第一篇:人教版数学高二年级《椭圆的一些有趣性质及其应用》教学设计
椭圆的一些有趣性质及其应用
□
山西临汾三中
李峰泰
教材中只介绍了椭圆的一些基本性质.在实际中,椭圆还有一些有趣的性质.探讨这些性质,不仅可以丰富解题思路,而且还可以培养我们的创新意识,在学习过程中会有所发现.本文介绍几个性质以示抛砖引玉.
一、椭圆上点对两焦点张直角的性质
P是椭圆b2x2a2y2a2b2(ab0)上的一点,F1、F2是左、右焦点,O是椭圆中心,e是离心率,OP的倾斜角为α,则∠F1PF2=
90°的充要条件是sin1ee22.
证明 如图,在△F1PF2中,∠F1PF2为直角的充要条件是OP∵F1F22c,OPc.F1F22(平面几何定理)
设P点坐标为(x,y),则xOPcos,yOPsin,即xccos,ycsin,代入椭圆方程得:
bccosacsinab,cos1sin 2222222222∴整理得c2(a2b2)sin2b2(a2c2)
bc2444即sin2,[0,)
∴sinbcaccx22221ee22.
例1 P是椭圆△PF1F2的面积. 4y21上的一点,F1、F2为两焦点,若∠F1PF2=90°,试求
解 设OP的倾斜角为α,又知eF1F2OPsin2234,代入可得sin13.
13∴SPFF122ccsin2csin321
二、椭圆准线上点对长轴顶点视角的性质
椭圆bxayab(ab0)准线上的点对其长轴两顶点的视角为α,若椭圆的离心率为e,则α是锐角且sin≤e. 222222 —1— 证明 如图,设P在x轴上方,坐标为(ya2a2c,y)
kPA1,kPA2ya2ca,ctga
222kPA2kPA11kPA2kPA12acyabcy22∵y0,tg0,为锐角.
整理为y的方程c2y22ac2ctgaya2b20 ∵此方程有实根,∴Δ4a2c4ctg24a2b2c20
ca22∴cctgca0,ccsca,sin∵α为锐角,∴sine. 例2 P是椭圆的最大值.
解 ∵a2,b3,c1,e121222222222e,2x24y231右准线上的一点,点P对此椭圆左右两顶点A1、A2的视角为α,求α
6由题设及性质得sinesin
又知α为锐角,∴α的最大值为
三、椭圆中心点张直角的性质
6.
若椭圆bxayab(ab0)上有两点A、B,且OA⊥OB,则原点到弦AB的距离dabab22222222.
2证明 如图,设∠BOX=α,则∠AOX=0,A点为
+α,设OB=m>0,OA=n>(-nsin,ncos),B点为(msin,mcos),代入椭圆方程整理得
1m2acosbsinab222222,1n2bcosasinab222222,—2— 1m21n2abab2222,ABOA2OB222mn
由等面积法得dOCmnmn2211m21n2abab22
例3 直线ykx1与椭圆坐标原点.
解 a=2,b22x242y21交于A、B两点,当k为何值时,以AB为直径的圆通过,∵AB为直径的圆过原点,∴OA⊥OB,由性质及原点到直线距离公式得
dk12212212,解之得k52.
4
—3—
第二篇:人教版数学高二年级《椭圆第二定义的教学》教学设计
椭圆第二定义的教学
江苏省如皋中学
郝 茹
郝劲赴
现行高中《平面解析几何》课本对椭圆第二定义采用了从具体事例入手,引出一个新概念的定义的方法,这是数学教学中常用的从具体到抽象、从特殊到一般地讲授新概念的方法,符合人们从感性到理性的认识事物的规律.但是,在这里我们要注意,从认识事物的原型到认识事物的本质,这是对事物认识的质的飞跃,妥善处理好这个过程,是教学成功的关键.为此,我们在教学椭圆第二定义时,作了如下安排:
1.自读推敲,引导剖析 首先让学生自读课本P.76例3及由此引出的椭圆第二定义,自己推敲这一定义的内涵及外延,并提出以下问题供学生思考:
(1)定义中有哪些已知条件?
(2)定点、定直线、定比在椭圆定义中的名称各是什么?
(3)定比是哪两个量的比?这两个量本身是变量还是常量?定比是什么范围的值?(4)定点、定直线、定比一定是例3给出的数量关系(F(c,0),x定直线方程是否可为其他的形式?
对第(1)、(2)、(3)三个问题学生容易从课本中找出答案,但第(4)个问题则一石激起千层浪,学生们议论纷纷.这时,教师启而不答.
2.通过变式,提示内涵 让学生研究课本P.79第10题“点P与一定点F(2,0)的距离和它到一定直线x=8的距离的比是1:2,求点P的轨迹方程,并说明轨迹是什么图形.”
学生很快根据例3求出c=2,又由eca12a2c,eca1)吗?定点坐标、,得a=4,而由xa2c422可知满足题意.从8,而得点P的轨迹方程为x216y2121,所以点P的轨迹是椭圆.
接着,我将上题稍加改动,让学生研究:“点P与一定点F(2,0)的距离和它到一定直线x=8的距离的比是13,求点P的轨迹方程,并说明轨迹是什么图形.”学生沿用上题的解法,得c2,由
x2ca13,得a6,b6232,得轨迹方程为22236y2321,有的学生由
a2c362188而提出该题题设
c2c2,11e,而认为此题无解. 矛盾,所以无解,也有的学生列出方程组a2,解得238a4,c这时,教师不评价学生的解法,而是提示他们比较该题题意与课本给出的椭圆第二定义是否一致,由他们自己发现满足题意的动点轨迹是椭圆,进而重新寻求解题的途径.不少学生建立方程(x2)yx82213(x5,化简得
481)2y2921,由此可见,这是中心在点(54,0),对称轴为直线x5416及y0的椭圆.
—1— 从该例让学生看到椭圆第二定义中的定点、定直线、定比的数量关系不一定是课本P.76例3给出的定点F(c,0)、定直线xa2c、定比eca,当不满足这个数量关系时,建立椭圆方程不能套用例3的结果去解.当给出定点F(n,0)、定直线x=m(m≠n)、定比为e(0<e<1)时,可建立方程
me2(xn)yxm22(xe,解得
n21e22e(mn)(1e)22)2y222e(mn)1e21.
显然,只要m≠n,即点F(n,0)不在直线x=m上时,都是椭圆方程.
这样,就让学生自己在解决问题的过程中,求得思考题(4)的第一个问题的答案.进而指导学生深入推敲椭圆第二定义,让他们深切地理解定义中的定点一般为(x0,y0),定直线一般为ax+by+c=0,并告诉学生在学过坐标变换之后,可通过坐标变换,将所求的轨迹方程化为椭圆的标准方程.
通过以上研究,让学生明确:课本P.76例3题设中给出的数量关系是椭圆的标准方程的条件,而不是所有椭圆方程所要求的条件,即不是椭圆方程的本质特征,这样,学生对椭圆第二定义的内涵和外延的理解就深刻多了.
3.列举反例,防患未然 要使学生深刻理解新概念,除了要正面剖析概念,运用变式比较,揭示概念本质以外,我们还经常列举一些反例让学生判别,防止常见错误的发生.为此,给出以下两例,让学生判别命题是否正确.
