高中立体几何教案第一章直线和平面第一章复习(四)教案

时间:2019-05-12 21:00:38下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《高中立体几何教案第一章直线和平面第一章复习(四)教案》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《高中立体几何教案第一章直线和平面第一章复习(四)教案》。

第一篇:高中立体几何教案第一章直线和平面第一章复习(四)教案

高中立体几何教案 第一章 直线和平面 第一章复习

(四)教案

北京师大二附中 金宝铮

教学目标

结合第一章的内容,渗透数学思想方法.(数形结合思想;方程的思想;转化的思想;分类讨论的思想)

教学重点和难点 数学思想的渗透与培养. 教学设计过程

师:今天是复习课的最后一节.今天以复习题目中体现的数学思想为主线,研究几种常用数学思想在本章的体现.

分类讨论的思想是同学们比较熟悉的.使用较多的是在代数课上y=ax2+bx+c的图象,当a>0时,开口向上;当a<0时,开口向下.

几何中,分类讨论思想的应用,主要是依据图形中元素位置关系的不同而展开的.

请看以下一组题目:

例1 已知:a∥b,直线a平面α,直线b平面α,直线c

平面α,c∥a.若直线a与直线b的距离为6cm,直线b与直线c的距离5cm,直线c与平面α的距离为4cm.

求:直线a与直线c的距离.(教师画图)

生A:在直线c上任取一点A,作AB⊥α于B,过B作BC⊥a于C,反向延长交b于D,因为a∥b,所以BC⊥b.分别连结AC、AD,根据三垂线定理,a⊥AC,b⊥AD.

据题意知:CD=6cm,AD=5cm,AB=4cm,在Rt△ABD中,求出BD=3cm,所以BC=3cm,在Rt△ABC中,求出AC=5cm.

师:哪位同学对“生A”的解答有补充?

师:生A的解答基础是依据我画的图.而原题中并没有给图,也没有“如图”这样的说明,因此我们先要研究图应该怎么画!

生B:老师,我对“生A”的发言有补充. 这个题目的图形还有以下两种可能:

师:好.这道题目体现了分类讨论的思想.它是根据直线c在平面α内射影的不同位置来

进行讨论的.

生C:老师,我认为还有两种情况:

情形1:直线c在平面α内射影与直线a重合. 情形2:直线c在平面α内射影与直线b重合.

师:“生C”同学的补充很好.例1应该分为5种情况来讨论.但是其中会有一些情况无解,请同学们现在实践一下.

图一的位置.其余三种位置关系均无解.

师:还有一点提醒同学们注意:对于不同的位置关系,解题时都要给予论述,对于无解的情形要讲清无解的原因。有些同学认为无解就不用写了,这种认识是错误的.再看例2.

例2平面α外两点A,B,它们到平面α的距离分别为a,b,求:点P到平面α的距离.

生A:我认为有两种情况:一种是点A、点B在平面α同侧;另一种是点A、点B在平面α异侧.

生B:我有不同看法,已知条件中没有给出a,b的大小关系,“生A”解决图5情形时,默认为b>a是不对的,应该再分两种情形:

师:“生B”的补充很好,例2不仅在图形的位置关系上分类讨论,还要根据数据a,b的大小关系来分类讨论.如果简化题目,已知条件上补一个条件:b>a,是否上述解答就全面了呢? 生C:当A,B两点在两侧时,在图6中,点P不一定在A1B1上方.当b>2a时,点P位于A1B1上方;当b=2a时,点P在A1B1上;

师:经过“生C”的补充,题目解答就全面了.

下面谈一下方程的思想.在初中阶段,同学们重点研究了列方程解应用题,这就是最基本的方程的思想.通过设未知数,寻求已知量与未知量之间的关系,从而获得问题的解决.下面请看例3.

例3 如图7,二面角α-l-β,点B∈l,AB α,BC β.∠ABD=∠CBD=45°,∠ABC=60°.

求:二面角α-l-β的大小.

师:首先我们可以根据二面角的平面角的定义构造二面角的平面角.具体作法是:在l上选点D,经过点D分别在α,β平面内作l的垂线交BA,BC于E,F.

设AD=α,由∠ABD=45°得BD=a.

∠EDF=90°.

本例特点在于题目中没有给出任何线段的长度,而是通过设未知量,进而知道已知与未知的关系.

例4 二面角α-EF-β为120°,点A∈α,点B∈β,∠ACB为二面角的平面角,且AC=BC=a.在EF上取一点D.

问:D点在何处时,∠ADE=∠ADB=∠BDE=θ?

为了确定点D的位置,可设与D点有关的某一条线段长为x,依据题设建立等量关系.再求出x的值,同学们实践一下.

生A:在EF上取点D,设AD=x. 因为 AC=BC=a,∠ACB=120°,因为 ∠ADE=∠ADB=∠BDE=0,所以 ∠ADC=180°-θ.

△ABD中由余弦定理可得: AB2=x2+x2-2x2cosθ,生B:我认为解答不全面,刚才“生A”的解答中,运用了图8中各点之间位置关系.

应该给予讨论,当点D位于CF之间时,∠ADC=180°而不是等于180°-θ. 师:“生B”的问题提的好,在“生A”的解答中,距点C的距离

例5 如图9,∠ASB=90°,∠CSB=75°,∠ASC=105°,由

求:△ABC的周长.

师:这道题目的难度在于如何建立一座沟通已知与未知的桥梁. 生:观察图形,我发现图中有三对全等三角形.△ADS≌△AFS;△FSC≌△ESC;△BES≌△BDS.设∠DSA=α,∠FSC=β,∠ESB=γ.

师:上面列举了3个题目,从不同的侧面,以不同的形式反映出方程的思想在立体几何解题中的作用.

下面再谈一下转化的思想,转化的内涵十分丰富.有条件的转化;结论的转化;图形的转化;解题策略的转化„„

事实上,许多题目的解答过程都不同程度在使用转化的思想. 例6 已知正方体ABCD-A1B1C1D1的棱长为1. 求:异面直线A1C1与B1C的距离.

生A:可以证明:B1C∥A1D1,进而可证B1C∥面A1DC1,问题转化为求直线B1C与平面A1C1D的距离„„

生B:还可以证明AC∥A1C1,不难证明:平面A1C1D∥平面ACD1.问题转化为求平面A1C1D与平面ACB1的距离„„

生C:在A1C1上取一点P,作PN⊥B1C1于N,作NQ⊥B1C于Q,连结PQ.可以证明PQ⊥B1C.

师:“生C”的思想是:依据异面直线的概念,特别是公垂线段的长是两条异面直线上各取一点后所连线段的最小值.

布置作业:(略)课堂教学设计说明

本节是复习题的第四节.首先介绍一下上节课的设计思路. 在第三节复习课上,重点研究了证明问题.

对于证明题的思路分析,总体构想认为它应该是初中平面几何论证的延续,像由因导果,执果索因等一些经典论述让学生刻骨铭心.

通过证明问题的复习,使学生对线面各种位置关系及性质、判定定理运用自如.

