第一篇:课题研究课《圆与圆的位置关系》教学设计说明
课题研究课《圆与圆的位置关系》教学设计说明
北戴河一中
周利
大家好:首先给大家先介绍一下我们课题的情况,我们课题的名称是《中学数学学习困难生成因及对策的研究》,自2007年12月本课题开始研究以来,在各级领导的支持、帮助与指导下,我们课题组的成员对数学学困生的成因从理论和调查实践两个方面进行了系统的研究,并且重点在课堂教学中探求数学学困生转化对策以及从教师能力培养和素质提高方面进行数学学困生的转化对策的研究。并且取得了一定成绩。
本次课就属于“在课堂教学中探求数学学困生转化对策的实验研究”的一个例子,在进行“新课程背景下---中学生在数学课堂教学中需求的研究”的过程中,我们发现如今的中学生对数学课堂的需求发生了很大变化:
他们喜欢的是轻松活泼、多讨论的、民主的课堂气氛;需要的是同学之间友好合作、互相讨论问题的学习环境; 他们不再喜欢只有老师一人表演的讲授式,而是更喜欢那种师生共同讨论、学生自主学习、学生互相交流的多样化教学模式。他们希望在课堂上得到的是数学基础知识、数学方法、解题技巧和数学实践,而不喜欢一味枯燥地做习题,更讨厌题海战术。当然他们喜欢的更是那些知识渊博、经验丰富、善于指导学习方法、有爱心、有感召力的优秀教师,而不是一味地要求严格、严肃认真、不拘言笑、封建家长式的老师。
因此我们课题组成员在平时的课堂教学中,有意识地朝向满足学生的课堂需求、有利于学困生转化的方面进行教学。
说课教案:
教材:义务教育课程标准实验教科书冀教版九年级(下)第三十五章第五节
一、教材分析:本节课是在学生掌握了直线和圆的位置关系等知识的基础上,进一步研究平面上两圆的位置关系。学生亲自动手实践,自主探究圆和圆的位置关系,观察分析、猜想、验证,完成从感性到理性的发生、发展的认知过程,既是学生对圆的知识应用的基础,也为今后到高中继续研究平面与球的位置关系、球与球的位置关系打下坚实的基础。因此本节课的内容是至关重要的,它对知识起到了承上启下的作用。
二、教学目标:
(一)知识目标:
1、了解圆与圆之间的几种位置关系,会判断圆与圆的位置关系
2、了解两圆的位置关系与两圆圆心距D和两圆半径的数量关系之间的联系
3、能利用两圆的位置关系解决一些简单的实际问题
(二)、能力目标:在学生探究两圆位置关系活动中,培养学生动手操作的行为习惯,在观看动画活动探究用数量关系判别两圆位置关系的活动中,培养学生的观察、想象、分析、归纳、概括的能力,培养学生分类、对比的数学思想。
(三)、情感目标:利用多种教学手段激发学生的学习兴趣,通过鼓励和肯定学生,培养学生敢于想象,勇于探索的精神。
三、教学重点、难点:
教学重点:两圆位置关系的识别方法及性质的探索过程 教学难点:用数量关系来刻画两圆的位置关系
四、教学方法、教学手段:
方法:多媒体辅助教学,学生动手操作共同探索
手段:
1、用生活中的常见的图片引入新课,揭示两圆的位置关系在现实生活中应用广泛,启发学生探索的欲望。
2、通过学生动手演示和粘贴活动,探索两圆的位置关系,使学生在活动中加深对知识的理解和掌握。
3、遵循“教必须以学为立足点”的教育理念,整个教学过程,通过情境、活动来激发学生的学习兴趣,使学生主动参与到教学的探索活动中。
五、教学设计过程:
(一)、图片引入:
(二):探索两圆的位置关系 设计了3个学生活动(动动手)、(演一演)、(贴一贴)和一个巩固练习(试一试)
(三)、探索判断两圆位置关系的方法
