“《数学周报》杯”2019年全国初中数学竞赛试题
一、选择题(共5小题,每小题7分,共35分.其中有且只有一个选项是正确的.请将正确选项的代号填入题后的括号里,不填、多填或错填都得0分)
1.若,则的值为().
(A)
(B)
(C)
(D)
解:
由题设得.
2.若实数a,b满足,则a的取值范围是
().
(A)a≤
(B)a≥4
(C)a≤或
a≥4
(D)≤a≤4
解.C
因为b是实数,所以关于b的一元二次方程的判别式
≥0,解得a≤或
a≥4.
3.如图,在四边形ABCD中,∠B=135°,∠C=120°,AB=,BC=,CD=,则AD边的长为().
(A)
(B)
(C)
(D)
(第3题)
解:D
如图,过点A,D分别作AE,DF垂直于直线BC,垂足分别为E,F.
由已知可得
(第3题)
BE=AE=,CF=,DF=2,于是
EF=4+.
过点A作AG⊥DF,垂足为G.在Rt△ADG中,根据勾股定理得
AD=.
4.在一列数……中,已知,且当k≥2时,(取整符号表示不超过实数的最大整数,例如,),则等于().
(A)
(B)
(C)
(D)
解:B
由和可得,,,,……
因为2010=4×502+2,所以=2.
5.如图,在平面直角坐标系xOy中,等腰梯形ABCD的顶点坐标分别为A(1,1),B(2,-1),C(-2,-1),D(-1,1).y轴上一点P(0,2)绕点A旋转180°得点P1,点P1绕点B旋转180°得点P2,点P2绕点C旋转180°得点P3,点P3绕点D旋转180°得点P4,……,重复操作依次得到点P1,P2,…,则点P2010的坐标是().
(A)(2010,2)
(B)(2010,)
(C)(2012,)
(D)(0,2)
解:B由已知可以得到,点,的坐标分别为(2,0),(2,).
(第5题)
记,其中.
根据对称关系,依次可以求得:,,.
令,同样可以求得,点的坐标为(),即(),由于2010=4502+2,所以点的坐标为(2010,).
二、填空题
6.已知a=-1,则2a3+7a2-2a-12的值等于
.
解:0
由已知得
(a+1)2=5,所以a2+2a=4,于是
2a3+7a2-2a-12=2a3+4a2+3a2-2a-12=3a2+6a-12=0.
7.一辆客车、一辆货车和一辆小轿车在一条笔直的公路上朝同一方向匀速行驶.在某一时刻,客车在前,小轿车在后,货车在客车与小轿车的正中间.过了10分钟,小轿车追上了货车;又过了5分钟,小轿车追上了客车;再过t分钟,货车追上了客车,则t=
.
解:15
设在某一时刻,货车与客车、小轿车的距离均为S千米,小轿车、货车、客车的速度分别为
(千米/分),并设货车经x分钟追上客车,由题意得,①,②
.
③
由①②,得,所以,x=30.
故
(分).
8.如图,在平面直角坐标系xOy中,多边形OABCDE的顶点坐标分别是O(0,0),A(0,6),B(4,6),C(4,4),D(6,4),E(6,0).若直线l经过点M(2,3),且将多边形OABCDE分割成面积相等的两部分,则直线l的函数表达式是
.
(第8题
(第8题)
解:
如图,延长BC交x轴于点F;连接OB,AFCE,DF,且相交于点N.
由已知得点M(2,3)是OB,AF的中点,即点M为矩形ABFO的中心,所以直线把矩形ABFO分成面积相等的两部分.又因为点N(5,2)是矩形CDEF的中心,所以,过点N(5,2)的直线把矩形CDEF分成面积相等的两部分.
于是,直线即为所求的直线.
设直线的函数表达式为,则
解得,故所求直线的函数表达式为.
9.如图,射线AM,BN都垂直于线段AB,点E为AM上一点,过点A作BE的垂线AC分别交BE,BN于点F,C,过点C作AM的垂线CD,垂足为D.若CD=CF,则
.
(第9题)
解:
见题图,设.
因为Rt△AFB∽Rt△ABC,所以
.
又因为
FC=DC=AB,所以
即,解得,或(舍去).
又Rt△∽Rt△,所以,即=.
10.对于i=2,3,…,k,正整数n除以i所得的余数为i-1.若的最小值满足,则正整数的最小值为
.
解:
因为为的倍数,所以的最小值满足,其中表示的最小公倍数.
由于,因此满足的正整数的最小值为.
三、解答题(共4题,每题20分,共80分)
11.如图,△ABC为等腰三角形,AP是底边BC上的高,点D是线段PC上的一点,BE和CF分别是△ABD和△ACD的外接圆直径,连接EF.求证:
(第12A题)
.
(第12B题)
(第11题)
(第12B题)
证明:如图,连接ED,FD.因为BE和CF都是直径,所以
ED⊥BC,FD⊥BC,因此D,E,F三点共线.…………(5分)
连接AE,AF,则,所以,△ABC∽△AEF.…………(10分)
(第11题)
作AH⊥EF,垂足为H,则AH=PD.由△ABC∽△AEF可得,从而,所以
.…………(20分)
12.如图,抛物线(a0)与双曲线相交于点A,B.已知点A的坐标为(1,4),点B在第三象限内,且△AOB的面积为3(O为坐标原点).(1)求实数a,b,k的值;
(2)过抛物线上点A作直线AC∥x轴,交抛物线于另一点C,求
所有满足△EOC∽△AOB的点E的坐标.解:(1)因为点A(1,4)在双曲线上,所以k=4.故双曲线的函数表达式为.(第12题)
设点B(t,),AB所在直线的函数表达式为,则有
解得,.于是,直线AB与y轴的交点坐标为,故,整理得,解得,或t=(舍去).所以点B的坐标为(,).
因为点A,B都在抛物线(a0)上,所以
解得
…(10分)
(2)如图,因为AC∥x轴,所以C(,4),于是CO=4.又BO=2,所以.设抛物线(a0)与x轴负半轴相交于点D,则点D的坐标为(,0).(第12题)
因为∠COD=∠BOD=,所以∠COB=.(i)将△绕点O顺时针旋转,得到△.这时,点(,2)是CO的中点,点的坐标为(4,).延长到点,使得=,这时点(8,)是符合条件的点.(ii)作△关于x轴的对称图形△,得到点(1,);延长到点,使得=,这时点E2(2,)是符合条件的点.
所以,点的坐标是(8,),或(2,).…………(20分)
13.求满足的所有素数p和正整数m.解:由题设得,所以,由于p是素数,故,或.……(5分)
(1)若,令,k是正整数,于是,故,从而.所以解得
…………(10分)
(2)若,令,k是正整数.当时,有,故,从而,或2.由于是奇数,所以,从而.于是
这不可能.当时,;当,无正整数解;当时,无正整数解.综上所述,所求素数p=5,正整数m=9.…………(20分)
14.从1,2,…,2010这2010个正整数中,最多可以取出多少个数,使得所取出的数中任意三个数之和都能被33整除?
解:首先,如下61个数:11,,…,(即1991)满足题设条件.(5分)
另一方面,设是从1,2,…,2010中取出的满足题设条件的数,对于这n个数中的任意4个数,因为,所以
.因此,所取的数中任意两数之差都是33的倍数.…………(10分)
设,i=1,2,3,…,n.由,得,所以,即≥11.…………(15分)
≤,故≤60.所以,n≤61.综上所述,n的最大值为61.…………(20分)