例1 点P到点F(2,0)的距离比它到定直线x=7的距离小1,点P的轨迹是什么图形? 给出如下解法让学生判别:
解:设P点的坐标为(x,y),则(x2)y221x7(x2)yx72211.而(x2)yx722(x2)yx7221=1,所以点P到定点F(2,0)的距离与它到定直线x=7的距离的比小于1,故点P的轨迹是椭 圆.
例2 点P到定直线x=8的距离与它到点F(2,0)的距离的比为
12,则点P的轨迹是椭圆.
22对上述两个问题,引导学生逐一分析,让学生明确:例1中,比值
(x2)yx71,但不是一个常数,故不可断定点P的轨迹是椭圆.例2中要注意椭圆第二定义中的定比是动点到定点的距离比动点到定点直线的距离,其比的前后项顺序不可倒置,故不可断定此题中的点P的轨迹是椭圆.经过对上述两例中典型错误的剖析,学生对椭圆第二定义的本质属性有了更深刻的认识.
4.设置新题,检测运用
经过前面的教学过程,应该说基础知识已经讲清了.但是,要让学生深刻理解教学的内容,并且能够正确运用,这需要让学生有一个独立运用所学知识解决问题的过程.于是,我们让学生独立解以下题目:一动点P到直线2x+y-8=0的距离与它到点(1,2)的距离的比值为5,求动点P的轨迹方程,并判 —2— 断点P的轨迹是何种曲线.
2xy8解:设P点的坐标为(x,y),则
25(x1)(y2)25
5(x1)(y2)22222xy8
2225(x2x1y4y4)4xy644xy32x16y 21x4xy24y18x84y610. 22从方程看,现在我们还不能判定此方程的曲线是何种曲线,但仔细分析题意,可将已知条件改述为动点P到点(1,2)的距离与它到直线2x+y-8=0的距离之比为1:5,这显然符合椭圆第二定义,可知P点的轨迹为椭圆.
通过这一例的教学让学生更深切地理解了椭圆的第二定义,也让学生看到椭圆的非标准方程所具有的形式.
5.拓展课本,活化知识
xa22课本对于椭圆的准线方程作了如下叙述:“对于椭圆yb221,相应于焦点F(c,0)的准线方程为xa2c,根据椭圆的对称性,相应于焦点F′(-c,0)的准线方程为xa2c;所以,椭圆有两条准线.”由此启发学生看到命题(称做A):点M(x,y)与定点F′(-c,0)的距离与它到直线l′:xa2c的距离之比是常数ca(a>c>0),则点M(x,y)的轨迹方程也是椭圆的标准方程.于是我们引导学生明确结论:课本P.76例3给出的数量关系:定点F(c,0)、定直线l:xa2c、常数
ca(a>c>0),以及命题A给出的数量关系:定点F′(-c,0)、定直线l′:xa2c、常数
ca(a>c>0)均分别是动点M的轨迹方程为椭圆标准方程的充要条件,并且,二者是等价的.接着,我们又引导学生再次分析本文第2部分所讲到的命题(称为B):定点为F(n,0),定直线为x=m(m≠n),定比为e
(xme2n2(0<e<1),得出的椭圆方程
1e22e(mn)(1e)22)2y222e(mn)1e2me2n0,让他们看到当且仅当1e21.
1e202即e2nm1时,动点M的轨迹方程为椭圆的标准方程.即条件“enm1”是动点M的轨迹方程为椭圆标准方程的充要条件.
—3— 在此基础上,要求学生自行命题,设计出动点的条件,使其轨迹方程分别符合下列要求: ①轨迹方程为椭圆的标准方程;
②轨迹方程为中心在x轴上且短轴平行于y轴的椭圆方程.
从而,让学生不但能正确地解命题B型的问题,而且能自行设计命题B型的问题,使学生对椭圆第二定义的理解、掌握和运用达到新的境界.
—4—
第三篇:椭圆的基本性质教学设计
《椭圆的几何性质(1)》教学设计
信丰二中
邓丽华
一、教学目标:、知识掌握目标:通过椭圆标准方程的讨论,使学生掌握椭圆的几何性质,并能正确作出图形。、基本技能和一般能力培养目标:培养学生观察、分析、抽象、概括的逻辑思维能力和运用数形结合思想解决实际问题的能力。、创新素质和创新人格的培养目标:培养学生的创新意识和创新思维,培养学生的合作意识。、德育目标:通过数与形的辨证统一,对学生进行辩证唯物主义教育,通过对椭圆对称美的感受,激发学生对美好事物的追求。
二、教学重点:椭圆的简单几何性质及其探究过程。
三、教学难点:利用椭圆方程研究曲线几何性质的基本方法和离心率定义的给出过程。
四、教材分析:
德育点:在研究性质的过程中,培养学生大胆猜想,敢于发表个人见解,培养学生喜欢探究的情感和态度。过对椭圆对称性的体验,使学生得到美的感受。
创新点:①教学中不拘泥于教材,改变教材的安排,有利于学生进行探究。在范围这一性质的教学中,鼓励用多种方法推倒,培养学生的创新思维;②在反馈训练中,让学生自己编拟方程并研究其性质。③留研究性作业,鼓励学生进一步探索。
空白点:①研究性过程中多处留白,鼓励学生大胆猜想并根据方程给予论证②反思性小结中设计表格留空白,调动学生积极参与。
五、教学过程、创设情境引导目标与内容
教师: 2003 年 10 月 15 日是每一个中国人为之骄傲的日子(课件展示飞船绕地球运行模拟图),大家还记得这一天吗?
学生:神州五号飞船发射成功。通过前面的学习我们知道,飞船在变轨前是沿着地球中心为一个焦点的椭圆轨道运行的,如果告诉你飞船的轨道方程,你怎样作出飞船的轨迹呢?这个问题的实质是什么?
学生:已知一个椭圆的方程,画出这个椭圆。
教师:让学生拿出预习中用描点法画出 所示的图形,同时计算机给出作图过程,纠正学生作图中存在的问题后给出:这种作图方法虽然比较准确,同学们通过作图体会到了什么?
学生:麻烦。
教师:有简单的方法吗?如果有,需要知道什么呢? 学生:研究曲线的特点。
教师:对,如果我们能根据椭圆的方程,探讨出它的几何特征,那么作图就很方便了。这节课我们就一起来学习椭圆的简单几何性质(引出课题)
教师:前面我们学习了椭圆的哪些知识? 学生:学习了定义和标准方程。教师:你还记得标准方程吗? 学生: 或
教师:这节课就以(a > b > 0)为例来研究。2、教师点拨、指导,学生研究、合作、体验(1)对称性
教师:(大屏幕展示所示的图形)请同学们观察这个图形在 x 轴的上方、下方,y 轴的左侧、右侧有怎样的关系呢?(此处是空白点,激发学生思考)
学生:有对称性,关于 x 轴、y 轴、原点都对称。
教师:正确。那么一般的椭圆 是否也具有这种对称性,你能根据方程得到结论吗?