设计了师生活动(画一画),观看动画、共同探究,学生活动(练一练)三个活动。
(四)、例题讲解
(五)、巩固练习:分曾练习
(六)、课堂小结:师生共同完成
(七)、作业布置:分曾作业
(八)、板书设计:
课题研究课设计说明:
1、本课中使用多媒体课件进行辅助教学,就是优化课堂教学环境、提高学生以及学困生学习兴趣的一种体现。
2、从生活中常见的例子引入新课,吸引学生的注意力,激发学生的学习兴趣。为下面教学环节地顺利进行做了一个铺垫。
3、前三个“学生活动”的设计是为了调动学生的参与意识和学习的主动性,关注学困生的学习态度。使他们在大家都积极动手、认真参与的氛围中得到感染,激发学困生学习的主动性。从而把注意力重新放在课堂学习中来。(只要他们参与,我们的目的就有希望达到)。
4、“学生活动4”中设计的是一只可爱的小动物图片,让学生在轻松、快乐的气氛中,把所学到的知识加以巩固。
5、“学生活动5”承上启下,主要设计目的是引出圆与圆位置关系的判定方法,在这里我运用了以旧引新的教学策略和对比的数学思想,同时用多媒体动画展示-师生共同探究的方法突破教学难点。
6、“学生活动6”是巩固练习,比较简单,可以提问学困生来回答,以增强他们的自信心,激发学习兴趣。
7、“例题讲解” 是课本上的例题,第三小问设计的变式训练,主要是为了拓展较好学生的思维。
8、“巩固练习”设计成小卷子的形式,使得练习题看起来量小而简单,消除学生的厌烦情绪,对知识起到巩固的作用。同时练习也采用了分层设计,成绩较好的学生要把练习全部完成,课上完不成的,课下可以作为作业。学困生可以只完成表格和填空两部分。让所有的学生在课堂上都学有所获。
9、“板书设计”的目的是,为了让学生对本次课所学的知识系统化,并且给学生留下清晰、深刻的印象。
好的,我就说到这了,有说的不对的地方请各位专家、各位老师多提宝贵意见,谢谢大家!
第二篇:4.2.1直线与圆的位置关系教学设计说明
4.2.1直线与圆的位置关系教学设计说明
设计这节课的指导思想是以培养学生的观察、类比、归纳等数学能力为核心,通过主体性教学,充分调动学生学习的积极性,主动性和创造性,使学生以多种方式、多种途径主动参与到学习中来,培养学生主动学习的习惯及实事求是的学习态度。
1、教材的地位和作用
本节内容选自《普通高中课程标准实验教科书·数学2·必修(A版)》第四章第2节,它既是对圆的方程应用的延续和拓展,又是研究圆与圆的位置关系的基础,为后续研究直线与圆锥曲线的位置关系奠定思想基础,具有承上启下的作用。
本节课是学生在已获得一定的探究方法的基础上的进一步深化,是学习直线与圆的方程之后,进一步的理性分析,定量研究, 而解决问题的主要方法是坐标法。坐标法是解析几何中最基本的研究方法,不仅是定量判断直线与圆的位置关系的方法,同时也是培养同学们的空间想象能力和逻辑思维能力的重要内容。在直线与圆的位置关系的判断方法的建立过程中蕴涵着诸多的数学思想方法,这对于进一步探索、研究后续内容有很强的启发与示范作用。
2、教学目标
《新课程标准》指出:在平面解析几何初步的教学中,教师应帮助学生经历如下的过程:首先将几何问题代数化,用代数的语言描述几何要素及其关系,进而将几何问题转化为代数问题;处理代数问题;分析代数结果的几何意义,最终解决几何问题。这种思想应贯穿平面解析几何教学的始终,帮助学生不断地体会“数形结合”的思想方法。
