求f(3)的取值范围。 解:因为f(x)= a x²-c,所以f(1)= a-c,f(2)=4 a-c解得a=1/3[f(2)=-f(1)],c=1/3f(2)-4/3f(1) 所以f(3)=9a-c=8/3f(2)-5/3f(1) 因为-4≤f(1)≤-1,-1≤f(2)≤5,所以8/3≤8/3f(2)≤40/3,5/3≤-5/3f(1)≤20/3 练习2已知-4≤a-b≤-1,-1≤4a-b≤5,求9a-b的取值范围。 解:设9a-b=m(a-b)+n(4a-b)=(m+4n)a-(m+n)b,令m+4n=9,-(m+n)=-1,解得,m=-5/3,n=8/3 所以9a-b=-5/3(a-b)+8/3(4a-b) 由-4≤a-b≤-1,得 5/3≤-5/3(a-b)≤20/3 由-1≤4a-b≤5,得由-1≤4a-b≤5,得-8/3≤8/3(4a-b)≤40/3 以上两式相加得-1≤9a-b≤20.五.【思维总结】 1.不等式证明常用的方法有:比较法、综合法和分析法,它们是证明不等式的最基本的方法。 (1)比较法证不等式有作差(商)、变形、判断三个步骤,变形的主要方向是因式分解、配方,判断过程必须详细叙述:如果作差以后的式子可以整理为关于某一个变量的二次式,则考虑用判别式法证; (2)综合法是由因导果,而分析法是执果索因,两法相互转换,互相渗透,互为前提,充分运用这一辩证关系,可以增加解题思路,开扩视野。 2.不等式证明还有一些常用的方法:换元法、放缩法、反证法、函数单调性法、判别式法、数形结合法等。换元法主要有三角代换,均值代换两种,在应用换元法时,要注意代换的等价性。放缩性是不等式证明中最重要的变形方法之一,放缩要有的放矢,目标可以从要证的结论中考查。有些不等式,从正面证如果不易说清楚,可以考虑反证法.凡是含有“至少”、“惟一”或含有其他否定词的命题,适宜用反证法.证明不等式时,要依据题设、题目的特点和内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤、技巧和语言特点. 【教学重点与难点】 教学重点:掌握不等式的三条基本性质,尤其是不等式的基本性质3. 教学难点:正确应用不等式的三条基本性质进行不等式变形. 【教学目标】 1、探索并掌握不等式的基本性质 2、会用不等式的基本性质进行化简 【教学方法】 通过观察、分析、讨论,引导学生归纳总结出不等式的三条基本性质,从具体上升到理论,再由理论指导具体的练习,从而强化学生对知识的理解与掌握. 【教学过程】 一、创设情境 复习引入 (设计说明:设置以下习题是为了温故而知新,为学习本节内容提供必要的知识准备.) 问题: 1、什么是等式?等式的基本性质是什么? 2、什么是不等式? 3、用“>”或“<”填空. (1)3<7(2)2<3(3)2<3 3+1 7+1 2×5 3×5 2×(-1)3×(-1) 3-5 7-5 2÷2 3÷2 2×(-5)3×(-5)3+a 7+a 2÷(-2)3÷(-2)(教学说明: 复习等式的基本性质后学生自然会联想到,不等式是否有与等式相类似的性质,从而引起学生的探究欲望.接着问题3为学生探究不等式的性质提供了载体,通过观察,寻找规律,得出不等式的性质.) 二、师生互动,探索新知 1、不等式的基本性质 问题1:观察思考问题3,猜想出不等式的性质 先让学生独立思考,后合作交流,通过充分讨论,类比等式性质得出不等式的性质.观察时,引导学生注意不等号的方向,通过(1)题学生容易得出不等式性质1: 不等式基本性质1 不等式两边加(或减)同一个数(或式子),不等号的方向不变. 比较(2)、(3)题,注意观察不等号方向,并思考不等号方向的改变与什么有关?由学生概括总结,教师补充完善得出: 不等式基本性质2 不等式两边乘(或除以)同一个正数,不等号的方向不变. 不等式基本性质3 不等式两边乘(或除以)同一个负数,不等号的方向改变. 问题2:将不等式-2<6两边都加上7,-9,两边都乘3,-3试一试,进一步验证上面得出的三条结论. 教师 强调指出:不等式的三条基本性质实质上是对不等式两边进行“+”、“-”、“×”、“÷”四则运算,当进行“+”、“-”法时,不等号方向不变;当乘(或除以)同一个正数时,不等号方向不变;只有当乘(或除以)同一个负数时,不等号的方向才改变. 问题3:尝试用数学式子表示不等式的三条基本性质. 学生思考出答案,教师订正,最后得出:(1)如果a>b,那么a±c>b±c (2)如果a>b,c>0那么ac>bc(或 >) (3)如果a>b,c<0那么ac<) 问题4:不等式的基本性质与等式的基本性质有哪些区别、联系? 学生独立思考、小组交流讨论,师生归纳得出: 区别:等式两边都乘以(或除以)同一个数(除数不为0)时,结果仍相等;不等式两边都乘以(或除以)同一个数(除数不为0)时,会出现两种情况,若是正数,不等号方向不改变,若是负数不等号方向要改变,而且不等式两边同乘以0,结果相等.联系:不等式性质和等式性质都讨论的是两边都加上或减去同一个数的情况和两边都乘以或除以同一个数(除数不为0)的情况,即研究“形式”一致.