学生: A :(充分讨论后)也有同样的对称性。在 上任取一点 P(x,y)则 P 点关于 x 轴、y 轴和坐标原点的对称点分别是(x,-y)(-x,y)、(-x,-y),而代入方程知这三个对称点都适合方程,即点 P 关于 x 轴、y 轴和坐标原点的对称点仍然在椭圆上,可得结论。
教师:回答得非常正确。
课件展示对称过程后总结: 所表示的椭圆,坐标轴是其对称轴,坐标原点是其对称中心,对称中心也叫椭圆的中心,椭圆是有心曲线。做人应向椭圆学习,做一个有心之人。
(2)顶点
教师:(大屏幕展示 所表示的图形)请同学们继续观察这个椭圆与坐标轴有几个交点呢?
学生 B :与坐标轴有四个交点。
教师:对,一般的椭圆 与坐标轴有几个交点呢? 学生 B :同样是四个。
教师:你能根据方程求得四个交点的坐标吗?(计算机给出图形,椭圆与 x 抽的交点分别是、,与 y 轴的交点分别是、)
学生 B :分别令 x=0,y=0,得(-a,0)、(a,0)、(0,-b)(0,b).教师:回答得很好。这四个点是椭圆与坐标轴的交点,也是椭圆与其对称点的交点。
及时总结并给出顶点的定义(强调是与对称轴的交点)。结合图形指出长轴、短轴、长轴长、短轴长半轴长、短半轴长,点明方程中 a、b 的几何意义。
教师:(根据课件中的图)如果过、、分别作 y 轴的平行线,过、分别做 x 轴的平行线,则这四条直线将构成----?
学生:一个矩形。
教师:椭圆在矩形----? 学生:内部
教师:正确,这说明了什么?
学生:有的说有界,有的说有范围。
教师:指出椭圆是有范围的,根据前面求得的、、、的坐标,你能说出 x、y 的范围吗?
学生 C :-a ≤ x ≤ a,-b ≤ y ≤ b.教师:完全正确。那么你根据方程 研究 x、y 的取值范围吗?请同学们想一想,并互相讨论讨论。(此处既是空白点、又是创新点,学生能够动脑思考,动手实践,亲身体验,积极地投入到“创新性研究”中,把数学的重点放在了学生的学习过程,而不是获得一个简单的结果)
(3)范围
引导学生用多种方法探究,汇报研究成果并用实物投影展示或到黑板板书。学生 D :由 利用两个实数的平方和为 1,结合不等式知识得 ≤ 且 ≤,则有-a ≤ x ≤ a,-b ≤ y ≤ b.教师:很好,谁还有不同意见?
学生 E :利用三角换元,令 θ,θ,θ∈ R。由弦函数有界可得范围。教师:这个想法也不错,谁还有不同见解?
学生 F :从 中解出,利用 ≥ 0 可得 y 的取值范围,同样可得 x 的取值范围。
教师:这种想法也不错,谁还有不同见解? 此时学生陷入深思中,教师及时点拨,前面我们学习过函数的定义域、植域,这对你研究椭圆的范围有何启示呢?
学生议论纷纷,有的开始动笔推导,有的几个人一起在商量。
教师:谁研究出来了,或哪个小组研究出来了?请到前面给大家讲一讲。学生 G :(实物展台展示)由 则 y= ±,可通过求这个函数的定义域、值域得范围。
教师: y= ± 是函数吗?
学生 G :(思考后)说不是。教师:怎么处理呢?
学生 G :把 y= 和 y=-分别看作是一个函数。教师:正确。往下怎么研究呢?
学生 G :先求函数 y= 的定义域、值域。利用前面学习过的代数函数求定义域、值域的方法,可得-a ≤ x ≤ a,0 ≤ y ≤ b,同样得 y= 中-a ≤ x ≤ a,-b ≤ y ≤ 0,于是得到范围。(课堂响起一片掌声,表示对这位同学的支持、肯定与鼓励
教师:前面我们研究了椭圆的对称性,谁能简化学生 G 的推导过程呢? 学生 H :老师,我想只需求 y=(0 ≤ x ≤ a)的定义域、值域即可,然后利用对称性可得范围。
教师:很好。教师:通过前面的探讨,我们知道椭圆是有范围的,即它围在一个矩形框内。有了前面这几个性质,我们就可以很快地作出焦点在 x 轴上的椭圆的草图了教师在黑板上示范作图(先找到标准方程所表示的椭圆与坐标轴的四个交点,画出矩形框,光滑曲线连接,并注意对称性)
教师:请同学们根据这种作图方法,在同一坐标系下画出方程 和 所示的椭圆,并思考这两个椭圆的形状有何不同?
学生 M :实物展台展示画图,指出一个扁一些,一个圆一些。教师:(追问)圆扁与什么有关系?(提示学生注意两个方程)学生 M :与 b 有关系。教师:是这样吗?
学生 N :在 a 不变的情况下与 b 有关系,b 大则圆,b 小则扁,因此与 a、b 有关系。教师课件动画展示(a 不变,随 b 变化,椭圆形状的变化)印证学生的猜测是正确的,同时提出问题:在推导方程中曾令,这又意味着形状还与什么有关系呢?
学生有的说与 b、c 有关,有的说与 a、b、c 有关。(鼓励学生大胆猜测)
教师:在给出椭圆的定义中,大家还记得吗?影响椭圆形状的最关键的要素是什么?