学生在初中已经学习了直线与圆的位置关系,知道可以利用直线与圆的交点的个数以及圆心与直线的距离d与半径r的大小比较两种方法判断直线与圆的位置关系,但是这两种方法都是以结论性的形式呈现,在高一学习了解析几何以后要求学生掌握用直线和圆的方程来判断直线与圆的位置关系,让学生经历知识的发生和发展过程,领悟解决问题的思想方法,提高分析和解决问题的能力,体验成功的喜悦,增强探究知识的欲望和热情,养成一种良好的思维品质和习惯。
根据新课程标准中发展学生数学应用意识的基本理念,结合学生已有的知识结构与心理特征,制定本节课的教学目标: 【知识与技能】
(1)理解直线与圆的三种位置关系;能根据直线、圆的方程,判断直线与圆的位置关系;(2)能用直线和圆的方程解决一些简单的问题; 【过程与方法】
(1)经历知识的建构过程,培养学生独立思考,自主探究,动手实践,合作交流的学习方式;(2)强化学生用坐标法解决几何问题的意识,培养学生分析问题和灵活解决问题的能力; 【情感态度与价值观】
(1)让学生通过观察图形,理解并掌握直线与圆的位置关系,培养学生数形结合的思想;(2)加深对解析法解决几何问题的认识,激发学习热情,培养学生的创新意识和探索精神; 【重点难点】
本节课主要是研究利用坐标法来判断直线和圆的位置关系,研究问题的思想方法学生不熟悉。新课程《标准》要求,教学中应强调对基本概念和基本思想方法的理解和掌握,并能灵活应用所学知识解决实际问题,根据本节课的教学内容和学生认知结构特征,重点难点如下:(1)重点:直线与圆的位置关系及其判断方法;(2)难点:体会和理解坐标法解决几何问题的数学思想;
3、教学问题诊断
问题是数学的心脏,是学生思维和兴趣的开始。通过问题回顾,找准新旧知识的结合点,为本节课做好知识方面的准备。根据学生已有经验,判断直线与圆的位置关系,一种方法,利用点到直线的距离公式求出圆心到直线的距离,然后比较这个距离与半径的大小作出位置关系的判断;另一种方法,就是看由它们组成的方程组有无实数解; 该问题具有探究性、启发性和开放性,鼓励学生大胆表达自己的看法.
本节主要内容:直线与圆的位置关系的判定,弦长问题。为了突出重点,突破难点,落实本节设定的教学目标,安排了创设情境、探究新知、典例剖析、变式训练等环节,通过讲练结合,解决以下三个问题:直线与圆的位置关系的判定及弦长问题;代数法、几何法的理解及应用;数形结合 思想的培养。
典例剖析直接应用新知解决数学问题,难度不大,教学时应为学生规范表达数学过程做出示范。体会用代数方法解决几何问题,渗透数形结合的思想方法。变式训练1难度系数增加,直线方程、圆的方程中含有参数,这样使学生进一步熟练掌握直线与圆的位置关系的判断方法,为后续学习直线与圆锥曲线含参数问题做好铺垫。变式训练2中所求直线方程中有一条斜率不存在,学生容易忽略,应引导学生判断符合条件的直线有几条,注意直线方程点斜式的适用条件,及时做到查漏补缺。学生练习时,教师巡查,观察学情,及时从中获取反馈信息。对学生练习中出现的独到解法提出表扬和鼓励,对其中偶发性错误进行辨析、指正。通过形成性练习,培养学生的应变和举一反三的能力,逐步形成技能。
4、教法特点及预期效果
教和学的矛盾是贯穿教学过程始终的基本矛盾,学是中心,会学是目的。高一学生对解析几何有很高兴趣,但学习主动性有待调动,在教学中要指导学生学会学习,引导学生在问题情境中探索研究,主动地寻找解决问题的思路和方法,在探究的过程中实现自己对新知识体系的构建,在掌握新知识和技能的同时形成自己的学习方法。教是为了不教,注重培养学生良好的数学思维。
