全国1995年初中数学联合竞赛试题(含解析)

时间:2019-05-13 07:13:07下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《全国1995年初中数学联合竞赛试题(含解析)》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《全国1995年初中数学联合竞赛试题(含解析)》。

第一篇:全国1995年初中数学联合竞赛试题(含解析)

全国1995年初中数学联合竞赛试题(含解析)

一、选择题

5544331.已知a=3,b=4,c=5,则有()

A.a<b<c B.c<b<a.C.c<a<b D.a<c<b

xyyz632.方程组的正整数解的组数是()

xzyz23A.1 B.2.C.3 D.4

23.如果方程(x-1)(x-2x-m)=0的三根可以作为一个三角形的三边之长,那么实数m的取值范围是()A.0m1 B.m333 C.m1 D.m1 444

4.如果边长顺次为25、39、52与60的四边形内接于一圆,那么此圆的周长为()A.62π B.63π C.64π D.65π

5.设AB是⊙O的一条弦,CD是⊙O的直径,且与弦AB相交,记M=|S△CAB-S△DAB|,N=2S△OAB,则()

A.M>N B.M=N C.M<N D.M、N的大小关系不确定

6.设实数a、b满足不等式||a|-(a+b)|<|a-|a+b||,则()A.a>0且b>0 B.a<0且b>0 C.a>0且b<0 D.a<0且b<0

二、填空题

22227.在1,2,3…,95这95个数中,十位数字为奇数的数共有______个.a318.已知a是方程x+x-=0的根,则5的值为___________.4aa4a3a2219.设x为正实数,则函数y=x-x+

21的最小值是__________.x210.以线段AB为直径作一个半圆,圆心为O,C是半圆周上的点,且OC=AC·BC,则∠CAB=______.

第二试

一、已知∠ACE=∠CDE=90°,点B在CE上,CA=CB=CD,经A、C、D三点的圆交AB于F(如图).求证:F为△CDE的内心.二、在坐标平面上,纵坐标与横坐标都是整数的点称为整点,试在二次函数y的图象上找出满足yx的所有整点(x,y)并说明理由.三、试证:每个大于6的自然数n,都可以表示为两个大于1且互质的自然数之和.x2x109510

一、选择题

5544331.已知a=3,b=4,c=5,则有()

A.a<b<c B.c<b<a.C.c<a<b D.a<c<b

2.方程组A.1 xyyz63的正整数解的组数是()

xzyz23 B.2.C.3 D.4

3.如果方程(x-1)(x-2x-m)=0的三根可以作为一个三角形的三边之长,那么实数m的取值范围是()

A.0m1 B.m

2333 C.m1 D.m1 444

4.如果边长顺次为25、39、52与60的四边形内接于一圆,那么此圆的周长为()

A.62π B.63π C.64π D.65π

5.设AB是⊙O的一条弦,CD是⊙O的直径,且与弦AB相交,记M=|S△CAB-S△DAB|,N=2S△OAB,则()A.M>N B.M=N C.M<N D.M、N的大小关系不确定

6.设实数a、b满足不等式||a|-(a+b)|<|a-|a+b||,则()A.a>0且b>0 B.a<0且b>0 C.a>0且b<0 D.a<0且b<0

二、填空题

22227.在1,2,3…,95这95个数中,十位数字为奇数的数共有______个.a318.已知a是方程x+x-=0的根,则5的值为___________.4324aaaa21

9.设x为正实数,则函数y=x-x+

21的最小值是__________.x2【解析】:这个题目是将二次函数y=x-x与反比例函数

10.以线段AB为直径作一个半圆,圆心为O,C是半圆周上的点,且OC=AC·BC,则∠CAB=______.

2第二试

一、已知∠ACE=∠CDE=90°,点B在CE上,CA=CB=CD,经A、C、D三点的圆交AB于F(如图).求证:F为△CDE的内心.,试在二次函数y的图

象上找出满足yx的所有整点(x,y)并说明理由.x2x101095

6的自然数n,都可以表示为两个大于1且互质的自然数之和.

第二篇:2007-2012年全国初中数学联合竞赛分类解析---几何填空题

2007-2012年全国初中数学联合竞赛分类解析汇编---几何填空题

1.已知直角梯形ABCD的四条边长分别为AB2,BCCD10,AD6,过B、D两点作圆,与BA的延长线交于点E,与CB的延长线交于点F,则BEBF的值为____4_____.(2007)

解延长CD交⊙O于点G,设BE,DG的中点分别为点M,N,则

易知AMDN.因为BCCD10,由割线定理,易证BFDG,所以BEBFBEDG2(BMDN)2(BMAM)2AB4.F M N D

C

2.如图,正方形ABCD的边长为1,M,N为BD

所在直线上的两点,且AMMAN135,则四边形AMCN的面积为

5(2008)