学生:是 a 和 c 教师:下面我们就一起看一下在 a 不变的情况下,随 b 的变化 c 是如何变化的(动画演示)。从而引出离心率。
(4)离心率
教师在动画演示过程中,引导学生发现 a 不变,b 大则 c 小,椭圆较圆,b 小则 c 大,椭圆较扁,特别当 a=b 时,c=0 椭圆为圆。教师指出:当 a 不变,b 大则 c 小,此时 也变小,学生通过观察指出此时椭圆较圆,反之较扁,c=0 时变成了圆。及时总结并给出离心率的定义、符号和范围及特例。(强调离心率是焦距与长轴长之比,与坐标系选取无关,并引导学生分析出:固定 a、b、c 中任何一个量,改变另外两个量可得到同样的结论,即 e 大则扁,e 小则圆,特别 e=0 时为圆)
因此离心率是一个刻画椭圆圆扁程度的量。(此处是难点,教学中借助动画演示,结合教师启发引导,帮助学生理解离心率的定义及离心率对椭圆形状的影响)、巩固与创新应用
请你自己设计一个焦点在 x 轴上的椭圆的标准方程,并指出它的几何性质。(此题把主要权交给学生,提高学生的参与意识)
利用本节所学的知识,说出椭圆 的简单几何性质。(此处也是一个创新点,培养学生运用类比化归的思想解决实际问题的能力,也通过本题使学生体验这节课所学的性质是椭圆自身固有的性质与坐标系的选取无关)
椭圆(k > 0)的长轴是短轴的 2 倍,则 k= 如果一个椭圆短轴上的一个顶点与两个焦点构成一个三角形,求椭圆的离心率,(通过第(3)(4)两题巩固本节所学知识)、反思与小结
教师引导学生从知识、思想方法和研究问题的方法三个方面进行总结。教师:通过这节课的学习,你学到了什么?体验到了什么?掌握了什么? 学生讨论、反思。师生合作:
(1)知识总结:教师设计关于性质的表格,学生填表,并总结:记住这些性质的关键是抓住两条线(对称轴),一个框(范围),七个点(一个中心、两个焦点、四个顶点)和用 e 刻画圆扁。思想方法总结:本节课主要利用了数形结合的思想和类比化归的思想研究性质的,平时学习中要注意数学思想方法的运用。
(2)掌握利用曲线方程研究曲线性质的基本方法,即通过研究曲线的对称性、顶点、范围、离心率等,这样就可以从整体上把握曲线了。
六、板书设计:
椭圆的简单几何性质 1、对称性; 4、离心率、顶点; 5、板书学生推导 3、范围; 6、作图
七、教后反思 :
1、渗透教学思想方法重在平时 当学生有一天不再学习数学了,我们给学生留下的是什么?我想应该是学生遇到具体问题时那种思考问题的方式和解决问题的方法。本节课始终是引导学生观察图形后研究方程,即数形结合的思想。华罗庚先生曾说:“数缺形时少直观,形缺数时难入微。”因此在平时教学中,要注意渗透数学思想方法的教学。、信息技术走进课堂 在离心率这一性质的教学中,充分利用多媒体手段,以轻松愉悦的动画演示,化解了知识的难点。
不足:在对具体例子 的观察分析中,设计的问题过于具体,可能束缚了学生的思维,还没有放开。还有就是少讲多学方面也是我今后教学中努力的方向。
感悟:新课堂是活动的课堂,讨论、合作交流可课堂,德育教育的课堂,应用现代技术的课堂,因此新教育理念、新课改下的新课堂需要教师和学生一起来培育。面对新课改教师惟有主动适应,创造新生。
现代教育技术既作为教的工具,也作为学的工具。
第四篇:椭圆几何性质教学设计流程图
篇一:教学设计-椭圆的简单几何性质
《椭圆的简单几何性质》说教学设计
一.教材分析 1.地位和作用
本节课是普通高中课程标准实验教科书数学(选修2-1)第二章第2节,椭圆的简单几何性质。在此之前,学生已经掌握了椭圆的定义及其标准方程,这节课是结合椭圆图形发现几何性质,再利用椭圆的方程探讨椭圆的几何性质,是数与形的完美结合,让学生在了解如何用曲线的方程研究曲线的性质的基础上,充分认识到“由数到形,由形到数”的转化,体会了数与形的辨证统一,也从中体验了数学的对称美,受到了数学文化熏陶,为后继研究解析几何中其它曲线的几何性质奠定了重要基础。2.教材的内容安排和处理
考虑到椭圆的性质有较多拓展,我将本节内容分为两课时来完成,本课为第一课时,主要介绍椭圆的简单几何性质(范围、对称性、顶点、离心率)及其初步运用,在解析几何中,利用曲线的方程讨论曲线的几何性质对学生来说是第一次,因此可根据学生实际情况及认知特点,改变了教材中原有研究顺序,引导学生先从观察课前预习所作的具体图形入手,按照通过图形先发现性质,在利用方程去说明性质的研究思路,循序渐近进行探究。在教学中不仅要注重对椭圆几何性质的理解和运用,而且更应重视对学生进行这种研究方法的思想渗透,通过教师合理的情境创设,师生的共同讨论研究,学生的亲身实践体验,使学生真正意义上理解在解析几何中,怎样用代数方法研究曲线的性质,巩固数形结合思想的应用,达到切实地用数学分析解决问题的能力。3.重点、难点:
教学重点:知识上,要掌握如何利用椭圆标准方程的结构特征研究椭圆的几何性质;学生的体验上,需要关注学生在探究椭圆性质的过程中思维的过程展现,如思维角度和思维方法。
教学难点;利用曲线方程研究曲线几何性质的基本方法和离心率定义的给出过程。
二.学生的学情心理分析
我的任教班是普班,大多数学生的数学基础较为薄弱, 独立分析问题,解决问题的能力不是很强, 但是他们的思维活跃,参与意识强烈,又具备了高一学习阶段的知识基础,因此依据以上特点,在教学 设计方面,我打算借助多媒体手段,创设问题情境,结合图形启发引导,组织学生合作探究等形式,都符合我班学生的认知特点,为他们创设了一个自然和谐的课堂氛围。
三.教学目标
本着新课程标准的贯彻原则,结合我的学生的实际情况,我制定本节课的教学目标如下:
知识与技能:
掌握椭圆的简单几何性质,并能初步运用其探索方法研究问题。
过程与方法:
通过学生亲身的实践体验,利用椭圆的方程讨论椭圆的几何性质,经历由形到数,由数到形的
思想跨越,感知用代数的方法探究几何性质的过程,感受“数缺形时少直观,形缺数时难入微”的数学真谛,进一步体会“数形结合”思想在数学中的重要地位。
情感、态度与价值观:
在自然和谐的教学氛围中,通过师生间的、生生间的平等交流,塑造学生团结协作,钻研探究的品质和态度,培养学生研究问题的能力;通过对椭圆几何性质的发现,学生得到美的感受,体验到探究之后的成功与喜悦。四.教学方法与手段
课堂教学应有利于学生的数学素质的形成与发展,使学生扎实地学会学习,真正的学以置用,为此我制定了本节课的教学方法和手段如下:
教学方法:
我采用的教学方法主要是情境激趣法、引导发现法、合作探究法等等。
(一)情境激趣法:注重数学知识与实际的联系,同时也发展学生的应用意识,开阔他们的视野。
(二)引导发现法:符合教学原则,充分调动学生的主动性与积极性。
(三)合作探究法:1.体验数学发现和创造的过程,发展他们的创新意识 2.使学生体验到团结协作的力量以及探索发现的成就,符合学生的认知规律
教学手段:
新课标要求,立体几何的教学要直观感知,操作确认。对于本节内容,我也采用了这样的思路。
本节借助多媒体辅助手段及实物投影,创设问题情境,并通过图形引导学生形象直观地体验由数到形的过渡,便于学生观察、认知、探求、发现、归纳。
五.学法指导