反证法是高中首次出现,学生不易掌握,是一个难点.教师要结合题目引导学生去思考,什么样的题目用反证法.

同一法不属教材,一般不要引入课堂.对确有余力的班级,教师也可适当渗透.

本节复习课是最后一节复习课,力图通过复习,使学生能够站在数学方法这个高度来解题.从认识水平上也上一个新的台阶.教师必须认识到:数学思想与数学方法决不是通过一节课就能完全教会学生.它是需要有长期的教学积累而成,确实有水到渠成的感觉.

目前高中数学提出的四个数学思想:分类讨论、函数方程、数形结合、转化.本节重点研究了其中三个.

分类讨论是容易接受也是容易忽略的.许多同学往往是出了考场就想起来应该分类讨论.

出现这种情况体现两点:一是学生能力尚不强,检东忘西、丢三落四;另一方面是分类讨论的意识还不够强,这种意识的培养需要一个过程.教师在平时教学中要注意渗透.对于一些问题,教师事先不去提醒他们注意,当他们走入误区,教师再予以指导,效果会好一些.

方程的思想贯穿于整个中学教材.立体几何也不例外,如何通过设置未知量,也有时是“参数”,用其来沟通已知与未知.本节课通过不同的例子来展示. 转化更是无处不在.几乎每一道题的解答都渗透有转化的思想.这里只选了一例,转化求证方向,用以解决问题.

复习课有其独特之处,例题选配最好结合所教班级实际情况,在此,仅以两个教案的粗浅之见,望能起到抛砖引玉之功效.

第二篇:直线和平面垂直教案

直线和平面垂直教案

教学目的

1.进一步理解直线与平面垂直定义的两种用法; 2.理解并掌握直线与平面垂直的判定定理2; 3.理解并掌握直线与平面垂直的性质定理. 教学重点和难点

这节课的重点是使学生进一步理解、掌握直线和平面垂直的定义和判定定理.这节课的难点是直线和平面垂直的性质定理的证明.

教学设计过程

一、复习,讲练上节课所留的作业

师:先请一位同学讲他所做的第32页习题四中的第1题.(教师写出已知、求证并画出直观图)

已知:△ABC,l⊥AB,l⊥AC.(如图1)求证:l⊥BC.

生:因为l⊥AB,l⊥AC,所以 l⊥平面ABC.(线面垂直的判定定理)故 l⊥BC.(线面垂直的定义)

师:对,在上一节我们讲直线和平面垂直的定义时,就强调过在立体几何中这是一个很重要的定义,我们一定要很好地理解、应用.线面垂直的定义既是线面垂直最基本的判定方法,在线面垂直判定定理的证明思路就是回到定义去.关于这一应用在上节课中已经做了详细的说明.线面垂直的定义又是线面垂直的最基本的性质,当我们知道直线和平面垂直后,这平面的垂线就和平面内任何一直线都垂直,所以应用线面垂直的定义是证明两直线垂直常用的方法之一. 师:现在我们来看第32页习题四的第2题.请一个同学回答.(写出已知、求证和根据已知条件而画的直观图,我们叫它为起始图)

已知:直线a∥平面α,直线b⊥平面α.(如图2(1))求证:b⊥a.

生:过a作平面β,设β∩α=c,因为a∥α,所以a∥c.(线面平行的性质定理)

又因为b⊥α,因此b⊥c,故b⊥a. 师:我们怎样想到要过a作平面β的呢?

生:这是线面平行的性质定理的要求.因为在线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行.在图中没有这条交线,所以我们就要作平面β∩α=c,作出这条交线,以满足定理的要求a平行交线c.

师:这是定理要求我们作辅助面.在立体几何解题过程中,我们经常要作辅助线、辅助面,我们根据什么原则来作辅助线、辅助面呢?有两条原则:一是用概念来指导作图,这在求异面直线所成的角时,我们曾反复强调;二是用定理来指导作图.这就是今天我们在证明这个题时要明确的.这是在立体几何中作辅助线、辅助面的两条基本原则,遵循这两条原则就说明解题的思路是正确的,就使解题的正确性有了基本的保证;反之,如果违背了这两条原则,那就说明了第一步就走错了方向.这一题肯定不可能做对.所以作辅助线、辅助面这两条原则我

们一定要理解、记住,并且在解题过程中应用.当然,以后随着课程内容不断的展开,我们还会反复强调这两条原则.

以前我们还讲过要使直观图有好的视觉效果,还要注意视角的选择,这一题的起始图(根据已知条件所画出的直观图)看起来它的视觉效果并不好,但当我们证完这道题,看到它的终止图(解完题后的直观图)视觉效果就比较好,所以视角选择好与不好要以终止图的视觉效果好与不好为标准.这样在解完一道题后,有时要重新设计起始图的画法,以保证终止图有最好的视觉效果.

二、直线与平面垂直的判定定理2.

师:这是课本第25页的例1,我们把它正式升格为判定定理2.我们来看下面的模型就很容易了解定理的内容.(这时拿出两根小棍平行地放在课桌面上,并使其中一根与桌面垂直,让学生观察另一根与桌面的关系)a∥b,如果a⊥平面α,那么b与平面α是什么关系?

生:b也垂直平面α.

师:这就是线面垂直的判定定理2.

判定定理

2如果两条平行直线中的一条垂直于一个平面,那么另一条也垂直于同一个平面.

已知:a∥b,a⊥α.(如图3)求证:b⊥α.

师:判定定理

1、判定定理2,这里的1,2不是人为的排列,而是有它内在的逻辑关系,也就是说我们可以应用判定定理1来证明判定定理2,那么我们如何用判定定理1来证明判定定理2呢?

生:为了用判定定理1,我们可以首先在平面α内作两条相交直线m,n. 因为 a⊥α,所以 a⊥m,a⊥n.(线面垂直的定义)

又因为 a∥b,所以 b⊥m,b⊥n.(一条直线垂直于平行线中的一条也就垂直于另一条)故 b⊥α.(线面垂直的判定定理1)

三、直线和平面垂直的性质定理

师:现在我们来研究直线和平面垂直的性质定理,先来看模型.(这时教师用两根小棍都垂直于桌面,让学生观察、回答)

生:这两直线平行.

师:这就是直线和平面垂直的性质定理.

直线和平面垂直的性质定理

如果两条直线同垂直于一个平面,那么这两条直线平行.

已知:a⊥平面α,(如图4)b⊥平面α,求证:a∥b.

师:我们讲过了线面垂直的判定定理1、2.也曾经在讲线面垂直的定义时,把课本中的两句话(第24页)升格为两个定理,即:

定理

过一点有且只有一条直线和一个平面垂直. 定理 过一点有且只有一个平面和一条直线垂直. 现在可以根据上述定理来证明线面垂直的性质定理:

生:可用反证法,假设b a,设b∩α=O,过O点作b′∥a,因为a⊥α,所以b′⊥α(判定定理2),所以过点O有两条直线b,b′都与平面α垂直,与垂线的唯一性矛盾,所以b

a不能成立,所以b∥a.