利用多媒体辅助教学,激发学生的学习热情,启迪学生的思维,突破教材难点。创设情景,引发学生的好奇心;探究新知,分段递进,层层深入,调动学生的积极性,培养合作意识;典例剖析,规范表达数学过程,渗透数形结合的思想方法;变式训练,培养学生独立思考的能力,激发学生的创新思维;归纳小结,查缺补漏,以便调控教学。
按照这样的教学设计,将教学过程中的各要素,如教师、学生、教材、教法等进行积极的整合,使其融为一体,创造最佳的教学氛围,既尊重了学生的主体地位,又发挥了教师的主导作用。我认为本节课基本达到了预期的教学目标。敬请各位老师批评指正。谢谢﹗
第三篇:圆与圆的位置关系教学设计
圆与圆的位置关系教学设计
曲江中学
魏菊萍
一、教学目标:
知识目标:了解圆与圆的位置关系,掌握两圆位置关系与半径之间的数量关系;
能力目标:通过探索圆与圆的位置关系,提高学生探究问题和分析问题的能力;
情感目标:通过实际问题的解决,激发学生的学习热情,体会数学与现实生活的密切联系,鼓励学生自主学习,培养学生数学学习兴趣;通过合作交流,加强学生合作意识的培养.二、教学重点、难点
重点:圆心距与两圆半径之间的数量关系来判定两圆的位置关系.难点:圆心距与两圆半径之间的数量关系来判定两圆的位置关系
三、教学方法:自主探究、合作交流.四、教学用具:实物投影,硬纸片制作的两个圆,硬币两枚、圆规、直尺.五、教材分析和学情分析
“圆与圆的位置关系”是“与圆有关的位置关系”中的最后一部分。它是学生学习了“点与圆的位置关系、直线与圆的位置关系”等内容之后的又一位置关系,是圆中的重要部分。生活中圆有广泛的应用,同时也是学生思维训练不可缺少的内容。学生通过学习,学会了归纳、总结和类推的数学方法。
六、板书设计:标题在黑板的正中,左边是学生通过观察而归纳的结论,右边是师生互动练习题,中间是圆与圆的位置关系的图形展示。
七、教学过程:
(一)复习:
1.点与圆的位置关系有几种?如何识别点与圆的位置关系(其数量关系)?并用图来展示
2.直线与圆的位置关系有几种?如何判别直线与圆的位置关系?有几种判别方式?并画图分析.(二)揭示新课:
(实物投影仪上展示下列图形:自行车、奥运会五环旗、转轮)
师:请观察自行车的前后车轮,他们是什么图形?有没有交点?生:自行车的两个车轮是两圆,且没有交点.师: 奥运会五环旗上面有什么图形?有没有交点? 生:有圆。有交点。师:转轮又有什么图形? 生:有圆。
师:以上这些问题都给我们了圆与圆的位置关系的形象,圆与圆有几种位置关系?如何来识别它们的位置关系?这就是我们今天要学习的主要内容:圆与圆的位置关系(板书课题)
(三)议练新知:
师:我这里有两个大小不同的圆,请两位同学在讲台上来给大家演示一下,两圆有几种位置关系?请同学们认真观察,并归纳:(两圆从远到近的运动,归纳他们的交点情况)
生1:两圆外离,两圆没有交点.(演示两圆外离)
生2:两圆外切,两圆只有一个交点.(演示两圆外切)
师:这个交点叫什么?
生3:切点.生4:两圆相交,两圆有两个交点.(演示两圆相交)
生5:两圆内切,两圆只有一个交点(两圆相内切)
生6:两圆内含,两圆没有交点(两圆内含).师:请同学们观察总结,两圆有几种位置关系?
生7:五种.师:直线与圆有几种位置关系?
生8:三种:相离、相切和相交.师:圆与圆是否还可以另外划分呢?(与直线和圆的位置关系相对应)
生9:圆与圆的位置关系也可以划分为三种:相离、相切和相交.师:这是以什么来划分的呢?
生:以两圆的交点个数.师:这里的相离和相切又与前面学习的相离和相切相同吗?