根据本节课的教学难点,教师应注意指导学生进行研究式学习和体验式学习(兴趣是前提)。例如导入,通过“神六”号这样一个人们关注的话题引入,有利于激发学生的兴趣。再如,这节课是学生第一次利用曲线方程研究曲线性质,为了解决这一难点,在课前设计中改变了教材中原有研究顺序,让学生从观察一个具体椭圆图形入手,从观察到对称性这一宏观特征开始研究,符合学生的认知特点,调动了学生主动参与教学的积极性,使他们进行自主探究与合作交流,亲身体验几何性质的形成与论证过程,变静态数学为动态数学。
教学中也突出多媒体辅助知识产生、发展和突破重、难点的优势,从而强化学生对知识的过程与方法的掌握,有利于学生对知识的理解和应用。
六.教学过程
这是本节课教学过程的流程图,我将本节课的教学过程设计为五大环节,特点是以知识与技能为载体,过程与方法为主线,情感、态度与价值观为目标的设计原则,突出多媒体这一教学手段在本节课辅助知识产生,发展和突破重难点的优势。
篇二:椭圆的简单几何性质教学设计
《椭圆的简单几何性质》教学设计
哈工大附中 闫晓丽
教材: 人民教育出版社a版选修1—1 【教学目标】 1.知识目标:
(1).使学生掌握椭圆的性质,能根据性质正确地作出椭圆草图;掌握椭圆中 a、b、c的几何意义及相互关系;
(2)通过对椭圆标准方程的讨论,使学生知道在解析几何中是怎样用代数方法研究曲线性质的,逐步领会解析法(坐标法)的思想。(3)能利用椭圆的性质解决实际问题。2.能力目标:
培养学生观察、分析、抽象、概括的逻辑思维能力和运用数形结合思想解决 实际问题的能力。
3.德育目标:(1)通过对问题的探究活动,亲历知识的建构过程,使学生领悟其中所蕴涵 的数学思想和数学方法,体验探索中的成功和快乐,使学生在探索中喜欢数学、欣赏数学。(2)通过“神舟7号”飞天圆梦,激发学生爱国之情。
(3)培养学生既能独立思考,又能积极与他人合作交流的意识和勇于探索创新的精神。
【教学重点】椭圆性质的探索过程及性质的运用。
【教学难点】利用曲线方程研究椭圆性质的方法及离心率的概念。
【教学方法】发现探究式
【教学组织方式】学生独立思考、合作交流、师生共同探究相结合。
【教学工具】多媒体课件、实物投影仪。
【教学过程】
一.创设情境
教师:请同学们看大屏幕(课件展示“神舟 七号”飞船在变轨前绕地球运 行的模拟图): 2008.9.25,是我国航天史上一个非常重要的日子,“神舟 七号”载人飞船成功发射,实现了几代中国人遨游太空的梦想,这是我们中华民族的骄傲。我们知道,飞船绕地运行了十四圈,在变轨前的四圈中,是沿着以地球中 心为一个焦点的椭圆轨道运行的。如果告诉你飞船飞离地球表面最近和最远的距 离,即近地点距地面的距离和远地点距地面的距离,如何确定飞船运行的轨道方 程?要想解决这一实际问题,就有必要对椭圆做深入的研究,这节课我们就一起 探求椭圆的性质。(引出课题)
教师:前面我们学习了椭圆的定义和标准方程,谁能说说椭圆的标准方程(学生回答)。
二.探索研究 1.范围
教师:同学们继续观察椭圆,如果分别过a1、a2作y轴的平行线,过b1、b2作x轴的平行线(课件展示),同学们能发现什么?
学生能答出:椭圆围在一个矩形内。
教师补充完整:椭圆位于四条直线x=±a, y=±b所围成的矩形里,说明椭圆 是有范围的。x2y2 教师:下面我们想办法再用方程2+2=1(a>b>0)来证明这一结论的正确ab 性。启发学生,用方程讨论图形的范围就是确定方程中x、y的取值范围。
从方程的结构特点出发,师生共同分析,给出证明过程。x2y2 由2+2=1,利用两个实数的平方和为1,结合不等式知识得,ab x2≤a2且y2≤b2,则有|x|≤a,|y|≤b, 所以-a≤x≤a,-b≤y≤b。2.对称性的发现与证明
教师:椭圆的图形给人们以视觉上的美感(课件展示椭圆),如果我们沿焦 点所在的直线上下对折,沿两焦点连线的垂直平分线左右对折,大家猜想椭圆可能有什么性质?(学生动手折纸,课前教师要求学生把上节学习椭圆定义时画的椭圆拿来。)
学生们基本上能发现椭圆的轴对称性。
教师:除了轴对称性外,还可能有什么对称性呢?
稍作提示容易发现中心对称性。
教师:这仅仅是由观察、猜想得到的结果,怎样用方程证明它的对称性? 师生讨论后,需要建立坐标系,确定椭圆的标准方程。不妨建立焦点在xx2y2 轴上的椭圆的标准坐标系,它的方程就是2+2=1。ab 教师:这节课就以焦点在x轴上的椭圆的标准方程为例来研究椭圆的性质。教师:这样建立的坐标系对称轴恰好重合于坐标轴,我们先证椭圆关于y轴对称。
为了证明对称性,先作如下铺垫:(一起回顾)教师:在第一册学过,曲线关于y轴对称是指什么呢?
学生:曲线上的每一点关于y轴的对称点仍在曲线上。
教师:要证曲线上每一点关于y轴的对称点仍在曲线上,只要证明-----学生:曲线上任意一点关于y轴的对称点仍在曲线上。
在学生尝试进行问题解决的过程中,当他们难以把握问题解决的思维方向,难以建立起新旧知识的联系时,这就需要教师适时进行启发点拨。
教师:同学们阅读教材中椭圆对称性的证明过程,仔细体会并思考“为什么把x换成-x时,方程不变,则椭圆关于y轴对称”。
请一位学生讲解椭圆对称性的证明过程,以此来训练学生表述的逻辑性、完整性和推理的严谨性。
教师对学生的证明进行评价。
教师:用类似的方法可以证明椭圆关于x轴对称,关于原点对称。课件展示x2y2 对称性并总结:方程2+2=1表示的椭圆,坐标轴是其对称轴,原点是其对称ab 中心.从而椭圆有两条互相垂直的对称轴,有一个对称中心(简称中心).教师引导学生对这一环节进行反思,即通过建立坐标系,用椭圆的方程研究椭圆的性质,这种方法我们今后经常用到。
投影显示下图及问题
问题:图中的椭圆有对称轴和中心吗?
指导学生思考讨论后获取共识:坐标系是用来研究曲线的重要工具,而椭圆的对称性是椭圆本身固有的性质,无论椭圆在坐标系的什么位置,它都有两条互相垂直的对称轴,有一个中心,与坐标系的选取无关。(此问题也为后面研究平移变换埋下伏笔)。3.顶点的发现与确定
教师:我们研究曲线,常常需要根据曲线上特殊点的位置来确定曲线的位置。教师提问:你认为椭圆上哪几个点比较特殊?
由学生观察容易发现,椭圆上存在着四个特殊点,这四个点就是椭圆与坐标 轴的交点,同时也是椭圆与它的对称轴的交点。
教师启发学生与一元二次函数的图像(抛物线)的顶点作类比,并给出椭圆的顶点定义。
教师:能根据方程确定这四个顶点的坐标吗?
由学生自主探究,求出四个顶点坐标。即令x=0,得 y=±b,因此b1(0,-b), b2(0,b),令y=0,得x=±a,因此a1(-a,0), a2(a,0)。
结合图形指出长轴、短轴、长轴长、短轴长、长半轴长、短半轴长,半焦距,点明方程中a、b和c的几何意义和数量关系。
由学生探究得出椭圆的一个焦点f2到长轴两端点a1 , a2的距离分别为a+c 和a-c。教师指出,这在解决天体运行中的有关实际问题时经常用到。4.离心率
教师:我们在学习椭圆定义时,用同样长的一条细绳画出的椭圆形状一样 吗?
同学们能回答出:不一样,有的圆一些,有的扁一些。
请同学们思考:椭圆的圆扁程度究竟与哪些量有关呢?
