第一篇:奇偶性教学设计
函数的奇偶性教学设计
营山二中数学组:王 娟
一.教材分析
1.教材的地位与作用
? 内容选自人教版《高中课程标准实验教科书》a版必修1第一章第三节;? 函数奇偶性是研究函数的一个重要策略,因此 成为函数的重要性质之一,它的研究也为今后幂函数、三角函数的性质等后续内容的深入起着铺垫的作用;? 奇偶性的教学无论是在知识还是在能力方面对学生的教育起着非常重要的作用,因此本节课充满着数学方法论的渗透教育,同时又是数学美的集中体现。2.学情分析 ? 已经学习了函数的单调性,对于研究函数的性质的方法已经有了一定的了解。尽管他们尚不知函数奇偶性,但学生在初中已经学习过图形的轴对称与中心对称,对图象的特殊对称性早已有一定的感性认识; ? 在研究函数的单调性方面,学生懂得了由形象到具体,然后再由具体到一般的科学处理方法,具备一定数学研究方法的感性认识; ? 高一学生具备一定的观察能力,但观察的深刻性及稳定性也都还有待于提高; ? 高一学生的学习心理具备一定的稳定性,有明确的学习动
机,能自觉配合教师完成教学内容。
二.目的分析
? 教学目标知识与技能目标:
„„理解函数奇偶性的概念
„„能利用定义判断函数的奇偶性 ? 过程与方法目标:
„„培养学生的类比,观察,归纳能力
„„渗透数形结合的思想方法,感悟由形象到具体,再
从具体到一般的研究方法 ? 情感态度与价值观目标:
„„对数学研究的科学方法有进一步的感受
„„体验数学研究严谨性,感受数学对称美
重点与难点
? 重点:函数奇偶性概念的形成和函数奇偶性的判断 ? 难点:函数奇偶性概念的探究与理解
三.教法、学法
教法
? 借助多媒体和几何画板软件 ? 以引导发现法为主,直观演示法、设疑诱导法为辅的教学模式 ? 遵循研究函数性质的三步曲
学法
? 根据自主性和差异性原则 ? 以促进学生发展为出发点 ? 着眼于知识的形成和发展 ? 着眼于学生的学习体验
四.过程分析
(一)情境导航、引入新课 问题提出
源于生活,那么我们现在正在学习的函数图象,是否也会具有对称的特性呢?是否也体现了图象对称的美感呢?
(二)构建概念、突破难点
考察下列两个函数:
2(1)(2)f(x)?xf(x)?|x| 思考1:这两个函数的图象有何共同特征?
思考2:对于上述两个函数,f(1)与f(-1),f(2)与f(-2),f(a)与f(-a)有什么关系?
一般地,若函数y=f(x)的图象关于y轴对称,当自变量x任
取定义域中的一对相反数时,对应的函数值相等。即 f(-x)=f(x)思考3:怎样定义偶函数?
思考4:函数 f(x)?x,x?[?3,2]偶函数吗?偶函数的定
义域有什么特征?
练1:判断下列函数是否为偶函数?(口答)(1)f(x)?x2,x?[?1,1] 2(2)f(x)?x,x?[?1,1)(3)f(x)?x,x?[?2,?1)?(1,2]22
(三)合作探究、类比发现
仿照讨论偶函数的过程,回答下列问题,共同完成探究 f(x)?xf(x)? 1 x(1)请你仔细观察这两个函数图象,它们又有什么共同特征?
(2)请你完成下列函数值对应表,描述它们又是如何体现这些特
征的呢?
(3)你能尝试利用数学语言描述函数图象的这个特征吗?
(4)奇函数的定义
练2:判断下列函数是否为奇函数?(口答)(1)f(x)?x,x?[?1,1](2)f(x)?x,x?[?1,1)33(3)f(x)?x,x?[?2,?1)?[1,2]3 强化定义,深化内涵
☆对奇函数、偶函数定义的说明:(1)如果一个函数f(x)是奇函数或偶函数,那么我们就说函数f(x)具有奇偶性。(2).函数具有奇偶性的前提是:定义域关于原点对称。(3)若f(x)为奇函数, 则f(-x)=-f(x)成立。若f(x)为偶函数,则f(-x)= f(x)成立。
练3:奇函数定义域是[a,2a+3],则a=_____.篇二:奇偶性教学设计
《函数的奇偶性》教学设计
(人教b版《数学(必修1)》第二章2.1.3)
浙江平阳中学 章朝阳
一、设计思想
新课改的实施,首先要求教师教学观念的改变:教学一切都要从学生的全面发展出发,所有的教学活动都必须从符合学生的起点开始,尽最大可能的满足不同学生的不同要求。在此基础上,要认真把握和调整学生学习方式的改变,激发学生的学习热情和创造力。
二、教材分析
新课标对函数奇偶性的要求是:结合具体函数,了解奇偶性的含义;学会运用函数图象理解和研究函数的性质。因此,不必人为拔高对函数奇偶性的理解和应用。
三、学情分析
1、学生对函数奇偶性的认识是初步的、直观的,对概念中的表达式的要求是认识不足的;
2、学生可能出现以偏盖全、以直观代替判断等情况,对定义域的认识不到位;
3、学生可能会机械地套用公式。
四、教学目标
1、知识目标:从形和数两个方面进行引导,使学生理解奇偶性的概念,会利用定义判断简单函数的奇偶性.2、能力目标:在奇偶性概念形成过程中,培养学生的观察,归纳能力,同时渗透数形结合和特殊到一般的数学思想方法.3、德育目标:在学生感受数学美的同时,激发学习的兴趣,培养学生乐于求索的精神.五、重点难点
重点是函数奇偶性概念的形成与函数奇偶性的判断,难点是对函数奇偶性的概念的理解。本节课采用观察、探索、启发、讨论、归纳等多种教学手段和方法,采用多媒体辅助教学,通过数形结合,增强直观性,通过函数奇偶性的图象对称性演示,使学生享受到数学的美感。
六、教学过程