师:用反证法证明可以,也可以用同一法,即在证明的开始不做假设b a,证完b′⊥α后,根据垂线的唯一性b′应与b重合,所以b∥a.当然,对反证法和同一法,我们主要要掌握反证法,对同一法只要求有所了解.

四、两个定义

1.点到平面的距离

从平面外一点引一个平面的垂线,这个点和垂足间的距离叫做这个点到这个平面的距离.

(教师可先用一根小棍垂直于桌面演示,然后给点到平面的距离下定义,下完定义后可指出,点到平面的距离可转化为两点间的距离,即这个点和垂足之间的距离)

2.平行的直线和平面的距离

一条直线和一个平面平行,这条直线上任意一点到平面的距离,叫做这条直线和平面的距离.

(教师可先用一根小棍和平面平行,演示让学生观察,如何给平行的直线和平面的距离下定义,定义给出后,教师可指出平行的直线和平面的距离可能转化为点到平面的距离,当然也就可转化为两点间的距离)

师:在这定义中,是这条直线上任意一点到平面的距离叫做这条直线和平面的距离,那会不会因在直线上所取的点不同,而使距离不同呢?

生:不会,它们之间的距离都相等.

师:对,但为了在理论上说明这个定义的合理性,我们来看下面这个例题. 例

已知:l∥平面α,A∈l,B∈l,AA′⊥α于A′,BB′⊥α于B′.(如图5)

求证:AA′=BB′.

生:因为AA′⊥α,BB′⊥α,所以AA′∥BB′(性质定理),所以过AA′,BB′作平面β,设β∩α=A′B′,因为l∥α,所以l∥A′B′,故AA′=BB′.(平行线间的距离处处相等)

师:通过这个例题的证明,我们就了解了定义的合理性.可以在直线上任意取点.这对于以后我们求平行的直线和平面的距离,提供了很好的思路. 今天我们讲了直线和平面垂直的第2个判定定理,讲了直线和平面垂直的性质定理,在这个基础上还讲了点到平面的距离、平行的直线和平面的距离两个定义.

作业

课本第32页习题四第3,5,8题. 补充题

1.已知:平面α∩平面β=直线l.A∈α,AB⊥β于B,BC⊥α于C. 求证:AC⊥l.

[提示:证明直线l⊥平面ABC]

2.已知:AB是圆O的直径,C是圆O上不同于A和B的点,PA⊥⊙O所在的平面.

求证:BC⊥PC.

[提示:证明BC⊥平面PAC]

3.已知:在Rt△ABC中,∠ACB=90°,PB⊥平面ABC,BD⊥PC于D. 求证:(1)AC⊥BD;(2)BD⊥PA.

[提示:(1)证明AB⊥平面PBC:(2)证明BD⊥平面PAC] 课堂教学设计说明

1.立体几何第一章直线和平面主要研究的是空间两条直线、空间直线和平面、空间两个平面的位置关系,其中以直线与直线的垂直、直线与平面的垂直、平面与平面垂直为重点.而直线与平面的垂直是其中的最重要的一个环节,它是三垂线定理及其逆定理、两平面垂直的判定和性质的基础.所以对直线与平面垂直的定义与判定定理一定要让学生深刻理解、牢固记忆、灵活应用.

2.直线与平面垂直的定义,既是直线与平面垂直的最基本的判定方法,别的判定定理都是根据定义和有关定理经过演绎推理而得,在这个意义上,我们说直线与平面垂直的定义是最基本的判定方法;直线与平面垂直的定义又是直线与平面垂直最基本的性质.别的性质定理是根据定义和有关定理经过演绎推理而得,在这个意义上,我们说直线与平面垂直的定义是直线与平面最基本的性质. 为了使学生理解直线与平面垂直的定义这两种用法,以平面几何中的平行四边形的定义为例.平行四边形的定义既是平行四边形的最基本的判定方法,也是平行四边形的最基本的性质.别的判定定理和性质定理都是根据定义和有关定理经过演绎推理而得.

在这里一定要让学生深刻的理解并掌握应用直线与平面垂直的定义是证明两直线垂直最常用的方法.

3.在课本第24页给直线与平面垂直下定义后的这两句话:“过一点有且只有一条直线和一个平面垂直;过一点有且只有一个平面和一条直线垂直.”是两个定理.关于垂线的唯一性和垂面的唯一性的这两个定理是可以证明的.关于这两个定理的证明可以参看1989年出版的《立体几何全一册(甲种本)教学参考书》第47页第11题(1)、(2).要让学生了解这两个定理,并会应用这两个定理,在证明直线和平面垂直的性质定理时,用到垂线的唯一性,以后在证课本第38页习题五第4题时还要用到垂线的唯一性和垂面的唯一性.

为什么课本在这里只是提出两个唯一性没有明确是两个定理也没有证明呢?这是课本的编者为了降低学习立体几何的难度而这样处理的.但我以为还是明确垂线的唯一性、垂面的唯一性是两个定理,但可以不予证明而直接应用为好. 4.前面我们提出了“视觉语言”这个概念,既然作为一种“语言”它应该而且必须与思维过程相一致.所以这里我们又提出“起始图”(根据题中的条件而出现的“视觉语言”)和“终止图”(解完题后,或思维过程完结时出现的“视觉语言”)这两个概念.

前面我们也提到过为了使“视觉语言”达到最佳的视觉效果,必须注意视角的选择,我们认为视角的选择要以终止图有最佳的视觉效果为标准,这样有时会出现起始图视觉效果较好而终止图视觉效果并不好;或者起始图视觉并不太好而终止图视觉效果较好这样不一致情况,所以这样就要求教立体几何的教师对于直观图要精心地、反复地设计,务必使终止图有最佳的视觉效果,这样才能使这个“视觉语言”起到它应有正面效应;否则,这个“视觉语言”不但不能起到它应有正面效应,相反,却起到负面效应.增加了学生在学习立体几何中的困难.这是每一个教立体几何的教师务必要理解并切实掌握的基本功.

起始图和终止图不仅仅是形式上的不同,而且它们之间还应该有“时间差”.因为这两个图是与思维过程相一致,思维既然以一个过程而出现,所以与这抽象思维过程相一致,或者说要以具体形象来表现这个抽象思维过程的“视觉语言”当然也要以一个过程而展现.这两个过程当然是一致的,但是“视觉语言”展现的过程应该比思维过程慢“半拍”,而不是同步,也就是说动脑先于动手.我们说以概念指导作图,以定理指导作图,也就是说在我们动手作图前,脑中得先有有关概念和定理.

在一篇文章中,我看到中国画画家在总结他们的创作国画经验时,用“蓄图在胸、意在笔先”这八个字来概括.当我看过这篇文章后,这八个字就牢记在心,感到对于立体几何的教学很有启发、很有教益.我们在脑中所蓄的图应该是由起始图到终止图一个不断的展现过程,而以终止图为主.这里的所谓意,就是思想,就是有关的概念和定理.