(教学说明:通过观察具体数字运算的大小比较,联系已学过的等式的性质,让学生归纳出不等式的三条基本性质,并分别用式子的形式表示它们.用式子表示是个抽象概括的过程,只有理解了相关内容才会概括表示它们.研究不等式的基本性质与等式的基本性质的区别与联系可以帮助学生用类比的方法来记忆与学习.) 2、不等式性质的应用 例1:利用不等式的性质,把下列不等式化成“x>a” 或“x (1)x-7>26;(2)3x<2x+1; (3)x>50;(4)-4x>3.解:(l)根据不等式基本性质1,不等式的两边都加上7,不等号的方向不变. 得 x-7+7>26 +7.x>33 (2)根据不等式基本性质1,两边都减去2x,不等号的方向不变,得 3x-2x<2x+1-2x x<1 (3)根据不等式基本性质2,两边都乘以,不等号的方向不变,得 x>75 (4)根据不等式基本性质3,两边都除以-4,不等号的方向改变,得 x<- (教学说明:这些不等式比较简单,可以利用不等式的性质直接求解,从而加深对这些性质的认识.教师板书(1)题解题过程.(2)(3)(4)题由学生在练习本上完成,指定三个学生板演,然后师生共同判断板演是否正确.解题时要引导学生与解一元一次方程的思路进行对比,有助于加强知识之间的前后联系,突出新知识的特点,并将原题与“x>a” 或“x 例2:三角形中任意两边之差与第三边有什么大小关系? a b 师生共析:三角形的两边之和与第三边有什么关系? c 三角形的任意两边之和大于第三边,如图,我们设三角形三边长分别为a,b,c,那么用式子如何表示前面的结果? a +b>c, a+c>b, b+c>a 我们现在求的是两边之差与第三边的关系,所以由不等式的性质1将上式变形为: 由a +b>c得a>c-b, b>c-a.同理,由a+c>b, b+c>a可得c>b-a, b>a-c,c>a-b, a>b-c.这就是说,三角形中任意两边之差小于第三边.(教学说明:此问题应用不等式的性质由“三角形的任意两边之和大于第三边”得出“三角形中任意两边之差小于第三边”这个与已有结论等价的新结论.“三角形的任意两边之和大于第三边”对应的是三个形式一样的不等式,而不是一个不等式.由这三个不等式再推出“三角形中任意两边之差小于第三边”.为了加深学生的感性认识,可以通过测量的方法验证这个结论.) 三、巩固训练,熟练技能: 1、如果a>b,那么(1)a-3 b-3,(2)2a 2b (3)-3a-3b,(4)a-b 0 (5)(6)(6)-b_____-a.2、在下列各题横线上填入不等号,并说明是根据不等式的哪一条基本性质. (1)若a–3<9,则a_____12;(2)若-a<10,则a_____–10; (3)若 a>–1,则a_____–4;(4)若-a>0,则a_____0. 3、利用不等式的性质解下列不等式,并在数轴上表示解集 (解未知数为x的不等式,就是要使不等式逐步化为“x>a”或“x<a”的形式) (1)x-1<0;(2)x>-x+6; (3)3x>7;(4)-x<-3.(教学说明:这些练习进一步加深了学生对不等式性质的理解,做此练习题时,应让学生注意观察它们是应用不等式的哪条性质,是怎样由已知变形得到的.注意应用不等式性质3时,不等号要改变方向.做第3题时要引导学生与解一元一次方程的思路进行对比,让学生认识到应用不等式的性质1变形,相当于移项.) 四、总结反思,情意发展 1、不等式的基本性质是什么?如何用数学式子表示? 2、在本节课的学习中,你还有什么疑惑? (教学说明:在师生共同回顾本节课所学内容的基础上,教师指出:在利用不等式的基本性质进行变形时,当不等式的两边都乘以(或除以)同一个字母,字母代表什么数是问题的关键,这决定了是用不等式基本性质2还是基本性质3,也就是不等号是否要改变方向的问题.) 五、课堂小结 1.本节主要学习了不等式的三条基本性质及应用性质解简单的不等式.2.主要用到的思想方法是类比思想.3.注意的问题: 当不等式两边同乘(或除以)同一个数时,一定要看清是正数还是负数,若是负数,要变两个号,一个性质符号,另一个是不等号,对于未给定范围的字母,应分情况讨论. 六、布置课后作业: 1、课本127页练习 2、课本128习题9.1的5、6、7题 (教学说明:进一步巩固本节课所学知识.) 七、拓展练习 1、指出下列各题中不等式变形的依据: (1)由3a>2,得(2)由-5a>2,得(3)由4a>3a+ 1,得a>1 (4)由a>b,得(5)由a>b,得2-a<2-b 2、利用不等式的性质解下列不等式,并在数轴上表示解集:(1)x+2>-1(2)5x≤7x-8(3)(4)6x≥-12 3、某长方体形状的容器长5cm,宽3cm,高10cm。容器内原有水的高度为3cm,现准备向它继续注水。用V(单位:cm3)表示新注入水的体积,写出V的取值范围。 【评价与反思】及交流体会 通过具体的事例观察并归纳出不等式的三条基本性质,引导学生用数学式子表示三条基本性质,同时注意将不等式的三条基本性质与等式的基本性质进行比较,以加深学生的理解.在教学过程中,注重培养学生运用类比方法观察、分析、解决问题的能力及归纳总结概括的能力.同时培养了学生积极主动的参与意识和勇敢尝试、探索的精神.第五篇:不等式的性质教案