生10:不同,这里的相离包括两种:外离和内含,相切包括两种:外切和内切.(老师板书两圆的五种分法和两种分法)
师:请同学们观察电脑演示,归纳两圆的各种位置关系中,圆心距的变化与两圆半径之间的数量关系怎样?(老师在电脑上演示外离、外切、相交、内切和内含等五种位置关系,让学生总结两圆的半径、圆心距之间的关系)(学生边总结,老师边黑板上板书)
生11:相外离时:d>R+r
生12:外切时:d=R+r
生13:相交时:R-r<d<R+r
生14:内切时:d=R-r
生15:内含时:d<R-r
师:已知⊙o1 与⊙o2 半径分别是6和2,设o1 o2=d,试判断下列两圆的位置关系,并说明理由.(5分钟)
①若d=10时,则⊙o1与⊙o2的位置关系是___ ____,理由是_____.②若d=3时,则⊙o1与⊙o2 的位置关系___ ____,理由___ ____.③若d=4时,则⊙o1与⊙o2的位置关系___ ____,理由___ ____.④若d=6时,则⊙o1与⊙o2的位置关系___ ____,理由___ ____.⑤若d=8时,则⊙o1与⊙o2的位置关系___ ____,理由___ ____.⑥若d=0时,则⊙o1与⊙o2的位置关系___ ____,理由___ ____.生:(略)
师:已知⊙o1与⊙o2相切,圆心距为10cm,其中⊙o1的半径为6cm,则⊙o2的半径是多少?
生:(略)
师:该题要注意相切分几类?
生:分内切和外切.师:请同学们相互之间讨论、归纳出本节的主要内容,并思考自己这节课你有什么收获?互相检查本节知识掌握情况。
生:表格的形式展示本节的主要内容,并互相出题检查。
(四)、巩固练习
(五)、作业
八、教学反思:
本节课在教学上采用了引导式的教学方法。通过学生动手实践等手段使学生在做中学,充分体现出“先学后教,当堂训练”的教学理念。为了调动学生学习的积极性和对本节课的兴趣,我利用多媒体教学,极大的刺激了学生的感官,学生热情高涨,都跃跃欲试,积极参与。学生在学习目标自学指导的引领下,学生动手实践,在实践中探索,感知两圆的位置关系,并通过阅读教材进行确认,感知概念并归纳圆与圆的五种位置关系。让学生自主学,探究学,而不是放任学,学生掌握了恰当的学习方法,这样的自学才有效。同时以图形运动的手段向学生直观展现知识发生过程,化静态为动态,强化了学生对知识的记忆,再通过例题的训练,教会学生从不同角度思考问题,来拓展学生思维,培养学生全面思考问题的能力。
第四篇:圆与圆的位置关系教学设计(模版)
《圆与圆的位置关系》教学设计
海南华侨中学 张克艳
一、教学目标:
知识目标
1.本节课使学生掌握圆和圆的几种位置关系的概念及相切两圆连心线的性质.
2.使学生能够根据两圆不同的位置关系,写出两个圆半径的和或差与圆心距之间的关系式;反过来,由两圆半径的和或差与圆心距的大小关系,判定两圆的位置关系.
能力目标
1、结合本节课的教学内容培养学生亲自动手实验,学会观察图形,主动获得知识的能力.
2、继续培养学生运用旧知识探求新知识的能力. 情感目标:培养学生对圆的知识的兴趣
二、重点:圆和圆的五种位置关系的概念及相切两圆的连心线的性质.
三、难点:理解相切两圆连心线性质的证明.
四、教具准备:多媒体、常用画图工具等
五、教学过程:
一、新课引入:
同学们,前面我们学习了点和圆及直线和圆的位置关系,在原有知识的基础上本节课我们学习两圆的位置关系的有关知识,那么圆和圆有几种位置关系呢?教师板书课题:“7.13圆和圆的位置关系(一)”.根据学生已有的知识水平及本节课的特点,从引导学生回顾点和圆三种位置关系到直线和圆的三种位置关系出发,激发学生通过类比探求圆和圆的位置关系有几种情况,这样可一下子抓住学生的注意力.