最后我还想以江泽民同志在1998年一次讲话中所引用的李白的《春夜宴桃李园序》“夫天地者,万物之逆旅也,光阴者,百代之过客也”.后说李白已经意识到了四维空间.明确指出“视觉语言”是要在二维平面来展现“四维空间”。不论用什么手段进行教学,一定要把这“时间差”表现出来.即展现出一个随时间的变化而变化的有“动感”的空间图形.

当然有的立体几何题的起始图和终止图是同一个图形,不要作任何的辅助线和辅助面,如这节课所讲的课本第32页习题四中的第1题.但伴随着思维过程的进展,作为对起始图的认识到对作为终止的认识(由直线与直线的垂直,到直线与平面的垂直,再到直线与直线的垂直)也同样有一个过程.

科学和艺术在一定条件下是可以统一的.记得在《新华月报》上曾看到有名的华人物理学家请中国有名的美术家用他们的绘画来展现高深抽象的物理内容.因此在立体几何教学中我们有可能也有必要把科学和艺术统一起来,即所画的每一个空间图形既要展示它所包含的数学科学的内涵,又要展示它的形式的艺术的美.把数学中(立体图形)的美渗透在每一节课中,这样可以培养学生对美的感受,可以更好吸引学生的注意力,从而达到更好的教学效果.

每一个听过我的课的人,都表扬我所画的图很美.在上课时有时让学生做练习,我踱步向教室后面走去,回过头来也很自我欣赏所画图的美.因为从某种意义上来说,每一个图都是一幅美术作品——空间图形的素描.当然我们在立体几何画“素描”的方法用的是平行投影中的斜二测画法,而在美术课中画素描的方法用的是中心投影中的透视法.(可参看1989年版,人民教育出版社出版《立体几何(甲种本)全一册教学参考书》第78页)

第三篇:高中立体几何教案

高中立体几何教案 第一章 直线和平面 两个平面平行的性质教案

教学目标

1.使学生掌握两个平面平行的性质定理及应用;

2.引导学生自己探索与研究两个平面平行的性质定理,培养和发展学生发现问题解决问题的能力.

教学重点和难点

重点:两个平面平行的性质定理;

难点:两个平面平行的性质定理的证明及应用. 教学过程

一、复习提问

教师简述上节课研究的主要内容(即两个平面的位置关系,平面与平面平行的定义及两个平面平行的判定定理),并让学生回答:

(1)两个平面平行的意义是什么?

(2)平面与平面的判定定理是怎样的?并用命题的形式写出来?

(教师板书平面与平面平行的定义及用命题形式书写平面与平面平行的判定定理)(目的:(1)通过学生回答,来检查学生能否正确叙述学过的知识,正确理解平面与平面平行的判定定理.(2)板书定义及定理内容,是为学生猜测并发现平面与平面平行的性质定理作准备)

二、引出命题

(教师在对上述问题讲评之后,点出本节课主题并板书,平面与平面平行的性质)师:从课题中,可以看出,我们这节课研究的主要对象是什么? 生:两个平面平行能推导出哪些正确的结论.

师:下面我们猜测一下,已知两平面平行,能得出些什么结论.(学生议论)

师:猜测是发现数学问题常用的方法.“没有大胆的猜想,就作不出伟大的发现.”但猜想不是盲目的,有一些常用的方法,比如可以对已有的命题增加条件,或是交换已有命题的条件和结

论.也可通过类比法即通过两个对象类似之处的比较而由已经获得的知识去引出新的猜想等来得到新的命题.

(不仅要引导学生猜想,同时又给学生具体的猜想方法)

师:前面,复习了平面与平面平行的判定定理,判定定理的结论是两平面平行,这对我们猜想有何启发?

生:由平面与平面平行的定义,我猜想:两个平面平行,其中一个平面内的直线必平行于另一个面.

师:很好,把它写成命题形式.

(教师板书并作图,同时指出,先作猜想、再一起证明)猜想一:

已知:平面α∥β,直线a 求证:a∥β.

生:由判定定理“垂直于同一条直线的两个平面平行”.我猜想:一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面.

[教师板书]

α,猜想二:

已知:平面α∥β,直线l⊥α.

求证:l⊥β.

师:这一猜想的已知条件不仅是“α∥β”,还加上了“直线l⊥α”.下面请同学们看课本上关于判定定理“垂直于同一直线的两平面平行”的证明.在证明过程中,“平面γ∩α=a,平面γ∩β=a′”.a与a′是什么关系?

生:a∥a′.

师:若改为γ不是过AA′的平面,而是任意一个与α,β都相交的平面γ.同学们考虑一下是否可以得到一个猜想呢?

(学生讨论)

生:如果一个平面与两个平行平面中的一个相交,也必与另一个平面相交.” [教师板书] 猜想三:

已知:平面α∥β,平面γ∩α=a,求证:γ与β一定相交. 师:怎么作这样的猜想呢?

生:我想起平面几何中的一个结论:“一条直线与两条平行线中的一条相交,也必与另一条相交.”

师:很好,这里实质用的是类比法来猜想.就是把原来的直线类似看作平面.两平行直线类似看作两个平行平面,从而得出这一猜想.大家再考虑,猜想三中,一个平面与两个平行平面相交,得到的交线有什么位置关系?

生:平行

师:请同学们表达出这个命题.

生:如果两个平行平面同时和第三个平面相交,那么它们的交线平行. [教师板书]

猜想四:

已知:平面α∥β,平面γ∩α=a,γ∩β=b. 求证:a∥b.

[通过复习定理的证明方法,既发现了猜想三,猜想四,同时又复习了定理的证明方法,也为猜想四的证明,作了铺垫] 师:在得到猜想三时,我们用到了类比法,实际上,在立体几何的研究中,将所要解决的问题与平面几何中的有关问题作类比,常常能给我们以启示,发现立体几何中的新问题.比如:在平面几何中,我们有这样一条定理:“夹在两条平行线间的平行线段相等”,请同学们用类比的方法,看能否得出一个立体几何中的猜想?

生:把两条平行线看作两个平行平面,可得猜想:夹在两个平行平面间的平行线段相等. [教师板书] 猜想五:

已知:平面α∥β,AA′∥BB′,且A,B∈α,B,B′∈β. 求证:AA′=BB′.

[该命题,在教材中是一道练习题,但也是平面与平面平行的性质定理,为了完整体现平面与平面平行的性质定理,故尔把它放在课堂上进行分析]

三、证明猜想

师:通过分析,我们得到了五个猜想,猜想的结论往往并不完全可靠.得到猜想,并不意谓着我们已经得到了两个平面平行的性质定理,下面主要来论证我们得到的猜想是否正确.

[师生相互交流,共同完成猜想的论证] 师:猜想一是由平面与平面平行的定义得到的,因此在证明过程中要注意应用定义. [猜想一证明] 证明:因为α∥β,所以α与β无公共点. 又 因为a α,所以 a与β无公共点. 故 a∥β.

师:利用平面与平面平行的定义及线面平行的定义,论证了猜想一的正确性.这便是平面与平面平行的性质定理一.简言之,“面面平行,则线面平行.”