解设正方形ABCD的中心为O,连AO,则AO

BD,AOOB, MO又ABMNDA135,,∴MBMOOB.245NADMANDABMAB13590MAB

MABAMB,所以△ADN∽△MBA,故ADDNAD,从而DNBA1MBBAMB2根据对称性可知,四边形AMCN的面积

115S2S△MAN2MNAO2.222

3. 设D是△ABC的边AB上的一点,作DE//BC交AC于点E,作DF//AC交BC于点F,已知△ADE、△DBF的面积分别为m和n,则四边形DECF的面积为______.(2009)

【答】

设△ABC的面积为S,则因为△ADE∽△ABC,所

AD

ABBD又因为△BDF∽△BAC,所以

AB两式相加

F

C

ADBD1,即ABAB1,解

得S2.所以四边形DECF的面积为2mn

4.在等腰直角△ABC中,AB=BC=5,P是△ABC内一点,且PA

PC=5,则PB=______.(2009)【答】

EmP,F作PE⊥AB,交AB于点E,作PF⊥BC,交BC于点F,设P

△PCF中利用勾股定理,得

n,分别在△PAE、m2(5n)25①(5m)n25②

②-①,得10(nm)20,所以mn2,代入①中,得n7n120,解得n13,n24.F

C

当n3时,mn21,在Rt△PAE

中,由勾股定理可得PB当n4时,mn22,此时PEAE,所以点P在△ABC的外面,不符合题意,舍去.因此PB

5.在△ABC中,已知B2A,BC2,AB22,则A.(2011)【答】 15。

延长AB到D,使BD=BC,连线段CD,则DBCD

ABCA,所以CA=2

CD。

作CEAB于点E,则E为AD的中点,故

AEDEAD(ABBD)(22)2222,EB

D

BEABAE(2(2.在Rt△BCE

中,cosEBC

EB,所以EBC30,故 

BCA

ABC15. 2

6.如图,已知AB是⊙O的直径,弦CD与AB交于点E,过点A作圆的切线与CD的延长线交于点F,如果DE=.(2011)

【答】 24.设CE4x,AEy,则DFDE3x,EF6x.

连AD,BC.因为AB为⊙O的直径,AF为⊙O的切线,所以

A

B

CE,AC8,D为EF的中点,则AB4

EAF90,ACDDAF.

又因为D为Rt△AEF的斜边EF的中点,∴ DADEDF,∴ DAFAFD,∴ ACDAFD,∴ AFAC8. 在Rt△AEF中,由勾股定理得EF

F

AE2AF2,即 36x2y2320.

设BEz,由相交弦定理得 CEDEAEBE,即yz4x3x12x,∴ y3203yz① 又∵ ADDE,∴ DAEAED.

又DAEBCE,AEDBEC,∴ BCEBEC,从而BCBEz.

在Rt△ACB中,由勾股定理得 ABACBC,即(yz)320z,∴ y2yz320.② 联立①②,解得y8,z16.

所以ABAEBE24.

7.在△ABC中,已知AB=AC,∠A=40°,P为AB上一点,∠ACP=20°,则=.(2012)

【答】

设D为BC的中点,在△ABC外作∠CAE=20°,则∠BAE=60°.作CE⊥AE,PF⊥AE,则易证△ACE≌△ACD,所以CE=CD=

BCAP

BC.2

又PF=PAsin∠BAE=PAsin60

°=

1AP,PF=CE,所以AP=BC,222

因此

BC

AP

E

B

第三篇:全国高中数学联合竞赛1996年试题

一九九六年全国高中数学联合竞赛

一、选择题(本题满分36分,每小题6分)

1.把圆x2+(y –1)2 =1与椭圆9x2+(y + 1)2 = 9的公共点, 用线段连接起来的图形是_________.(A)线段(B)不等边三角形(C)等边三角形(D)四边形

12.等比数列{an}的首项a1=1536, 公比是q= –.用Tn表示它的前n项之积, 则Tn(nN)最大的是.2

____________

(A)T9(B)T11(C)T12(D)T1

33.存在整数npnn是整数的质数p________

(A)不存在(B)只有一个(C)多于一个,但为有限个(D)有无穷多个

14设x(– , 0),以下三个数: 1=cos(sinx), 2=sin(cosx), 3=cos(x+1)的大小关系是2

__________.(A)3 < 2 < 1(B)1 < 3 < 2(C)3 < 1 < 2(D)2 < 3 < 1

15.如果在区间[1, 2 ]上, 函数f(x)= x2 + px + q与)2在同一点取相同的最小值, x

那么f(x)在该区间上的最大值是__________.1151(A)424(B)424(C)124(D)以上答案都不对 4226.高为8的圆台内有一个半径为2的球O1, 球心O1在圆台的轴上.球O1与圆台上底面、侧面都相切.圆台内可再放入一个半径为3的球O2, 使得球O2与球O1、圆台的下底面及侧面都只有一个公共点, 除球O2, 圆台内最多还能放入半径为3的球的个数是_____________.(A)1(B)2(C)3(D)

4二、填空题(本题满分54分,每小题9分)