(一)引入新课
同学们,我们生活在美的世界中,有过许多对美的感受,请大家想一下有哪些美呢?(学生回答可能有和谐美、自然美、对称美„„)今天,我们就来讨论对称美,请大家想一下哪些事物给过你对称美的感觉呢?(学生举例,再在屏幕上给出一组图片:喜字、蝴蝶、建筑物、麦当劳的标志)
生活中的美引入我们的数学领域中,它又是怎样的情况呢?下面,我们以麦当劳的标志为例,给它适当的建立直角坐标系,那么大家发现了是么特点呢?(学生发现:图象关于轴对称。)数学中对称的形式也很多,这节课我们就同学们谈到的与轴对称的函数展开研究。思考:那些函数的图象关于轴对称?试举例。(学生可能会举出一些,如y?x和y?x,y?21等。)x(点评:新课程注重情境创设,注重从具体问题出发,但也要因课而异,不能牵强,更不宜喧宾夺主,冲淡主题。本课引入较自然、和谐)
(二)讲解新课
以函数y?x为例,给出图象,然后问学生初中是怎样判断图象关于 2轴对称呢?(由学生回答,是利用图象的翻折后重合来判定)此时提出研究方向:今天我们将从数值角度研究图象的这种特征体现在自变量与函数值之间有何规律?(学生展开讨论)学生开始可能只会用语言去描述:自变量互为相反数,函数值相等。
引导学生先把它们具体化,再用数学符号表示.(借助课件演示令 得出等式
会不会在定义域内存在
察,发现结论,这样的 ,使 ,再令
比较)进而再提出动起来观,得到
不等呢?(可用课件帮助演示让 与
是不存在的),都有
成立.最后让学 从这个结论中就可以发现对定义域内任意一个
生用完整的语言给出定义,不准确的地方予以提示或调整。(1)偶函数的定义:如果对于函数
那么 就叫做偶函数。(板书)的定义域内任意一个 ,都有 , 等以检验一下对概念(给出定义后可让学生举几个例子,如的初步认识)提出新问题:函数图象关于原点对称,它的自变量与函数值之间的数值规律是什么呢?(同时打出y?1的图象让学生观察研究)x 引导学生用类比的方法,很快得出结论,再让学生给出奇函数的定义。(2)奇函数的定义: 如果对于函数 ,那么的定义域内任意一个 ,都有
就叫做奇函数.(板书)(点评:通过具体函数值的检验,并借助课件让学生体验自变量取值的任意性,实现了从有限到无限、具体到抽象的认识转变,突出了知识的发生过程,也体现了能力的培养)例1.判断下列函数的奇偶性
(1)(3)(5)(7);(2);;(6).;;2x2?2x?x2 f(x)?(8)f(x)? x?2?2x?1 前三个题做完,进行一次小结,判断奇偶性,只需验证
与
之间的关系,但应指出:这样的回答是不严密的。因为题目要求是判断奇偶性,而根据定义,你们只回答了一半,另一半没有作答,以第(1)为例,说明怎样解决它不是偶函数的问题呢? 学生经过思考可以解决问题,指出只要举出一个反例说明
与
不等.如
即可说明它不是偶函数.(从这个问题的解决中让学生再次认识到定义中任意
性的重要)从(4)题开始,学生的答案会有不同,可以让学生先讨论,老师再做评述.即第(4)题中表面成立的 = 不能经受任意性的考验,当
时,由于 ,故
不存在,更谈不上与
相等了,由于任意性被破坏,所以它不具有奇偶性.由此引导学生,通过刚才这个题目,你发现在判断中需要注意些什么? 定义域关于原点对称是函数具有奇偶性的先决条件。(板书)(点评:通过设计认知冲突促进学生的反思性学习,从多个角度促进学生对概念本质的理解,培养学生全面整体考虑问题的能力,同时让学生学会发现规律的方法。)
由学生小结判断奇偶性的步骤之后,提出新的问题:在刚才的几个函数中有是奇函数不是偶函数,有是偶函数不是奇函数,也有既不是奇函数也不是偶函数,那么有没有这样的函数,它既是奇函数也是偶函数呢?若有,举例说明.经学生思考,可找到函数
都只能写成这样呢?能证明吗? 例2.已知函数
成)证明:.然后继续提问:是不是具备这样性质的函数的解析式既是奇函数也是偶函数,求证 :.(板书)(由学生来完既是奇函数也是偶函数, = = ,即 ,且.., 进一步提问:这样的函数应有多少个呢?(学生开始可能认为只有一个,经提示可发现 , 数的定义域,如 , , 只是解析式的特征,若改变函,它们显然是不同的函, 数,但它们都是既是奇函数也是偶函数.)(4)函数按其是否具有奇偶性可分为四类:(板书)
(三)小结
1.函数奇偶性的概念 2.判断函数奇偶性的步骤
(学生从知识和思想方法两个方面进行总结,教师帮助归纳精炼并板书)
(四)作业 略
(五)板书设计
(六)问题研讨
研究函数f(x)?1的性质并作出图象。x2
七、参考资料
1、罗诚.新课程课堂教学案例(高中数学)四川教育出版社
2、济南市教学研究室.高中新课程教学启示录(数学教学案例分析)山东教育出版社篇三:函数奇偶性教学设计
人教版必修一1.3.2 《函数奇偶性》教学设计 白沟新城白沟一中 范艳国 2011年10月
一.教学任务分析
(1)建立奇偶函数的概念:通过观察一些具体函数的对称性(关于y轴或原点对称)形成奇偶函数的直观认识。然后通过代数运算,验证并发现数量特征对定义域中的“任意”值都成立,最后在此基础上建立奇(偶)函数的概念。理解函数的奇偶性及其几何意义;学会运用函数图象理解和研究函数的性质;学会判断函数的奇偶性.(2)函数奇偶性的研究历经了从直观到抽象,从图形语言到数学语言,理解函数奇偶性概念的形成过程,让学生自主探究。培养学生观察、归纳、抽象的能力,渗透数形结合的数学思想.