为了使学生真正体会到数学理论来源于实践,反过来又作用于实践的这一理论.在学生复习了点和圆及直线和圆的位置关系的基础上,教师引导学生把课前准备好的两个不等圆的纸版拿出来,同桌两人动手实验,发现圆和圆的位置关系有五种情况的过程,由学生上黑板公布自已发现的五种情况,教师适当补充.这样做的目的.是鼓励学生亲自动手来参与探索新知识过程.可充分调动学生的学习积极性.
让学生把自己得到的结论告诉同学们,对此问题不是所有同学都能理解,这时教师可以进一步引导,把得到的位置关系从投影上打出来.
这样做的好处是体现学生动手动脑的全过程,特别是通过自己实验总结出来的知识,更突出它的实际性.不是学生被动地接受知识,而是学生积极主动获得知识,更能培养学生发散思维的能力.
二、新课讲解:
学生得到的圆和圆的位置关系有五种情况,也就等于学生自己的科研成果公布于众. 请两名同学上黑板讲解得到五种位置关系的方法.全班同学参与评议,同时观察图形具有的特点.
找一名同学以两圆公共点的个数为依据,摆放出两圆各种不同的位置:
找一名同学利用运动变化的观点来得到两圆的位置.设⊙O1为动圆,⊙O2为定圆,当⊙O1向⊙O2运动时,两圆的位置关系的变化如下:
由学生实验得到结论,教师引导学生回答,教师概括总结: 圆和圆的位置关系五种情况及各自的概念.(1)两圆外离:略(2)两圆外切(3)两圆相交(4)两圆内切(5)两圆内含
教师一边讲解每一种情况的定义,同时要求学生理解重点词语“内”、“外”、“内部”、“外部”.这五种情况也可以归纳为三类:
(2)相交
接着教师引导学生思考这样问题:
除根据公共点的个数可以判定两个圆的位置关系外,还有没有其它方法呢?由于圆和圆的位置关系是学生自己得到的,前两名同学发言的激发下,不少同学都想拿出自己的作品,这时教师让学生议论五分钟,然后由学生总结出又一种方法判定两圆的位置关系.教师板书: 设两圆半径分别为R和r,圆心矩为d,那么(1)两圆外离 d>R+r(2)两圆外切 d=R+r(3)两圆相交 R-r<d<R=r(R≥r)(4)两圆内切 d=R-r(R>r)(5)两圆内含 d<R-r(R>r)同心圆 d=0 接下来为了巩固所讲的知识点,投影放出一组练习题: ⊙O1和⊙O2的半径分别为3cm和4cm,设
(1)O1O2=8厘米;(2)O1O2=7厘米;(3)O1O5=5厘米;(4)O1O2=1厘米;(5)O1O2=0.5厘米;(6)O1和O2重合. 请回答⊙O1与⊙O2的位置关系怎样?
这组练习题,学生思考回答,学生参与评价,老师不代替学生,知识点消化靠学生自己思维解决.如果有困难的话由其它同学帮忙解决.
接下来教师结合图7-96讲解“把经过两圆心的直线叫做连心线”.那么两圆外切、内切的切点与连心线有怎样的关系呢?
本题由教师分析证明思路,在学生表示认可的情况下,由学生总结出相切 两圆的性质:
如果两圆相切,那么切点一定在连心线上.
教师这样做的目的是培养学生亲自动手操作实验,发现规律,总结出结论.一方面培养学生自己探求新知识的探索精神,另一方面给学生一种自信,让他们感觉自己能行.
接着幻灯打出例1 如图⊙O的半径为5cm,点P是⊙O外一点,OP=8cm. 求:(1)以P为圆心作⊙P与⊙O外切,小圆⊙P的半径是多少?(2)以P为圆心作⊙P与⊙O内切,大圆⊙P的半径是多少?
学生回答,教师板书:
解:(1)设⊙O与⊙P外切于点A. ∴ PA=OP-OA=8-5,∴ PA=3cm.
(2)设⊙O与⊙p内切于点B. ∴ PB=OP+OB=8+5,∴ PB=13cm.
练习题由学生自己完成,教师不讲,学生之间互相评价.
三、课堂小结:
课后小结由学生进行,教师概括:(一)本节所学的知识点:
1.圆和圆的位置关系的概念.