[教师擦掉“猜想一”,板书“性质定理一”] [论证完猜想一之后,教师与学生共同研究了“猜想二”,发现,若论证了“猜想四”的正确性质,“猜想二”就容易证了,因而首先讨论“猜想三,猜想四”] 师:“猜想三”是类比平面几何中的结论得到的,还记得初中时,是怎么证明的? [学生回答:反证法] 师:那么,大家可否类比初中的证明方法来证明“猜想三”呢?

生:用反证法:假设γ与β不相交,则γ∥β.这样过直线a有两个平面α和γ与β平行.与“过平面外一点有且只有一个平面与已知平面平行”矛盾.故γ与β相交.

师:很好.由此可知:不只是发现问题时可用类比法,就是证明方法也可用类比方法.不过猜想三,虽已证明为正确的命题,但教材中并把它作为平面与平面平行的性质定理,大家在今后应用中要注意.

[猜想四的证明] 师:猜想四要证明的是直线a∥b,显然a,b共面于平面γ,只需推导出a与b无公共点即可. 生:(证法一)因为 a∥β,所以 a与β无公共点.

又因为 a α,b β.

所以 a与b无公共点. 又因为 a γ,b 所以 a∥b.

师:我们来探讨其它的证明方法.要证线线平行,可以转化为线面平行. 生:(证法二)

因为 a α,又因为 α∥β,所以 a∥β.

又因为 a γ,且γ∩β=b,所以 a∥b.

师:用两种不同证法得出了“猜想四”是正确的.这是平面和平面平行的性质定理二. [教师擦掉“猜想四”,板书“性质定理二”] 师:平面与平面平行的性质定理二给出了在两个平行平面内找一对平行线的方法.即:“作一平面,交两面,得交线,则线线平行.”同时也给我们证明两条直线平行的又一方法.简言之,“面面平行,则线线平行”.

[猜想二的证明] 师:猜想二要证明的是直线l⊥β,根据线面垂直的判定定理,就要证明l和平面β内的两条相交直线垂直.那么如何在平面β内作两条相交直线呢?

[引导学生回忆:“垂直于同一直线的两个平面平行”的定理的证明] γ,生:(证法一)设l∩α=A,l∩β=B.

过AB作平面γ∩α=a,γ∩β=a′. 因为 α∥β,所以 a∥a′.

再过AB作平面δ∩α=b,δ∩β=b′. 同理b∥b′.

又因为l⊥α,所以 l⊥a,l⊥b,所以 l⊥a′,l⊥b′,又a′∩b′=β,故 l⊥β.

师:要证明l⊥β,根据线面垂直的定义,就是要证明l和平面β内任何一条直线垂直. 生:(证法二)

在β内任取一条直线b,经过b作一平面γ,使γ∩α=a,因为 α∥β,所以 a∥b,因此 l⊥α,a α,故 l⊥a,所以 l⊥b. 又因为b为β内任意一条直线,所以 l⊥β.

[教师擦掉“猜想二”,板书“性质定理三”] [猜想五的证明] 证明:因为 AA′∥BB′,所以过AA′,BB′有一个平面γ,且γ∩α=AB,γ∩β=A′B′.

因为 α∥β,所以 AB∥A′B′,因此 AA′ B′B为平行四边形. 故 AA′=BB′.

[教师擦掉“猜想五”,板书“性质定理四”] 师:性质定理四,是类比两条平行线的性质得到的.平行线的性质有许多,大家还能类比得出哪些有关平行平面的猜想呢?你能证明吗?请大家课下思考.

[因类比法是重要的方法,但平行性质定理已得出,故留作课下思考]

四、定理应用

师:以上我们通过探索一猜想一论证,得出了平面与平面平行的四个性质定理,下面来作简单的应用.

例 已知平面α∥β,AB,CD为夹在α,β间的异面线段,E、F分别为AB,CD的中点. 求证:EF∥α,EF∥β.

师:要证EF∥β,根据直线与平面平行的判定定理,就是要在β内找一条直线与EF平行. 证法一:

连接AF并延长交β于G. 因为 AG∩CD=F,所以 AG,CD确定平面γ,且γ∩α=AC,γ∩β=DG. 因为 α∥β,所以 AC∥DG,所以 ∠ACF=∠GDF,又 ∠AFC=∠DFG,CF=DF,所以 △ACF≌△DFG. 所以 AF=FG. 又 AE=BE,所以 EF∥BG,BG 故 EF∥β. 同理:EF∥α.

师:要证明EF∥β,只须过EF作一平面,使该平面与β平行,则根据平面与平面平行性质定理即可证.

证法二:因为AB与CD为异面直线,所以A CD. β.

在A,CD确定的平面内过A作AG∥CD,交β于G,取AG中点H,连结AC,HF. 因为 α∥β,所以 AC∥DG∥EF.

因为 DG β,所以 HF∥β. 又因为 E为AB的中点,因此 EH∥BG,所以 EH∥β. 又EH∩FH=H,因此平面EFH∥β,EF 所以 EF∥β. 同理,EF∥α.

平面EFH,师:从以上两种证明方法可以看出,虽然是解决立体几何问题,但都是通过转化为平面几何的问题来解决的.这是解决立体几何问题的一种技能,只是依据的不同,转化的方式也不同.

五、平行平面间的距离

师:和两个平行平面同时垂直的直线,叫做这两个平行平面的公垂线,它夹在这两个平行平面间的部分,叫做这两个平行平面的公垂线段.两个平行平面有几条公垂线?这些公垂线的位置关系是什么?

生:两个平行平面有无数条公垂线,它们都是平行直线.

师:夹在两平行平面之间的公垂线段有什么数量关系?根据是什么? 生:相等,根据“夹在两个平行平面间的平行线段相等.”

师:可见夹在两个平行平面的公垂线段长度是唯一的.而且是夹在两个平行平面间的所有线段中最短的.因此我们把这公垂线段的长度叫做两个平行平面的距离.显然两个平行平面的距离等于其中一个平面上的任一点到另一个平面的垂线段的长度.

六、小结

1.由学生用文字语言和符号语言来叙述两个平面平行的性质定理.

教师总结本节课是由发现与论证两个过程组成的.简单的说就是:由具体问题具体素材用类比等方法猜想命题,并由转化等方法论证猜想的正确性,得到结论.

2.在应用定理解决立体几何问题时,要注意转化为平面图形的问题来处理.大家在今后学习中一定要注意掌握这一基本技能.

3.线线平行、线面平行与面面平行的判定定理和性质定理构成一套完整的定理体系.在学习中应发现其内在的科学规律:低一级位置关系判定着高一级位置关系;高一级位置关系一定能推导低一级位置关系.下面以三种位置关系为纲应用转化的思想整理如下:

七、布置作业

课本:p.38,习题五5,6,7,8. 课堂教学设计说明

1.本节课的中心是两个平行平面的性质定理.定理较多,若采取平铺直叙,直接地给出命题,那样就绕开了发现、探索问题的过程,虽然比较省事,但对发展学生的思维能力是不利的. 在设计本教案时,充分考虑到教学研究活动是由发现与论证这样两个过程组成的.因而把“如何引出命题”和“如何猜想”作为本节课的重要活动内容.在教师的启发下,让学生利用具体问题;运用具体素材,通过类比等具体方法,发现命题,完成猜想.然后在教师的引导下,让学生一一完成对猜想的证明,得到两个平面平行的性质定理.也就在这一“探索”、“发现”、“论证”的过程中,培养了学生发现问题,解决问题的能力.