课件动画演示
此时学生展开讨论,可能有的说与a、c有关,也可能说与a、b有关等等。通过观察演示实验,化抽象为具体,引导学生思考。
教师引导学生从演示实验观察到由于椭圆位于直线x=±a,y=±b围成的矩形 里,矩形的变化对椭圆形状的影响。
矩形越狭长,椭圆越扁;矩形越接近于正方形,椭圆越接近于圆;当矩形变为正方形时,即a=b时,椭圆变为圆。
即当比值bb越小,椭圆越扁;比值越大,椭圆越接近于圆。aa bcbc2a2?c2a2?c2 由于 ===,所以当越大时,越小,椭圆?()aaaaaa2 cbc越小时,越大,椭圆越接近于圆。把比值e=叫椭圆的离心率,aaa 分析出离心率的范围:0<e<1。
结论:椭圆在-a<x<a,-b<x<b内,离心率e越大,它就越扁;离心率e越接近于0,它就越接近于圆。所以说离心率是描述椭圆圆扁程度的量。
bc由上面的分析可以看到,比值、的大小都能反映椭圆的圆扁程度,为什aa c么定义是椭圆的离心率呢?因为a、c这两个量是椭圆定义中固有的,是决定a c椭圆形状最关键的要素,随着今后的学习可以看到还有更重要的几何意义。a 三.巩固与创新应用 越扁;当
例1求椭圆 16x2?25y2?400 的长轴长、短轴长、离心率和顶点,并画出它的草图。
本题采用讲练结合的方式。前一部分由学生口述求解过程,后一部分由教师 介绍画椭圆草图的方法(考虑到画草图对学生来说比较实用)。
解:由于a=5, b=4,c=25?16=3 椭圆的长轴长2a=10,短轴长2b=8 c3 离心率e== a5 因为焦点在x轴上,所以椭圆的四个顶点的坐标是(-5,0)、(5,0)、(0,-4)、(0,4)教师:根据椭圆的性质,可以快捷地画出反映椭圆基本形状和大小的草图,方法如下:(课件展示)
首先确定椭圆的四个顶点,其次画出表示范围的矩形框,然后画出椭圆在第一象限的部分,最后根据对称性用平滑的曲线将四个顶点连成一个椭圆的基本图形。
教师提醒学生:画图时注意椭圆的对称性和顶点附近的平滑性。
学生根据画草图的方法画出上述方程表示的椭圆。
教师说明,如果需要比较准确地画出椭圆,可以按教材例1那样,用描点法 画出椭圆在第一象限的部分,再根据对称性画出整个椭圆(要求学生课下阅读教材中的描点法作图)。x2y2 练习:如果把例1中的椭圆方程改为+=1,则长轴长、短轴长、离心1625 率和顶点有什么变化。
此处是一个创新点,培养学生用类比的思想解决问题的能力,也通过与上题
做比较,使学生体会到椭圆的性质是其本身固有的,是客观存在的,与坐标系的选取无关。
学生的回答可能会因为长轴位置发生变化而导致顶点坐标出错,教师要予以纠正。(此题用实物投影展示或由学生到黑板板书)
例2 我国发射的“神舟七号”飞船在变轨前是沿以地球的中心f2为一个焦 点的椭圆轨道运行的。已知它的近地点a(离地面最近的点)距地面约为200km,远地点b(离地面最远的点)距地面约为350km,地球半径为6371km并且f2、a、b在同一直线上,求飞船运行的轨道方程。(结果精确到0.01km)
设置本题的主要意图是:第一,为增强学生的数学应用意识和运用数学知识解决实际问题的能力;第二,为满足中等及中等以上层次学生的学习需求。
师生共同分析:先把实际问题转化为数学问题。(求神舟五号飞船的轨道方程,就是求椭圆的方程)。
教师:求椭圆的方程又需要先做什么呢?(建立坐标系)。怎样建系?(以过a、b的直线为x轴,f2为椭圆的右焦点,记f1为左焦点x2y2 建立如图所示的直角坐标系(课件上作图、建系)则它的标准方程为2+2=1 ab(a>b>0)。
下面确定a、b的值,题中提供的信息是近地点、远地点到地面的距离以及地球的半径,由这些条件我们可以知道些什么呢?
学生对照图形认真思考,相互讨论由学生得出解法。
|f2 a|=6371+200,|f2 b|=6371+350 又∵|f2 a|=|o a|-|of2|=a-c 因此,有 a-c=|o a|-|of2|=|f2 a|=6371+200=6571 同理,得 a+c=|o b|+|of2|=|f2b|=6371+350=6721 解得 a=6646,c=75 b2=a2-c2=(a+c)(a-c)=44163691≈6645.582 x2y2 因此,飞船的轨道方程为+=1 664626645.582 学生可能出现的另一种解法:
由2a =|ab|=|bn|+|nm|+|ma| =350+2×6371+200 ∴ a =6646 c =|of2|=|o a|-|f2 a| =6646-6371-200=75 以下做法同上。
计算过程由学生用计算器求得。
教师最后课件展示:用计算机画出飞船运行的轨迹。
四.总结提炼
教师:通过这节课学习,你学到了什么?(教师引导学生从知识和方法两方面进行归纳总结,培养学生反思自己学习过程的意识)
篇三:椭圆的简单几何性质教案
课题:椭圆的简单几何性质
设计意图:本节内容是椭圆的简单几何性质,是在学习了椭圆的定义和标准方程之后展开的,它是继续学习双曲线、抛物线的几何性质的基础。因此本节内容起到一个巩固旧知,熟练方法,拓展新知的承上启下的作用,是发展学生自主学习能力,培养创新能力的好素材。本教案的设计遵循启发式的教学原则,以培养学生的数形结合的思想方法,培养学生观察、实验、探究、验证与交流等数学活动能力。
教学目标:了解用方程的方法研究图形的对称性;理解椭圆的范围、对称性及对称轴,对称中心、离心率、顶点的概念;掌握椭圆的标准方程、会用椭圆的定义解决实际问题;通过例题了解椭圆的第二定义,准线及焦半径的概念,利用信息技术初步了解椭圆的第二定义. 培养学生的数形结合的思想方法。
教学重点:椭圆的简单几何性质的应用。
教学难点:椭圆的简单几何性质的应用。
二过程与方法目标
(1)复习与引入过程
引导学生复习由函数的解析式研究函数的性质或其图像的特点,在本节中不仅要注意通过对椭圆的标准方程的讨论,研究椭圆的几何性质的理解和应用,而且还注意对这种研究方法的培养.①由椭圆的标准方程和非负实数的概念能得到椭圆的范围;②由方程的性质得到椭圆的对称性;③先定义圆锥曲线顶点的概念,容易得出椭圆的顶点的坐标及长轴、短轴的概念;④通过p48的思考问题,探究椭圆的扁平程度量椭圆的离心率.
〖板书〗椭圆的简单几何性质.
(2)新课讲授过程
(i)通过复习和预习,知道对椭圆的标准方程的讨论来研究椭圆的几何性质. 提问:研究曲线的几何特征有什么意义?从哪些方面来研究?
通过对曲线的范围、对称性及特殊点的讨论,可以从整体上把握曲线的形状、大小和位置.要从范围、对称性、顶点及其他特征性质来研究曲线的几何性质.