3.相切两圆连心线的性质.(二)本节课所学的方法:
1.会利用公共点的个数和定义判定两圆的位置关系. 2.会用两圆半径和圆心距的关系判定两圆的位置关系. 3.学会两圆相切连心线必过这两圆的切点.
六、板书设计:见教学过程
七、布置作业:
八、教学小结:
第五篇:圆与圆的位置关系教学设计
圆与圆的位置关系
一、教学目标:
(一)知识目标
1、利用计算机制作动画(让学观察两圆相对运动的过程)培养学生以运动变化的观点来观察问题(观察出确定“两圆位置关系”的关键 两圆交点的个数)分析问题、解决问题的能力。
2、用计算机制作动画让学生从静止的角度探索出“两圆半径与圆心距之间的数量关系”与“两圆位置”的联系,培养学生认识事物都是相互联系、相互制约的辩证唯物主义观点。
(二)过程与方法
在经历“观察 猜测 探索 验证 应用”的过程,渗透了从“形”到“数”和从“数”到“形”的转化,培养了学生的转化、思维能力。实现了感性到理性的升华。
(三)情感目标
1、通过合作交流、自主评价,改进学生的学习方式,及学习质量,激发学生的兴趣,唤起他们的好奇心与求知欲,点燃起学生智慧的火花,使学生积极思维,勇于探索,主动地去获取知识。
2、让学生在猜想与探究的过程中,体验成功的快乐,培养他们主动参与、合作意识,勇于创新和实践的科学精神。
二、教学重难点
重点:圆与圆位置关系的发现及确定方法
难点:圆与圆位置关系的数量关系的发现。
三、教学设备:计算机课件
四、教学过程:
(一)复习提问
1、如何确定点与圆的位置关系?
2、确定直线与圆的位置关系的方法是什么?
(二)创 设 情 景
1、欣赏生活中圆与圆位置关系的图片,同时学生举例。
2、用微机制作出有“日食”现象的动画,提问这种现象是怎么产生的呢?
3、当学生说出其现象的成因后,动画演示“日食”形成的过成。
(三)探 求 新 知
1、如果把月亮与太阳看成两个圆,那么两个圆在作相对运动的过程中有几种位置关系产生呢?请同学们在练习本中画出并将其命名。
探 究 发 现
1、将学生的发现展示给大家后,教师让学生相互分析点评。老师进行点拔。
2、老师用微机将两圆位置关系的动画与学生的发现进行对比。(教师给予恰当的点评)
3、用微机将两圆的五种位置关系进行分类,并让学生思考分类标准。从而引导学生确定两圆位置关系的一种方法(交点个数)。
4、提问:两圆“相切、相离”所指的图形是什么?
5、在给出图形的前提下可识别出两圆的位置关系,如果没有图形能识别出两圆的位置关系么?(让学生分小组讨论)
6、学生讨论完后教师给予点评,并利用微机动画与学生一起探索确定两圆位置关系的另一种方法。(对学生讨论结果教师给予适当点拨或点评)
7、例1:如图,⊙O的半径为5cm,点P是⊙O外一点,OP=8cm,若⊙P与⊙O相切,则⊙P的半径是多少?(见课件)
8、例
2、如图,等圆⊙M和⊙N相交于A、B两点,⊙M经过⊙N的圆心N,求∠MAB的度?(见课件)
9、当堂达标:填空题:1.⊙O1和⊙O2的半径分别为3cm、4cm,设d=O1O2 :(1)当d=8cm时,则⊙O1与⊙O2的位置关系是_________.(2)当d=7cm时,则⊙O1与⊙O2的位置关系是_________.(3)当d=5cm时,则⊙O1与⊙O2的位置关系是_________.(4)当d=1cm时,则⊙O1与⊙O2的位置关系是_________.(5)当d=0.5cm时,则⊙O1与⊙O2的位置关系是_________.(6)当d=0时,则⊙O1与⊙O2的位置关系是_________.五、课堂小结
六、教学反思