在实施过程中,让学生处在主体地位,教师始终处于引导者的位置.特别是在用类比法发现猜想时,学生根据两条平行线的性质类比得出许多猜想.比如:根据“平行于同一条直线的两条直线平行”得到“平行于同一个平面的两个平面平行.”根据“两条直线平行,同位角相等”等,得到“与两个平行平面都相交的直线与两个平面所成的角相等”等等,当然在这些猜想中,有的是正确的,有的是错误的,这里不一一叙述.这就要求教师在教学过程中,注意变化,作适当处理.学生在整节课中,思维活跃,沉浸在“探索、发现”的思维乐趣中,也正是在这种乐趣中,提高了学生的思维能力.

2.在对定理的证明过程中,课上不仅要求证出来,而且还考虑多种证法.对于定理的证明,是解决问题的一些常用方法,也可以说是常规方法,是要学生认真掌握的.因此教师要把定理的证明方法,作为教学的重点内容进行必要的讲解,培养学生解决问题的能力.

3.转化是重要的数学思想及数学思维方法.它在立体几何中处处体现.实质上处理空间图形问题的基本思想方法就是把它转化为平面图形的问题,化繁为简.特别是在线线平行,线面平行,面面平行三种平行的关系上转化的思想也有较充分的体现,因而在小结中列出三个平行关系相互转让的关系图,一方面便于学生理解,记忆,同时通过此表,能马上发现三者相互推导的关系,能打开思路,发现线索,得到最佳的解题方案.

第四篇:高中立体几何教案 第一章 直线和平面 两条异面直线所成的角和讲解

高中立体几何教案 第一章 直线和平面 两条异面直线所成的角和距离教案

教学目标

1.运用类比推理,理解引入有关概念的必要性、重要性;

2.理解、掌握有关概念的定义,并会初步应用有关概念的定义来解题. 教学重点和难点

这节课的重点与难点都是异面直线所成的角和距离这两个概念的引入,和使学生真正地理解、掌握这两个概念.

教学设计过程

一、引入有关概念的必要性

师:我们都知道空间的两直线的位置关系有三种:相交、平行、异面.这只是“定性”来研究对象,当我们要“定量”来研究对象时就必需要引入一些有关的新概念.

(这时教师拿出两根小棍做平行直线演示并说)

例如a∥b,c∥d(如图1),虽然它们都是平行直线,但是它们之间有什么区别呢?

生:虽然它们都是平行直线,但是它们的之间的距离不同.

师:对,为了区别都是平行直线的不同情况,也就是说为了“定量”的研究平行直线,就必须引入有关“距离”这个概念.

(这时教师又拿出两根小棍做相交直线,并且使其角度各有不同,并说)

师:又例如a与b是相交直线,c与d也是相交直线(如图2).虽然它们都是相交直线,但是它们之间有什么区别呢?

生:虽然它们都是相交直线,但是它们的夹角大小不同.

师:对,为了区别两相交直线的不同情况,也就是说为了“定量”的研究相交直线就必须引入有关“角”的概念.

(这时教师又拿出两根小棍做异面直线状,并变动其距离的大小演示给学生看,让其观察后,得出相应的结论)

师:直线a,b是异面直线,直线c,d也是异面直线,它们之间有什么不同? 生:虽然它们都是异面直线,但是它们之间的距离不同.

(这时教师又拿出两根小棍做异面直线状,并变动其所成角的大小演示给学生看,让其观察后,得出相应的结论)

师:直线a,b是异面直线,直线c,d也是异面直线,它们之间有什么不同? 生:虽然它们都是异面直线,但是它们之间所成的角大小不同.

师:对,通过观察我们可以发现为了“定量”的研究异面直线,必须引入异面直线所成的角和异面直线的距离这两个概念.下面我们先来研究异面直线所成的角这个概念的定义.

二、异面直线所成的角的定义

(教师拿出两根小棍做异面直线状,演示给学生看,使其观察如何给异面直线所成的角下定义)师:我们来看这模型,怎样给异面直线a、b所成的角下定义?

生:可以把直线a平移与b相交,这时由a平移而得的a′与b相交所成的角,就可以定义为异面直线a与b所成的角.

师:对,但是为了使这个定义更有一般性,我们给异面直线所成的角做如下的定义. 定义 直线a,b是异面直线,经过空间任意一点O,分别引直线a′∥a,b′∥b,我们把直线a′和b′所成的锐角(或直角)叫做异面直线a和b所成的角.(如图3)

师:由定义来看,O是空间中任意一点,当然我也可以在空间任意取一点O1,过O1分别引a1∥a,b1∥b,那么这时a1和b1所成的锐角与a′和b′所成的锐角是否相等呢?

生:相等,因为有等角定理的推论“如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成的锐角(或直角)相等”.因为a′∥a,a1∥a可推出a′∥a1,同理可推出b′∥b1,所以可用等角定理的推论.

师:对,我们在上两节课讲的公理4和等角定理,在某种意义来说都是为给异面直线所成的角下定义做理论上的准备,正因为角的大小与O点的选择无关,所以为了简便,点O常取在两条异面直线中的一条上,所以你们一开始给异面直线所成的角下的定义是对的.

师:我们如何给两条异面直线互相垂直下定义呢?

生:如果两条异面直线所成的角是直角,我们就说这两条异面直线互相垂直. 师:设两条异面直线所成的角为θ,问θ角的取值范围? 生:θ∈(0°,90°],半开、半闭区间. 师:θ角能否等于0°.

生:不能,因为当θ=0°时,异面直线就转化为平行直线.

师:对,θ≠0°,否则,量变就转化为质变,异面直线就转化为平行直线了.至于异面直线所成的角规定为锐角或直角,则是为了所成的角是唯一确定的.

三、练习

例 正方形ABCD-A1B1C1D1.求:

(1)A1B与CC1所成的角是多少度?为什么?(2)A1B1与CC1所成的角是多少度?为什么?(3)A1C1与BC所成的角是多少度?为什么?(4)在正方体ABCD-A1B1C1D1的棱中,与棱B1B 垂直的棱有几条?(如图4)

师:请你们依次回答上述的四个问题.

生:(1)因为ABCD-A1B1C1D1为正方体,CC1∥BB1,所以A1B与CC1所成的角为∠B1BA1,而∠B1BA1=45°,所以A1B与CC1所成的角为45°.

师:请回答第(2)问.

生:因为CC1∥BB1,所以A1B1与CC1所成的角为∠BB1A1,而∠BB1A1=90°,所以A1B1与CC1所成的角为90°.