(3)通过函数的奇偶性教学,培养学生从特殊到一般的概括归纳问题的能力和认真钻研的数学品质。
二.教学重点和难点:
1.重点:函数的奇偶性的定义;函数的奇偶性的判断.2.难点:归纳并抽象函数的奇偶性的定义,函数奇偶性的判断。三.教学基本流程 第一步:从观察具体函数图像引入 第二步:直观认识奇(偶)函数 第三步:定量分析奇(偶)函数 第四步:给出奇(偶)函数的定义 第五步:说明奇(偶)函数的特征 第六步:函数奇偶性的判断方法 第七步:练习、交流、反馈、巩固 第八步:学生归纳小结、教师评价
四.教学情境设计 篇四:函数的奇偶性教学设计 《函数的奇偶性》教学设计
深圳市第一职业技术学校数学科-----黄美德
课标分析
函数的奇偶性是函数的重要性质,是对函数概念的深化.它把自变量取相反数时函数值间的关系定量地联系在一起,反映在图像上为:偶函数的图像关于y轴对称,奇函数的图像关于坐标原点成中心对称.这样,就从数、形两个角度对函数的奇偶性进行了定量和定性的分析.
教材分析
教材首先通过对具体函数的图像及函数值对应表归纳和抽象,概括出了函数奇偶性的准确定义.然后,为深化对概念的理解,举出了奇函数、偶函数、既是奇函数又是偶函数的函数和非奇非偶函数的实例.最后,为加强前后联系,从各个角度研究函数的性质,讲清了奇偶性和单调性的联系.这节课的重点是函数奇偶性的定义,难点是根据定义判断函数的奇偶性.
教学目标
1.通过具体函数,让学生经历奇函数、偶函数定义的讨论,体验数学概念的建立过程,培养其抽象的概括能力.
教学重难点 1..理解、掌握函数奇偶性的定义,奇函数和偶函数图像的特征,并能初步应用定义判断一些简单函数的奇偶性. 2.在经历概念形成的过程中,培养学生归纳、抽象概括能力,体验数学既是抽象的又是具体的.
学生分析
这节内容学生在初中虽没学过,但已经学习过具有奇偶性的具体的函数:正比例函数y=kx,反比例函数,(k≠0),二次函数y=ax2,(a≠0),故可在此基础上,引入奇、偶函数的概念,以便于学生理解.在引入概念时始终结合具体函数的图像,以增加直观性,这样更符合学生的认知规律,同时为阐述奇、偶函数的几何特征埋下了伏笔.对于概念可从代数特征与几何特征两个角度去分析,让学生理解:奇函数、偶函数的定义域是关于原
点对称的非空数集;对于在有定义的奇函数y=f(x),一定有f(0)=0;既是奇函数,又是偶函数的函数有f(x)=0,x∈r.在此基础上,让学生了解:奇函数、偶函数的矛盾概念———非奇非偶函数.关于单调性与奇偶性关系,引导学生拓展延伸,可以取得理想效果. 教学过程
一、探究导入
1.观察如下两图,思考并讨论以下问题:
(1)这两个函数图像有什么共同特征?
(2)相应的两个函数值对应表是如何体现这些特征的?
可以看到两个函数的图像都关于y轴对称.从函数值对应表可以看到,当自变量x取一对相反数时,相应的两个函数值相同.
对于函数f(x)=x2,有f(-3)=9=f(3),f(-2)=4=f(2),f(-1)=1=f(1).事实上,对于r内任意的一个x,都有f(-x)=(-x)2=x2=f(x).此时,称函数y=x2为偶函数.
2.观察函数f(x)=x和f(x)=
说出这两个函数有什么共同特征. 的图像,并完成下面的两个函数值对应表,然后
可以看到两个函数的图像都关于原点对称.函数图像的这个特征,反映在解析式上就是:当自变量x取一对相反数时,相应的函数值f(x)也是一对相反数,即对任一x∈r都有f(-x)=-f(x).此时,称函数y=f(x)为奇函数.
二、师生互动
由上面的分析讨论引导学生建立奇函数、偶函数的定义 1.奇、偶函数的定义
如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫作奇函数.
如果对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)就叫作偶函数.
2.提出问题,组织学生讨论
(1)如果定义在r上的函数f(x)满足f(-2)=f(2),那么f(x)是偶函数吗?(f(x)不一定是偶函数)
(2)奇、偶函数的图像有什么特征?
(奇、偶函数的图像分别关于原点、y轴对称)
(3)奇、偶函数的定义域有什么特征?
(奇、偶函数的定义域关于原点对称)
三、难点突破
例题讲解
1.判断下列函数的奇偶性.
注:①规范解题格式;②对于(5)要注意定义域x∈(-1,1]. 2.已知:定义在r上的函数f(x)是奇函数,当x>0时,f(x)=x(1+x),求f(x)的表达式.
解:(1)任取x<0,则-x>0,∴f(-x)=-x(1-x),而f(x)是奇函数,∴f(-x)=-f(x).∴f(x)=x(1-x).(2)当x=0时,f(-0)=-f(0),∴f(0)=-f(0),故f(0)=0. 3.已知:函数f(x)是偶函数,且在(-∞,0)上是减函数,判断f(x)在(0,+∞)上是增函数,还是减函数,并证明你的结论.
解:先结合图像特征:偶函数的图像关于y轴对称,猜想f(x)在(0,+∞)上是增函数,证明如下:
任取x1>x2>0,则-x1<-x2<0.