(ii)椭圆的简单几何性质 y2x2 ①范围:由椭圆的标准方程可得,2?1?2?0,进一步得:?a?x?a,同理可ba 得:?b?y?b,即椭圆位于直线x??a和y??b所围成的矩形框图里;
②对称性:由以?x代x,以?y代y和?x代x,且以?y代y这三个方面来研究椭圆的标准方程发生变化没有,从而得到椭圆是以x轴和y轴为对称轴,原点为对称中心;
③顶点:先给出圆锥曲线的顶点的统一定义,即圆锥曲线的对称轴与圆锥曲线的交点叫做圆锥曲线的顶点.因此椭圆有四个顶点,由于椭圆的对称轴有长短之分,较长的对称轴叫做长轴,较短的叫做短轴;
④离心率: 椭圆的焦距与长轴长的比e?c叫做椭圆的离心率(0?e?1),a,b?当e?1时,c?a,?圆图形越扁?椭?0?当e?0时,c?0,b?a;? . ?椭圆越接近于 圆
(iii)例题讲解与引申、扩展
例1 求椭圆16x?25y?400的长轴和短轴的长、离心率、焦点和顶点的坐标. 分析:由椭圆的方程化为标准方程,容易求出a,b,c.引导学生
用椭圆的长轴、短轴、离心率、焦点和顶点的定义即可求相关量.
扩展:已知椭圆mx?5y?5m?m? 0?的离心率为e?22225 求m的值.
解法剖析:依题意,m?0,m?5,但椭圆的焦点位置没有确定,应分类讨论:①当焦点在x轴上,即0?m? 5时,有a?b?c?,∴?,得
m?3;②当焦点在y轴上,即m?5时,有a?b?c?,∴?25?m?. 3 例2 如图,一种电影放映灯的反射镜面是旋转椭圆面的一部分.过对对称的截口bac是椭圆的一部分,灯丝位于椭圆的一个焦点f1上,片门位于另一个焦点f2上,由椭圆一个焦点f1发出的光线,经过旋转椭圆面反射后集中到另一个焦点f2.已知bc?f1f2,f1b?2.8cm,f1f2?4.5cm.建立适当的坐标系,求截口bac所在椭圆的方程. x2y2 解法剖析:建立适当的直角坐标系,设椭圆的标准方程为2?2?1,算出a,b,c的ab 值;此题应注意两点:①注意建立直角坐标系的两个原则;②关于a,b,c的近似值,原则上在没有注意精确度时,看题中其他量给定的有效数字来决定.
引申:如图所示,“神舟”截人飞船发射升空,进入预定
轨道开始巡天飞行,其轨道是以地球的中心f2为一个焦点的椭 圆,近地点a距地面200km,远地点b距地面350km,已知
地球的半径r?6371km.建立适当的直角坐标系,求出椭圆的轨迹方程.
例3如图,设m?x,y?与定点f?4,0?的距离和它到直线l:x?25的距离的比是常数4 4,求点m的轨迹方程. 5 分析:若设点m?x,y?,则
mf?,到直线l:x?25的距离4d?x?25,则容易得点m的轨迹方程. 4 引申:(用《几何画板》探究)若点m?x,y?与定点f?c,0? a2 的距离和它到定直线l:x?的距离比是常数c a2cx?则点m的轨迹方程是椭圆.其中定点f?c,0?是焦点,定直线l:e??a?c?0?,ca a2 x??.相应于f的准线;由椭圆的对称性,另一焦点f???c,0?,相应于f?的准线l?:(3)c 小结
1.知识总结:椭圆的几何性质 2.思想方法总结:
教师根据学生的总结做适当补充、归纳、点评。
第五篇:椭圆的简单几何性质教学设计
<<椭圆的几何性质>>教学设计
山西省运城中学
赵彦明
一、教学分析:
(一)教学内容分析
椭圆是生活中常见的曲线,是学生学习第二章所接触到的第一个重要的圆锥曲线,研究它的几何性质,对于后续学习圆锥曲线有着重要的指导作用,也为研究双曲线和抛物线奠定了基础。
(二)教学对象分析
本节课是在学生学习了椭圆的定义、标准方程的基础上,根据方程研究曲线的性质。按照学生的认知特点,改变了教材中原有安排顺序,引导学生从观察课前预习所作的图形入手,从分析对称开始,循序渐进进行探究。
(三)教学环境分析
因为本节内容比较抽象,再者学校条件的有限所以利用电脑模拟动点运动,增强直观性,激励学生的学习动机,培养学生的观察能力、数学想像能力和抽象思维能力。
二、教学目标
(一)知识与技能
掌握椭圆的简单的几何性质,学会由已知椭圆的标准方程求椭圆的几何性质的一般方法与步骤。
(二)过程与方法
通过实际活动培养学生发现、观察、归纳的能力;培养分析、抽象、概括的能力,加强数形结合等数学能力的培养;经历几何问题代数化的过程,感受解析几何研究问题的思路和方法。
(三)情感与态度
通过有关椭圆几何性质的实际应用的介绍,激发学生研究椭圆的几何性质的积极性。
三、教学重难点及教具
(一)教学重点:由标准方程分析出椭圆的几何性质
(二)教学难点:椭圆离心率几何意义的理解
(三)教学用具:电脑,课件(媒体资料),投影仪,幻灯片,学生每人一个椭圆形纸板(同桌相同),直尺
四、教学方法过程及整合点
(一)教学方法:讲授法、启发法、讨论法、情境教学法、小组合作交流
(二)教学过程: 1.创设情境,欣赏倾听
这节课我们继续研究有关椭圆的相关知识,在进入本节课的知识之前,我们先看一段视频短片:
(整合点:播放中央电视台新闻中关于国家大剧院外部景观介绍的视频短片)﹝设计意图:提高学生的学习兴趣﹞
提出问题:为什么国家大剧院最终会选择了椭球形设计呢? ﹝设计意图:激发学生的求知欲,引入课题﹞
教师指出其根本原因是椭球形非常美观,这源于椭圆的美!那么椭圆到底美在何处?它又具有哪些特性?让我们一起来研究一下——椭圆的几何性质,以方程x2y21(ab0)为研究对象。a2b2(板书)12.1.2 椭圆的几何性质
2.探究问题,观察发现
从哪几方面研究研究椭圆的几何性质呢?学生纷纷讨论之后老师确定从椭圆的 2
对称性、顶点、范围、离心率来探究。探究一:椭圆的对称性
问题1:你能找到椭圆纸板的中心吗?
﹝设计意图:让学生直观感知,操作确认,更深入认识椭圆的对称性﹞
学生活动:用手中的纸板折纸——把椭圆纸板折叠,使两部分完全重合,两条折痕的交点,即为椭圆纸板的中心,两条折痕为对称轴。实物演示部分可以由学生同桌两两一组共同完成(整合点:学生通过实物投影仪展示活动成果,教师通过几何画板演示 “椭圆的对称性.gsp”)
得出结论:椭圆具有对称性。
①两条折痕为对称轴——椭圆是轴对称图形,它关于x轴和y轴对称; ②实物演示:椭圆绕中心旋转180后与原椭圆重合——椭圆也是中心对称图形,这时坐标轴是椭圆的对称轴,原点是椭圆的对称中心,椭圆的对称中心叫做椭圆的中心。
问题2:从方程看如何判断椭圆的对称性?