师:请回答第(3)问.

生:因为BC∥B1C1,所以A1C1与BC所成的角就是∠B1C1A1,而∠B1C1A1=45°,所以A1C1与BC所成的角为45°.

师:请回答第(4)问. 生:与棱B1B垂直的棱有8条.

师:有哪几条是与B1B相交垂直?有哪几条是与B1B异面垂直?

生:与B1B相交垂直的棱有4条,为AB,A1B1,BC,B1C1;与B1B异面垂直的棱也有4条,为AD,A1D1,CD,C1D1.

师:对.这里我们需要指出,在立体几何中.“垂直”、“相交垂直”、“异面垂直”这三个不同概念的联系和区别.以后我们讲两直线垂直,则是指这两直线可能是相交垂直,也可能是两直线异面垂直.这里我们要破除在平面几何中形成的思维定式,就是一说两直线垂直就是指两直线相交垂直.而要了解:“垂直”=“相交垂直”+“异面垂直”.

四、异面直线的距离的定义 师:和两条异面直线都垂直的直线有多少条?(同时拿出两根小棍做为异面直线a,b,再拿出一根小棍c摆出与a、b都垂直状,而小棍c在保持与a、b都垂直的情况下可平行移动,用这样的模型让学生观察,再让学生回答)

生:有无数条.

师:对.现在再问与这两条异面直线都相交垂直的直线有几条? 生:只有一条.

师:对,由对模型的观察我们知道和两条异面直线都相交垂直的直线有而且只有一条,现在可以给出下面两个定义.

定义

和两条异面直线都垂直相交的直线叫做两条异面直线的公垂线.

定义

两条异面直线的公垂线在这两条异面直线间的线段的长度,叫做两条异面直线的距离. 要注意这两个定义之间的联系与区别,公垂线是一条直线,这直线在这两条异面直线间(两垂足间)的线段的长度是这两条异面直线的距离.

五、练习

在长方体ABCD-A1B1C1D1中,AB=4cm,BC=3cm,B1B=2cm。求:(1)异面直线A1A与BC的距离;(2)异面直线A1A与C1D1的距离;

(3)异面直线A1B1与BC的距离.(如图5)

师:在第(1)问中A1A与BC的距离等于多少?为什么?

生:因为ABCD-A1B1C1D1是长方体,AB⊥A1A于A,AB⊥BC干B.所以AB的长度就是异面直线A1A与BC的距离,因为AB=4cm,所以A1A与BC的距离为4cm.

师:在第(2)间中,A1A与C1D1的距离等于多少?为什么?

生:因为A1D1⊥A1A于A1,A1D1⊥C1D1于D1,A1D1的长度就是异面直线A1A与C1D1的距离,因为A1D1=BC=3cm,所以A1A与C1D1的距离为3cm.

师:在第(3)问中,A1B1与BC的距离等于多少?为什么. 生:因为B1B⊥A1B1于B1,B1B⊥BC于B.B1B的长度就是异面直线A1B1与BC的距离,因为B1B=2cm,所以A1B1与BC的距离等于2cm.

师:现在你们自己看课本第15页到第16页的例,看完后你们自己来讲.可根据课本来回答. 例 设图6中的正方体的棱长为a.

(1)图中哪些棱所在的直线与直线BA′成异面直线?(2)求直线BA′和CC′所成的角的大小;(3)求异面直线BC和AA′的距离.

(可根据课堂情况灵活掌握让学生看3~5分钟后,叫学生回答)师:现在你们先回答第(1)问.

生:因为A′平面B′BCC′,而点B、直线CC′都在平面B′BCC′内,且B CC′.所以直线BA′与CC′是异面直线.

同理,直线C′D′,D′D,DC,AD,B′C′都和直线BA′成异面直线. 师:刚才回答是正确的,但它们的理论根据是什么呢?

生:是根据课本第10页例,过平面外一点与平面内一点的直线,和平面内不经过该点的直线是异面直线.

师;对,过去我们已经讲过,课本第10页上的例,应该明确把它“升格”为定理.这定理有的书上叫它为异面直线存在定理,有的书上把它叫做异面直线判定定理.以后,我们叫这定理为异面直线判定定理.过去我们还小结过,证明两条直线是异面直线的方法有两个,是哪两个方法.

生:一是用反证法,二是用异面直线的判定定理. 师:现在回答第(2)问.

生:因为C′C∥BB′,所以BA′和BB′所成的锐角就是BA′和CC′所成的角.因为∠A′BB′=45°,所以BA′和CC′所成的角是45°. 师:现在回答第(3)问.

生:因为AB⊥AA′于A,AB⊥BC于B.所以AB是BC和AA′的公垂线段,因为AB=a,所以BC和AA′的距离是a.

师:今天我们讲了两个很重要的概念,两条异面直线所成的角和距离,我们一定要很好的理解、掌握这两个概念并能应用它们来解有关的题.

作业

课本第17页,第9,10两题. 补充题

1.正方体12条棱中,组成异面直线的对数是多少?[24] 2.空间四边形的对角线互相垂直,顺次连结这个四边形各边的中点,所得的四边形是矩形,试证明.[提示:证有一个角是直角的平行四边形是矩形] 3.空间四边形ABCD,AB,BC,CD的中点分别是P,Q和R,[90°] 4.在正方体ABCD-A1B1C1D1中,E,F,G,H分别是AB,AD,CD和CC1的中点,求异面直线EF和GH所成的角是多少度?[60°] 课堂教学设计说明

1.为了使学生理解引入异面直线所成的角和距离这两个概念的必要,一定要运用类比推理的思想,从平面几何为了区别不同的平行直线要有距离的概念,为了区别不同的相交直线要有角的概念.这样为了区别不同的异面直线要引入异面直线所成的角和距离就是很自然很合理的了. 一定要使学生观察模型,使他们理解两异面直线所成角的概念的定义合理性.并且要求自己给出这个定义.

一定要使学生理解垂直、相交垂直、异面垂直这三个相互联系又相互区别的三个概念,使学生理解与两异面直线都相交垂直的直线有且只有一条,从而给异面直线的距离下定义做准备. 这节课引入两个新概念要用较多的时间,所以应用这两个概念的练习要很简单、很基本,使学生一看就会,目的是加深对概念的理解.

2.在立体几何第一章的教学中要有四个“高潮”(也可借用音乐中的一个术语,就是要有四个华彩乐段).第一个“高潮”是在讲了异面直线所成的角和距离以后;第二个“高潮”是在讲了三垂线定理及其逆定理以后;第三个“高潮”是在讲了二面角及其平面角以后;第四个“高潮”是在讲了两平面垂直的定义.判定和性质以后. 所谓“高潮”是指在这一阶段教学中,要选较多、较全的题型,要多讲几次练习课,学生要多做些题,使学生能通过这一阶段的教学在解题的能力上有较大的提高,也就是说在逻辑思维能力、运算能力、空间想象能力等跃上一个新的台阶或者说达到一个新的层面.所以在讲了异面直线所成的角和距离这节课后,还应安排两次练习题.为了节省篇幅,我们把第一节练习课的提纲写在下面.