∵f(x)在(-∞,0)上是减函数,∴f(-x1)>f(-x2). 又f(x)是偶函数,∴f(x1)>f(x2).
∴f(x)在(0,+∞)上是增函数.
思考:奇函数或偶函数在关于原点对称的两个区间上的单调性有何关系?
巩固创新 1.已知:函数f(x)是奇函数,在[a,b]上是增函数(b>a>0),问f(x)在[-b,-a]上的单调性如何.
2.f(x)=-x|x|的大致图像可能是()3.函数f(x)=ax2+bx+c,(a,b,c∈r),当a,b,c满足什么条件时,(1)函数f(x)是偶函数.(2)函数f(x)是奇函数. 4.设f(x),g(x)分别是r上的奇函数和偶函数,并且f(x)+g(x)=x(x+1),求f(x),g(x)的解析式.
四、课后拓展
1.有既是奇函数,又是偶函数的函数吗?若有,有多少个? 2.设f(x),g(x)分别是r上的奇函数,偶函数,试研究:
(1)f(x)=f(x)·g(x)的奇偶性.
(2)g(x)=|f(x)|+g(x)的奇偶性. 3.已知a∈r,f(x)=a-,试确定a的值,使f(x)是奇函数. 4.一个定义在r上的函数,是否都可以表示为一个奇函数与一个偶函数的和的形式? 教学后记
这篇案例设计由浅入深,由具体的函数图像及对应值表,抽象概括出了奇、偶函数的定义,符合职高学生的认知规律,有利于学生理解和掌握.应用深化的设计层层递进,深化了学生对奇、偶函数概念的理解和应用.拓展延伸为学生思维能力、创新能力的培养提供了平台.
2008-12-22篇五:高中数学函数奇偶性教案 2011年湖南省古丈县第一中学教学比武教案
函数的奇偶性
授课教师:王明章
一、教学目标:
1.使学生了解奇偶性的概念,会利用定义判断简单函数的奇偶性.2.在奇偶性概念形成过程中,培养学生的观察,归纳能力,同时渗透数形结合和特殊到一般的思想方法.3.在学生感受数学美的同时,激发学习的兴趣,培养学生乐于求索的精神.二、了解函数奇偶性的概念,掌握判断一些简单函数的奇偶性的方法掌握函数的奇偶性的定义及图象特征,并能判断和证明函数的奇偶性,能利用函数的奇偶性解决问题。
三、教学重点:函数的奇偶性及其几何意义
教学难点:判断函数的奇偶性的方法与格式
四、教学方法、教具:
1、教学方法:引导发现,归纳总结法
2、教具:多媒体
教学过程:
(一)复习:(提问)
1.增函数、减函数的定义,并复述证明函数单调性的步骤; 2.情景引入
(二)新课讲解: 请同学们观察图形,说出函数y?x2和y?x3的图象各有怎样的对称性? y?x 2y?x 3 相应的两个函数值对应x的值是如何体现这些特征的? 1.函数奇偶性概念:
偶函数的定义:如果对于函数f(x)的定义域内任意一个x,都有f(?x)?f(x),那么f(x)就叫做偶函
数。
奇函数的定义: 如果对于函数f(x)的定义域内任意一个x,都有f(?x)??f(x),那么f(x)就叫做奇函数.如果函数f(x)是奇函数或偶函数,我们就说函数f(x)具有奇偶性。2.注意:从函数奇偶性的定义可以看出,具有奇偶性的函数:
(1)其定义域关于原点对称;
(2)f(?x)?f(x)或f(?x)??f(x)必有一成立。
因此,判断某一函数的奇偶性时,首先看其定义域是否关于原点对称,若对称,再计算f(?x),看是等于f(x)还是等于?f(x),然后下结论;若定义域关于原点不对称,则函数没有奇偶性。
(3)无奇偶性的函数是非奇非偶函数。
(4)函数f(x)?0既是奇函数也是偶函数,因为其定义域关于原点对称且既满足f(x)?f(?x)也满
足f(x)??f(?x)。
(5)一般的,奇函数的图象关于原点对称,反过来,如果一个函数的图象关于原点对称,那么这个函
数是奇函数。偶函数的图象关于y轴对称,反过来,如果一个函数的图形关于y轴对称,那么这个函数是偶函数。
(6)奇函数若在x?0时有定义,则f(0)?0.