﹝设计意图:经历几何问题代数化的过程,感受解析几何研究问题的思路和方法。﹞
学生讨论:设P(x,y),则P点关于x轴、y轴和坐标原点的对称点分别是(x,-y)、(-x,y)、(-x,-y)若曲线关于x轴对称,则P点关于x轴对称点也在曲线上,即(x,-y)满足方程。同理可以推出另外两种情况。问题3:通过上面研究同学们归纳出方程要满足什么条件曲线才具有这些对称性?
﹝设计意图: 为培养学生观察、分析、归纳问题的能力。为进一步的学习打下良好的基础。﹞
学生讨论得出:以-x代x,方程不变,则曲线关于y轴对称;以-y代y,方程不变,则曲线关于x轴对称;同时以-x代x、以-y代 y,方程不变,则曲线关于原点对称。
(板书)椭圆的对称性:椭圆关于x轴,y轴和原点对称。探究二:椭圆的顶点
问题4:椭圆与它的对称轴有交点吗?若有,那么椭圆与它的对称轴有几个交点?你能求出交点的坐标吗?
学生易得:椭圆与对称轴有交点,有四个交点。问题5:从方程看如何求出椭圆的顶点? ﹝设计意图:体验用代数的方法研究几何问题过程﹞ 令x=0则有y=b或y=-b;同理可得x=a或x=-a
22教师指出:其实,我们把椭圆x2y21(ab0)与坐标轴的交点
abA1(a,0),A2(a,0),B1(0,b),B2(0,b)就叫做椭圆的顶点。
其中线段A1A2、B1B2分别叫做椭圆的长轴和短轴。显然长轴长|A1A2|=2a,短轴长|B1B2|=2b,a和b分别叫做椭圆的长半轴长和短半轴长,此时长轴在x 轴上。(整合点:教师通过ppt演示 “椭圆的顶点”)
(板书)椭圆的顶点:A1(a,0),A2(a,0),B1(0,b),B2(0,b)。探究三:椭圆的范围
问题6:请同学们拿起手中的作业纸,思考如果在一张矩形纸上作椭圆,要求所作椭圆尽可能最大,应如何做?
﹝设计意图: 让学生通过动手操作更深入认识椭圆的范围﹞
学生活动:分小组讨论,并动手解决本问题,尽量使回答准确、精练。得出结论:椭圆是有范围的。
教师引导学生动手动脑,将具体实例抽象成数学图形,数学问题,在平面直角坐标系内来研究:如下图,﹝设计意图:利用“椭圆的顶点.ppt”课件展示,使学生直观
感性认识椭圆范围所在区域﹞
学生得出:椭圆位于直线xa,yb所围成的矩形内。
问题7:如何从数的角度(也就是方程)来验证我们刚才从直观(也就是形)得来的结论呢?
﹝设计意图:体验用代数的方法研究几何问题过程,体会数形结合的思想﹞
(整合点:用多种方法探究,汇报研究成果并用实物投影展示或到黑板板书。)学生可能有如下方法: 方法1:由且,则有
利用两个实数的平方和为1,结合不等式知识得
。那么它的范围就是直线所围成的区域。
方法2:从中解出,利用可得y的取值范围,同样可得x的取值范围。
方法3:把和分别看作是一个函数,只需求范围。的定义域、值域即可,然后利用对称性可得(板书)教师指出椭圆的范围:-a≤x≤a,-b≤y≤b 5
探究四:椭圆的离心率
椭圆的简单的几何性质中,比较抽象的难于理解的就是椭圆的离心率问题。为了能将抽象的问题形象化,利于学生的理解与接受,设计如下的课堂活动,让全体学生参与到课堂中来,在自己的探究中获得学习的乐趣,学习的快乐,并且可以使不同程度的学生都有所收获。
问题8:请同学们举起手中的椭圆,大家观察它们的形状有何不同?圆的形状都是相同的,而椭圆却有些比较“扁”,有些比较“圆”,用什么样的量来刻画椭圆“扁”的程度呢?
﹝设计意图:在同学们参与到课堂活动中的时候,在自己举起自己手的椭圆的时候希望得到大家的关注想与大家交流,同时,在其他同学们举起手中的椭圆的时候,他们也会更加去关注其他同学手中的椭圆的形状,进而与自己手中的椭圆进行比较。在比较的过程中就会发现椭圆形状的变化,引起思考。﹞
有的同学手中的椭圆形纸板扁长,有的同学手中的椭圆形纸板稍圆,有的同学手中的椭圆更接近于圆形。
本过程中,由具体的同学们的手中的椭圆形状的变化到抽象的平面直角坐标系中椭圆形状的变化的过程中,几何画板的强大功能会发挥巨大的作用。在几何画板中展示椭圆的形状变化的同时,还可以让学生观察到椭圆中a,b,c三个参量的变化,进而对椭圆的离心率充分了解。观看课件演示,加深对离心率问题的直观认识。
(整合点:展示“椭圆的离心率.gsp”几何画板,取椭圆的长轴长不变,拖动两焦点改变它们之间的距离,再画椭圆,由学生观察出椭圆形状的变化。)
教师指出:在刚才的演示中,我们发现在椭圆长轴长不变的前提下,两个焦点离开中心的程度不一样,可以用离心率来描述
1)概念:椭圆焦距与长轴长之比。2)定义式:问题9:那么离心率与椭圆的扁圆程度有什么关系呢?
﹝设计意图:学生通过观察动画更容易找出椭圆图形随e的变化而变化的规律,他到突破难点的效果﹞
再一次演示几何画板。学生发现不变时,c变大,即离心率变大时,椭圆越扁;c变小即离心率变小时,椭圆越圆。
从式子上看:,椭圆变圆,直至成为极限位置圆,此时
时的特例。,此时也可认为线段为椭圆也可认为圆为椭圆在椭圆变扁,直至成为极限位置线段在时的特例。
(板书)椭圆的离心率:3.反思构建,性质应用,1)求椭圆9x2+25y2=225的长轴和短轴的长,离心率、交点和顶点的坐标。2)下列各组椭圆中,哪一个更接近于圆?
x2y2(1)4x9y36与12520x2y222(2)9x4y36与11216223)请你动手用尺子测量一下你手中的椭圆的长轴长和短轴长,写出该椭圆的标准方程。
由于每个同学手里的椭圆长轴与短轴长度不一样,因此在这个过程中学生都热情非常高的参与到这个测量的活动中来,进而写出其手中的椭圆的标准方程。
本过程两个方面考察学生对于椭圆及其几何性质的掌握,应用2)更是突出了对学生的实际动手能力和观察能力的培养。4.课堂小结,竞争合作
请你谈谈通过这节课的学习,你学习到了什么?并且请各组成员互相评价。5.首尾呼应, 解决问题
我们对于椭圆的几何性质的探索由来已久,现在椭圆的几何性质也正在被广泛的应用于各种设计中,国家大剧院是其中最典型的代表之一。当然,国家大剧 7
院之所以会选择了椭球形的设计,还有其他方面的考虑,例如很多科技方面的因素,感兴趣的同学可以自己课下查找一些资料,对这个问题全面了解。6.课后作业,巩固提高
1)求出你的椭圆的焦点、顶点的坐标,离心率,并通过测量将焦点坐标标在你的椭圆上;
2)完成焦点在y轴上的椭圆的几何性质的研究。
探究活动:课后查阅资料尝试找到椭圆的几何性质在现实生活中的其他应用。