3.第一节练习课提纲

例1 在正方体ABCD-A1B1C1D1中.(1)求AD1与B1B所成的角是多少度?(45°)

(2)问与AD1异面,且所成的角是45°的正方体的棱有哪几条?(4条即为B1B,C1C,B1C1,BC)(3)问AD1与B1C所成的角是多少度?(90°)

(4)如果M,N分别是B1C1,C1C的中点,问MN与AD1所成的角是多少度?(90°)

由第(4)问这个特殊的题,用一般化的方法得出定理:一直线垂直于平行直线中的一条,也垂直于另一条.

例2 在正方体ABCD-A1B1C1D1中.(1)求AD1与A1C1所成的角的度数?(△D1AC为等边三角形,∠D1AC=60°)

(2)如果M,N分别为A1B1,B1C1的中点,求MN与BC1所成的角的度数?(60°)

(3)如果P,Q分别是A1A,A1D1的中点,求PQ与MN所成的角的度数?(60°)

例3 在长方体ABCD-A1B1C1D1中,AB=4,BC=3,B1B=2.求:(1)AB与A1C1所成的角的正切?

(2)A1A与BC1所成的角的正弦?

(3)A1C1与AD1所成的角的余弦?

这叫余弦定理,我们补充的定理.详见代数课本第239页二 解斜三角形中的3.5余弦定理. 在讲完这三个例题后,可做如下总结. 小结

(1)以概念为指导作出异面直线所成的角;

(2)找出这个角所在的三角形(直角三角形或斜三角形);(3)解这个三角形,求出所要求的角.

在求异面直线所成的角的三个步骤中,关键是第(1)步,即把空间角(异面直线所成的角)转化为平面角,把解立体几何中的问题化归为解平面几何中的问题.

这节课可留如下作业.(1)重做课堂练习中的例3.

(2)看代数课本第239~242页.余弦定理只要求记住定理和用法,定理证明过程可略.(3)做代数课本中第243页练习1(1)(2)(3)(4).

以上就是讲完异面直线所成的角和距离后第一节练习课的讲课提纲.在这节课中我们补充了余弦定理.在讲立体几何第一章中要不要提前补充余弦定理.在什么时候补充余弦定理,下面就谈一下自己在教学实践中的想法. 4.对补充余弦定理想法

余弦定理本来是初中的教材,在立体几何第一章的教学中不存在补充的问题.现在的教材把余弦定理放在高一的下半学期才讲,这就出现了在立体几何第一章的教学中要不要补充余弦定理的问题.

从理论上来说,求异面直线所成角的问题都要归结到解三角形的问题.而解直角三角形的问题一般来说都比较简单,达不到提高学生解题能力的目的.而要解斜三角形,一般来说就要用到余弦定理,所以余弦定理是我们在解立体几何有关问题时思维链条中不可缺少的一个环节,所以一定要补上这一环,否则学生的解题能力很难提高.

第五篇:直线与平面平行的教案

5.1平行关系的判定

---直线与平面平行的判定

高一朱丽珍

【教学目标】

1.理解并掌握直线与平面平行的判定定理

2.把线面平行关系(空间问题)转化为线线平行关系(平面问题)

3.了解空间与平面互相转换的思想,激发学生的学习兴趣

【教学重点】

直线与平面平行的判定定理;线面平行关系与线线平行关系的转换

【教学难点】

线面平行关系与线线平行关系的转换

【教学方法】

启发诱导与自主探究

【教学过程】

(一)复习引入

一条直线与一个平面有哪些位置关系?

①直线a在平面内②直线a与平面相交③直线a与平面平行 提问:如何判定一条直线与一个平面平行?

(二)新课讲解

实例探究:①门扇绕着门框转动观察另一边与门框所在平面位置关系②转书过程观察书沿与桌面的位置关系

归纳出线面平行的判定定理:若平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行

符号表示:若a,b,a∥b,则a∥

简述为:线线平行线面平行

(三)例题选讲

1、空间四边形ABCD中,E,F分别为AB,AD的中点,证明:直线EF与平面BCD平行

2、在长方体ABCD-A1B1C1D1各面中,(1)与直线AB平行的平面有:

(2)与直线AA1平行的平面有:

(四)反馈训练

正方体ABCD-A1B1C1D1中,E为DD1的中点,证明BD1∥平面AEC

(五)归纳总结

1、直线与平面平行的判定定理:线线平行线面平行

2、应用判定定理时,应当注意三个不可或缺的条件

(六)布置作业:课本P 31 练习第3题

下载高中立体几何教案第一章直线和平面第一章复习(四)教案word格式文档
下载高中立体几何教案第一章直线和平面第一章复习(四)教案.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    教案:直线与平面垂直(合集五篇)

    2013年江西省高中数学优质课评比教案王文彬(抚州一中)直线与平面垂直(第1课时)执教:王文彬(抚州一中)【教材】高中数学教材必修2(北师大版),第一章“立体几何初步”,第6节“垂直关系的......

    第九章_立体几何总复习教案

    第九章 直线、平面、简单几何体学法指导: 1.必须明确本章内容的复习目标: (1)准确理解和系统掌握空间直线和平面的各种位置关系(特别是平行与垂直的位置关系),能够运用概念、公理、......

    教案 立体几何

    【教学过程】 *揭示课题 9 立体几何 *复习导入 一、点线面的位置关系 1 点与直线的位置关系:Aa Aa 2.点与面的位置关系: A A 3.直线与直线的位置关系:平行 相交 异面 4直线......

    直线与平面垂直的判定教案

    《直线与平面垂直的判定》 选自人教版《普通高中课程标准实验教科书·数学》必修2第二章第三节 一、教学目标 1.知识与技能目标 .掌握直线与平面垂直的定义 .理解并掌......

    平面直角坐标系复习教案[范文]

    平面直角坐标系 知识归纳梳理 1 题型一平面直角坐标系的概念问题 1、已知Q(2x+4,xº﹣1)在y轴上,则点Q的坐标为( )。 A、(0,4) B、(4,0) C、(0,3) D、(3,0) 2、平面直角坐标系中,若点M......

    直线教案

    《直线、射线和角》教案设计 凤鸣天女小学:张鑫娟 教学目的: 1、让学生进一步认识线段,认识、领会射线和直线,知道直线、射线和线段的联系和区别。 2、进一步认识角,知道角的定......

    立体几何最全教案doc

    直线、平面垂直的判定及其性质 一、目标认知 学习目标 1.了解空间直线和平面的位置关系; 2.掌握直线和平面平行的判定定理和性质定理;进一步熟悉反证法的实质及其一般解题步骤. 3......

    高一数学 直线、平面、简单几何体教案16 苏教版

    三垂线定理练习课二 教学目标 1.进一步理解、巩固并应用三垂线定理及其逆定理; 2.应用上一节课上所讲的两个基本题来解有关的综合题; 3.通过解综合题提高学生解综合题的能力. 教学......