(7)判断函数的奇偶性有时可以用定义的等价形式:(转载于:奇偶性教学设计)f(x)?f(?x)?0,f(x)f(?x)??1(8)设f(x),g(x)的定义域分别是d1,d2,那么在它们的公共定义域上:
奇±奇=奇 偶±偶=偶 奇×奇=偶 偶×偶=偶 奇×偶=奇
(三)典型例题:
例1.判断下列函数的奇偶性:(1)f(x)??2x;(2)f(x)?x?2;(3)f(x)??x2;(4)f(x)?x6?x4?8,x?[?2,2)解:(1)奇函数.(2)偶函数.(3)定义域为[-1,1],关于原点对称,因为f(? x)?(4)非奇非偶
【小结】判断函数奇偶性的步骤:
①必须先看定义域是否关于原点对称
②看f(x)与f(-x)的关系
例2.已知函数f(x)?x?ax?bx?8若f(?2)?10,求f(2)的值。
解:构造函数g(x)?f(x)?8,则g(x)?x?ax?bx一定是奇函数
又∵f(?2)?10,∴ g(?2)?18 因此g(2)??18 所以f(2)?8??18,即f(2)??26.(四)课堂反馈练习
1、判断下列函数的奇偶性: 5353?(?x)2??x2?f(x)所以是偶函数.(1)f(x)??x,x?[?3,1] 2(4)f(x)?x? 0x2(2)f(x)? 4?x2?(x?2)(3)f(x)?(x?1)x?1 1?x2??x?x,x?0(5)f(x)??2??x?x,x?0
2、函数f(x)?x3?x?a,x?r为奇函数,则a= 五.课时小结:
1.函数奇偶性的定义; 2.判断函数奇偶性的方法; 3.特别要注意判断函数奇偶性时,一定要首先看其定义域是否关于原点对称,否则将会导 致结论错误或做无用功。
六、作业布置:
1、《作业手册》
2、能力提升:已知f(x)?(m2?1)x2?(m?1)x?n?2,当m,n为何值时,f(x)为奇函数。
第二篇:数的奇偶性 教学设计(定稿)
《数的奇偶性》教学设计
八里关中小 周文卿
教学内容:北师大版数学五年级上册第14页。教学目标:
1、使学生尝试运用“列表”、“画示意图”等方法发现规律,运用数的奇偶性解决生活中的一些简单问题。
2、让学生经历探索加法运算中数的奇偶性变化的过程,发现数的奇偶性的变化规律。
3、在活动中培养等学生的观察、推理和归纳能力。
4、学生通过自主探索发现规律,感受数学内在的魅力,培养学生学习数学的兴趣。
教学重点:探索数的奇偶性变化规律。
教具学具准备:课件,数字卡片,盒子等。教学过程:
复习引入新课(通过引导学生回忆、提问或列举等形式,复习奇、偶数)
(一)创设情境,激趣导入。
1、教室里光线是不是有些暗啊?那我把灯拉开吧!请同学们看仔细了,马上我有问题问大家。我拉了3次开关后,“开关”是打开的还是关闭了?10次呢?
2、做“你说我猜”的游戏。
3、小结:老师之所以猜的这么快,是因为老师掌握了这其中的秘诀。那就是----数的奇偶性的规律。(板书:数的奇偶性,齐读。)同学们想不想也知道这个秘诀呢?„„。那么这节课我们就来研究数的奇偶性的规律,等你们把它的规律找出来了,你猜得会比我还要准、还要快!(为自己加油!)
(二)自主探究,发现规律。
1、学生独立思考后进行汇报交流。
方法:用文字列举出开、关的情况
开、关;开、关;开、关;开、关;开、关;开、关„„
让学生数数,直观地发现第10次拉过开关后,开关是关闭的。随着学生的回答,师适时演示课件。
2、增加人次,深入探究。
如果我拉了50或者80次,用列举的方法判断“开关”的开、关情况还方便吗?你还能想出什么好方法呢?
3、第二次小组汇报交流。
师分别演示列表和画图方法课件。让学生观察这两种解题方法,引导他们从中发现规律并作答:当拉的次数是1、3、5、7„„的时候,开关处于开启状态,而当拉的次数是2、4、6、8„„的时候,开关处于关闭状态。即,拉的次数是奇数时,开关被打开;拉的次数是偶数时,开关被关闭。
(三)巩固应用,拓展训练。
1、看书学习并解决小船的靠岸问题。(适时课件演示)
2、解决杯子上下翻转,杯口的朝向问题。(适时教具、课件演示)
(四)活动小结:
当一个事物只有两种(运动或变化)状态时,运动奇数次后,状态与初始状态相反,运动偶数次时,状态与初始状态相同。
(五)有奖游戏:
1、街上有一家商店为了招揽生意,搞起了购物摸奖活动。凡是在他那购物的同学,都可以得到一次摸奖的机会,而且奖品还很丰厚。那我们同学们有没有人想试试自己的手气呢?„„。
2、游戏开始。部分学生按规则抽取卡片,并将卡片上两个数相加的算式及得数写在黑板上。(上来的同学无一人获奖。)
3、引发思考。
是你们运气不好,还是其中隐藏着什么秘密?想一想:如果继续抽下去,你们有获奖的可能吗?如果让你修改一下游戏规则,你能保证你能够获奖呢?(留作课后思考)
(六)课堂小结:
1、说说这节课你有什么收获?
2、通过今天的学习,我们发现数学知识与我们的生活实际是有着非常紧密的联系的。只要我们大家在今后的学习生活中多用眼观察,多用脑去想,更重的是多用手去做的话。数学知识就非常简单了,你们说是不是呢?
第三篇:数的奇偶性教学设计(本站推荐)
数的奇偶性教学设计
教学目标:
1、尝试运用“列表”“画示意图”等方法发现规律,运用数的奇偶性解决生活中一些简单问题。
2、经历探索加法中数的奇偶性变化过程,在活动中发现加法中数的奇偶性的变化规律,在活动中体验研究方法、提高推理能力。教学过程: 活动一:
(一)、游戏引入
喜欢玩球吗?谁愿意和老师玩个抛球游戏?(让学生直观感受数的奇偶性)
(二)、授新
1、师提出问题:球最初在老师手中,第一次球被抛给了同学,第二次球被抛给了老师,如果继续这样抛来抛去的话,第九次球被抛给谁了?为什么?(通过游戏让学生体会数的奇偶性,激发学生探究问题的欲望。)
2、学生尝试独立解决问题。
3、小组交流方法。
4、班内汇报。
学生可能会出现不同方法:列表,画示意图,借助学具演示„„
5、发现规律:奇数次时,球被抛给了同学;偶数次时,球被抛给了老师。(通过学生的汇报学生会发现:这个游戏存在着数的奇偶性规
律)
6、解决问题:有人说:“第100次球被抛给了老师”他的说法对吗?为什么?
(三)、用数的奇偶性解决生活实际问题。
1、一个杯子,杯口朝上放在桌子上,翻动1次杯口朝下,翻动2次杯口朝上,翻动10次后杯口朝(),翻动19次杯口朝()。(教师边说边用杯子演示)
2、同样是这个杯子最初杯口朝下放在桌子上,翻动1次杯口朝上,翻动2次杯口朝下,翻动10次后杯口朝()。
同样都是10次,为什么这次和上次的结果不同呢?(让学生体会到杯子最初状态不同,杯子翻动时奇偶次变化规律也不同。)
3、把杯子换成硬币让学生提出类似杯子的问题。
(1)同桌合作,一个人用硬币演示提问题,另一个人回答问题。(2)班内找小老师提问题,教师根据所提问题用课件演示。
4、解决电灯开关的问题:有一天晚上,我想开灯,本来拉1次开关灯就应该亮,但我连拉了7次开关灯都没亮,后来才知道停电了,你知道来电时灯是亮还是不亮? 活动二
1、玩抽奖游戏:有两个箱子,一个箱子里的球上面写的都是奇数,另一个箱子里的球上面写的都是偶数。请选择一个箱子从中摸出两个球,计算出球上所写数字的和,和为奇数就获奖。(在游戏中学生会发现无论谁都不会获奖)
2、学生猜想:奇数+奇数=偶数
偶数+偶数=偶数
3、学生对自己的猜想进行举例验证。
4、证实结论是正确的。
5、教师提出:如果还是摸两个球怎样能获奖?(也就是得到的和仍然是奇数)
6、学生提出“摸一个奇数和一个偶数得到的和就是奇数。”并举例验证这一猜想,从而得到结论“奇数+偶数=奇数”。
7、用得到的结论“奇数+奇数=偶数
偶数+偶数=偶数
奇数+偶数=奇数”解决问题。
(1)不计算判断下列算式的结果是奇数还是偶数
10389+2004
11387+131
268+1024
46+58+76
17+69+85
3+5+7+9
1+2+3+4+5+6+7+8+9+10(学生在计算时还会发现:奇数个奇数相加得到的和是奇数,偶数个奇数相加的和是偶数,无论多少个偶数相加的和都是偶数。)(2)两个小朋友做游戏,共12张卡片,其中有三张写1,三张写3,三张写5,三张写7,你能否从中选五张使和为20。课堂总结:这节课有什么收获?
第四篇:函数奇偶性教学设计解读
《函数的奇偶性》教学设计 数学组:焦国华
一、教材分析 1.教材的地位和作用
内容选自人教版《高中课程标准试验教科书》A版必修1第一章第三节;函数是中学数学的重点和难点,函数的思想贯穿于整个高中数学之中。研究函数的奇偶性是研究函数的一个重要策略,因此成为函数的重要性质之一,它的研究为后面学习幂函数,三角函数的性质等后续内容的深入起着铺垫的作用;奇偶性的教学无论是在知识还是在能力方面对学生的教育起着非常重要的作用,因此本节课充满着数学方法论的渗透教育,同时又是数学美的集中体现。
2.学情分析
已经学习了函数的单调性,对于研究函数性质的方法已经有了一定的了解。尽管他们尚不知函数奇偶性,但学生在初中已经学习过图形的轴对称与中心对称,对图像的特殊对称性早已有一定的感性认识;在研究函数的单调性方面,学生懂得了由形象到具体,然后再由具体到一般的科学处理方法,具备一定数学研究方法的感性认识;高一学生具备一定的观察能力,但观察的深刻性及稳定性也都还有待于提高。二.教学目标 知识与技能: 1.从数与形两个方面进行引导,使学生深刻理解函数奇偶性的概念。2.能利用定义判断函数的奇偶性。
过程与方法;通过函数奇偶性概念的形成过程,培养学生观察、归纳、抽象的能力,渗透数形结合的数学思想。
情感态度与价值观: 1.对数学研究的科学方法有进一步的感受;2.体验数学研究严谨性,感受数学对称美。三.教学重点和难点
教学重点:函数的奇偶性概念的形成及函数奇偶性的判断。教学难点:函数奇偶性概念的探究与理解。教法、学法
教法:借助多媒体以引导发现法为主,直观演示法、设疑诱导法为辅的教学模式。
学法:根据自主性和差异性原则,以促进学生发展为出发点,着眼于知识的形成和发展,着眼于学生的学习体验。
过程分析
(一情景导航、引入新课 问题提出: 我们从函数图像的升降变化引发了函数的单调性,从函数图像的最高点最低点引发了函数的最值,如果从函数图像的对称性出发又能得到函数的什么性质?(二构建概念,突破难点
考察下列两个函数: 2(1(x x f-=x x f=(2(思考1:这两个函数的图像有何共同特征? 思考2:对于上述两个函数,1(f与1(-f , 2(f与2(-f,(a f与(a f-有 什么关系? 思考3:一般地,若函数(x f y= 的图像关于y轴对称,则(x f 与(x f-有
什么关系?反之成立吗?思考4:怎样定义偶函数? 思考5:函数([]2,1 ,2-
∈ =x x x f是偶函数吗?偶函数的定义域有何特征?(三合作探究,类比发现
仿照讨论偶函数的过程,回答下列问题: 共同完成探究(x x f=(x x f 1 = 思考1:这两个函数的图像有何共同特征? 思考2:对于上述两个函数,1(f与1(-f , 2(f与2(-f,(a f与(a f-有 什么关系? 思考3:一般地,若函数(x f y= 的图像关于原点轴对称,则(x f 与(x f-有什么关系?反之成立吗?
思考4:怎样定义奇函数? 思考5:函数([]2,1,-∈=x x x f 是奇函数吗?奇函数的定义域有何特征?(四 强化定义,深化内涵 对奇函数,偶函数定义的说明: 1.函数具有奇偶性的一个必不可少的条件是什么? 练习1:奇函数定义域为[a,a+3],则a=______.2.有没有既是奇函数又是偶函数的函数? 3.有没有既不是奇函数也不是偶函数的函数? 总结:根据奇偶性,函数可划分为:奇函数,偶函数,既奇又偶函数,非奇非偶函数。4.函数的奇偶性与函数的单调性有何不同? 5.奇函数和偶函数的图像有哪些性质?(五 讲练结合,巩固新知
例1:利用定义判断下列函数的奇偶性 x x x f 2(1(3-= 2 432(2(x x x f += x x x f-+-=11(3(R x x f ∈=,2(4(小结:用定义判断函数奇偶性的步骤 练习2:用定义判断下列函数的奇偶性((111-++=x x x f((x x x f 12+=
((2 13x x x f += []3,2,(4(2-∈=x x x f(六 拓展迁移,能力提高 例2.利用定义判断下列函数的奇偶性 221(1(2-+-=x x x f 0,1(0,1({(1(<->+=x x x x x x x f(七 课时小结,知识建构 1.偶函数和奇函数的定义: 2.函数奇偶性的判定:(八 布置作业,回归拓展 练习册P63 板书设计
1.3.2 函数的奇偶性
一奇偶函数的定义二函数奇偶性的判断三奇偶函数的性质四例题讲解
第五篇:数的奇偶性教学设计
远程系列
《数的奇偶性》教学设计
达家沟中心小学
王晓红
教学目标
1、尝试运用“列表”“画示意图”等方法发现规律,运用数的奇偶性解决生活中的一些简单问题。
2、让学生经历探索加法中数的奇偶性变化的过程,在活动中发现加法中数的奇偶性的变化规律,在数学活动中探索数的特征,体验研究方法,提高学生的推理能力。
3、让学生通过对奇偶性的研究讨论,初步训练学生合作、交流的能力,体会数学的价值,发展数学兴趣。教学重点、难点
1、使学生发现掌握数的奇偶性变化规律。
2、使学生应用数的奇偶性变化规律解决实际问题。教具准备 课件、抽奖盒、教学过程
一、复习旧知、导入新课
1、师:我们学习过奇数和偶数的相关知识,请你们说说1~15的数字中,哪些是奇数,哪些是偶数? 生分类(根据学生回答,出示答案)
2、遮住奇数,提问剩下什么数?遮住偶数,提问剩下什么数?[让学生感受不是奇数就是偶数。]
二、授新课 {活动一} 师:其实生活中这样的奇偶现象很多。请大家默读题目一遍,你能从中获取哪些有价值的信息?大屏幕出示小船摆渡问题
生:我知道了小船最初是在南岸的。它的行驶轨迹是从南岸到北岸,再从北岸驶回南岸,不断往返。(学生说的同时,教师通过课件或黑板演示小船的行驶轨迹)
师出示问题一:小船摆渡11次后,船是在南岸还是在北岸? 生答略
[设计意图:让学生在具体的问题情境中研究数的奇偶性变化,有利于提高学生的学习兴趣,培养学生归纳、概括数学知识的能力] 师:大家都这样认为,这只是我们的初步猜想,那我们可以通过什么样的方法去验证?请大家独立思考一分钟。生独立思考一分钟。
师:下面我们分组交流,请每一小组讨论后,选出最好的方法在全班交流汇报,我们比一比,看哪一组的方法最好。……(时间:5分钟左右)
师:大家讨论的可真认真,老师都不情愿打断大家了,哪一组愿意第一个先来汇报你们的方法和结论? 引导画示意图和列表方法解决问题!如列表运用板书: 1 2 3 4 5 6 7 8 北岸 南岸 北岸 南岸 北岸 南岸 北岸 南岸
„„
„„
师:从刚才的方法中,你是否发现什么规律?找出划船次数和船的位置的关系?[学生说的同时,可以将北岸或者南岸在旁边打勾]
师:那老师想请一位同学把发现的规律用一句话总结一下,谁来试一试?
生1:小船摆渡1、3、5、7等次后,船在北岸,小船摆渡2、4、6、8等次后,船在南岸。
师:不错,谁能用更简练的语言再来总结一下?
生2:小船摆渡奇数次后,船在北岸,小船摆渡偶数次后,船在南岸。
师:真简练,棒极了!(板书)
三、巩固活动与练习
师:我们还有很多这样含有奇偶性的例子。你看老师手中的杯子,翻动1次杯口朝下,翻动2次杯口朝上,[教师实物演示]那么10次后,杯口朝哪?翻动19次后杯口朝哪?为什么?(完成课本内翻杯子的问题)生解决问题
师:你身边什么遇到过这样的问题吗?说一说!生同桌或小组说!如开关、打乒乓球„„ {活动二} 师:在我们的加减运算中也含有奇偶性。
1、请同学们看看这个圆里的数字有什么特征?
课件出示:含有12、18、20、6、34、80、52、16的圆形
2、请同学们从圆中任选两个数相加减,看看它的结果会是怎样? 板书:偶数±偶数=偶数
3、偶数有这样的规律,奇数是不是也有这样的规律呢?请同学们自己任选两个奇数相加减。板书:奇数±奇数=偶数
4、说说这个正方形中数字的特点?[出示含有奇数的正方形] 请大家分别从圆和正方形中各选一个数相加减,你能发现什么规律吗?
5、你知道为什么有这样的规律吗?
[不知道怎么解释这个原因!对学生是否太难]
6、你能不计算就判断出它们的结果是奇数还是偶数吗? 课件出示:10389+2004 11387+131 268+1024
三、总结
板书:奇数 ±偶数=奇数
偶数-奇数=奇数
远程系列
《数的奇偶性》教后反思
达家沟中心小学
王晓红
在活动中探索
——《数的奇偶性》课后反思
“数的奇偶性”是五年级上册第一单元的教学内容,学生已经学过了质数、合数等知识,也认识了奇数、偶数概念以及特征,本节的教学工作在此基础上开展,数的奇偶性的变化规律对于五年级的学生而言不难,本节课主要目标是学生对规律的探索和发现过程,在教学中积极渗透解决问题的方法,这节课围绕以下3个活动开展:
活动1:此环节的目的是告知学生生活中有许多地方应用到数的奇偶性,并引导学生从自身的生活经验出发,结合生活情境,发现奇偶性规律,进而解决生活中的简单问题。
对于活动1的选择上,我想使学习内容更接近学生的生活,就将教材提供的小船往返于南北岸的学习素材,用帮助小明解决开关问题情境替换,教材的例子用作学生练习,开关问题学生比较熟悉,便于学生探索规律。
这个情境是帮助小明解决来电后,灯是否是亮着的?由于次数是7次,比较少,学生用文字列举或者是用画图的方法很快判断答案,然后我让学生同桌交流总结规律,同学们发现开关开奇数次时,开关是开着的,偶数次时是关着的,接着我又问,拉开关47次和108次时,学生很快回答出答案,这时候我提醒大家,不要一直开关,这样既浪费又危险!而后我进行总结:变化奇数次时,状态和初始状态相反,变化偶数次时,状态和初始状态相同。并针对例子进行解释了什么是最初状态。
学生通过自主探索,能发现规律,但是能否推广到其他例子中,需要练习,让学生在解决问题的过程中形成经验,为此,我设计了第2个活动。
活动2:通过生活化的活动,学生能明白生活中有许多问题都可以运用数的奇偶性。
这个活动让学生通过翻杯子游戏,来感受数的奇偶性,这个活动学生很熟悉,很快能发现规律,这个环节设计学生活动太多,有点太低估学生的能力。
为调动学生的兴趣,我设计了“抽奖游戏”,就是本节课的活动3。
活动3:设计本环节的目的是用符合生活实际的例子,让学生发现规律。
这一环节,我创设“抽奖游戏”,学生在参与游戏的过程中发现了游戏的“欺骗性”,老师的规则根本不可能得奖,老师的规则是从2个盒子任意1个盒子里抽2张,数字之和若是奇数就转转盘拿大奖,可是他们发现得出来的数都是偶数,这就达到了我设计的目的,让学生主动去探究原因、验证规律。最后老师引导学生怎样改变规则,能有机会抽奖呢?学生纷纷说从2个不同的盒子里各取出1张卡片,它们的和就是奇数,随后老师找学生进行验证,结果都是奇数。通过反复的推理、验证,一起总结出规律:“奇数+偶数=奇数,奇数+奇数=偶数,偶数+偶数=偶数。”
最后,进行了一些总结,由于前面第2个活动涉及时间太长,后面总结和练习的时间就相应的短了,以后教学中一定注意!我发现学生对生活中运用到奇偶性的例子很感兴趣,就让学生回家后收集生活中运用奇偶性的例子,来学校和大家共享!这样在学生欢呼声中就结束了我本堂课的教学工作!
远程系列
《旅游费用》活动课设计
达家沟中心小学
王晓红
知识目标:会利用已有的知识,依据实际情况给出较经济的方案,培养学生的数学应用意识。
能力目标:提高学生分析问题和解决问题的能力,感受数学与生活的联系。
情感目标:运用数学本身的魅力感染学生,培养学生良好的学习习惯和合作意识能依据实际情况给出较经济的方案,培养学生的数学应用意识。
教学过程:
师:同学们,你们去北京旅游吗?有谁知道北京都有哪些旅游景点呢?
师:旅游中最需要准备的是什么?(钱)
师:通常我们把旅游用的钱统称为旅游费用。(板书:旅游费用)
师:旅游费用的多少是因人而异的,即使同一个景点花费也会不同。聪明的人往往会利用智慧节省很多钱。这节课我们就一起来探究有关旅游中的一些数学问题吧。
二、研究探讨:
(一)单选方案问题探讨:
1、解决淘气一家的费用:4个大人,1个小孩
师:淘气一家人听说我们泉州有这么多好玩的地方,也想到这边来,来个“泉州一日游”。出发之前,旅行社为他们推出这
样的两种优惠方案:(出示)
A: 大人每位160元
B: 团体5人以上(含5人)
小孩每位40元 每位100元
师:从旅行社推出的这两种优惠方案中,你得到了哪些数学信息?“团体5人以上,每位100元”是什么意思?
师:淘气一家人有4个大人,1个小孩(出示卡片),究竟选哪种方案比较省钱呢?
(1)小组交流。
(2)学生把想法写在练习本上,教师巡视。
(3)指名学生板演、汇报。(师把淘气一家人数卡片移到B方案下)
(4)小结思考过程。(板书:计算 比较 选择)
2、解决淘气三个老师的各家费用。
出示卡片: 李老师家: 2个大人 4个小孩
王老师家: 3个大人 2个小孩
张老师家: 1个大人 6个小孩
这三个老师又该选择哪种方案比较省钱呢?来帮帮他们吧。
(1)小组分工合作,一人选择一个老师家,自己完成任务。
(2)学生汇报。(把各家人数卡片移到相应方案下面)
3、观察各家的人数与相应的方案,你们发现了什么秘密?
(随学生汇报板书:小孩多 大人多)
(二)组合方案问题探讨
1、那如果去6个大人3个孩子,又该怎样选择最划算呢?
2、如果去4个大人7个孩子,怎样选择最省钱呢?
(学生小组交流、计算、汇报后,把人数卡片移到A和B方案之间)
师:看来我们同学都很有经济头脑,不仅掌握了基本方法,还能做到具体问题具体分析,灵活选择各种方案。
三、全课总结:
说一说学了这一课,你有什么收获?
四、布置作业:
1、完成书本练一练第2题。
2、回家向家长讲一讲我们今天探讨的问题,让家长了解我们的理财本领,并允许我们参加家庭理财活动。