11.集合{x| –1 log(1)10 <– , xN}的真子集的个数是_____________________ 2x

2.复平面上非零复数z1,z2在以i为圆心1为半径的圆上z1,z2的实部

1为零,z1的辐角主值为 , 则z 2 = ____________.6

3.曲线C的极坐标方程是 = 1 + cos, 点A的极坐标是(2, 0).曲线C在它所在的平面内

绕A 旋转一周, 则它扫过的图形的面积是______________.4.已知将给定的两个全等的三棱锥的底面粘在一起, 恰得到一个所有二面角都相等的六

面体, 并且该六面体的最短棱的长为2, 则最远的两个基本点顶点的距离是__________.5.从给定的六种不同颜色中选用若干种颜色.将一个正方体的六个面染色, 每面恰染一种

颜色, 每两个具有公共棱的面染成不同颜色.则不同的染色方案共有_____________种.(注:如果我们对两个相同的正方体染色后,可以通过适当的翻转,使得两个正方体的上、下、左、右、前、后六个对应面的染色都相同,那么,我们就说这两个正方体的染色方案相同).6.在直角坐标平面上,以(199,0)为圆心,以199为半径的圆周上,整点(即横、纵坐标皆为整数的点)的个数为_______________.

第四篇:1996年全国初中数学竞赛试题及答案

1996年全国初中数学联赛试题

A.M>N

B.M=N

C.M<N

D.不确定

A.有一组 B.有二组

C.多于二组

D.不存在

3.如图,A是半径为1的圆O外的一点,OA=2,AB是圆O的切线,B是切点,弦BC∥OA,连结AC,则阴影部分的面积等于 [

]

4.设x1、x2是二次方程x2+x3=0的两个根,那么x134x22+19的值等于 [

]

A.

4B.8

C.6

D.0

5.如果一个三角形的面积和周长都被一直线所平分,那么该直线必通过这个三角形的 [

]

A.内心 B.外心 C.重心 D.垂心

6.如果20个点将某圆周20等分,那么顶点只能在这20个点中选取的正多边形的个数有 [

]

A.4个 B.8个

C.12个

D.24个

2.如图,在△ABC中,AB=AC,∠ABN=∠MBC,BM=NM,BN=a,则点N到边BC的距离等于______.

3.设1995x3=1996y3=1997z3,xyz>0,且

4.如图,将边长为1的正方形ABCD绕A点按逆时针方向旋转60°至AB'C'D'的位置,则这两个正方形重叠部分的面积是______.

5.某校在向“希望工程”捐款活动中,甲班的m个男生和11个女生的捐款总数与乙班的9个男人和n个女生的捐款总数相等,都是(m·n+9m+11n+145)元,已知每人的捐款数相同,且都是整数元,求每人的捐款数.

6.设凸四边形ABCD的对角线AC、BD的交点为M,过点M作AD的平行线分别交AB、CD于点E、F,交BC的延长线于点O,P是以O为圆心OM为半径的圆上一点(位置如图所示),求证:∠OPF=∠OEP.

三、(本题满分25分)

已知a、b、c都是正整数,且抛物线y=ax2+bx+c与x轴有两个不同的交点A、B,若A、B到原点的距离都小于1,求a+b+c的最小值.

1996年全国初中数学联赛参考答案

第一试

一、选择题 1.B 2.A 3.B 4.D 5.A 6.C

二、填空题

一、据题意m+11=n+9,且整除mn+9m+11n+145mn+9m+11n+145=(m+11)(n+9)+46,故m+11,n+9都整除46,由此得

综上可知,每人捐款数为25元或47元.

二、作AD、BO的延长线相交于G,∵OE

而,三、据题意,方程ax2+bx+c=0有两个相异根,都在(1,0)中,故

经检验,符合题意,∴a+b+c=11最小.

第五篇:19届全国初中数学竞赛试题及答案

“《数学周报》杯”2019年全国初中数学竞赛试题

一、选择题(共5小题,每小题7分,共35分.其中有且只有一个选项是正确的.请将正确选项的代号填入题后的括号里,不填、多填或错填都得0分)

1.若,则的值为().

(A)

(B)

(C)

(D)

解:

由题设得.

2.若实数a,b满足,则a的取值范围是

().

(A)a≤

(B)a≥4

(C)a≤或

a≥4

(D)≤a≤4

解.C

因为b是实数,所以关于b的一元二次方程的判别式

≥0,解得a≤或

a≥4.

3.如图,在四边形ABCD中,∠B=135°,∠C=120°,AB=,BC=,CD=,则AD边的长为().

(A)

(B)

(C)

(D)

(第3题)

解:D

如图,过点A,D分别作AE,DF垂直于直线BC,垂足分别为E,F.

由已知可得

(第3题)

BE=AE=,CF=,DF=2,于是

EF=4+.

过点A作AG⊥DF,垂足为G.在Rt△ADG中,根据勾股定理得

AD=.

4.在一列数……中,已知,且当k≥2时,(取整符号表示不超过实数的最大整数,例如,),则等于().

(A)

(B)

(C)

(D)

解:B

由和可得,,,,……

因为2010=4×502+2,所以=2.

5.如图,在平面直角坐标系xOy中,等腰梯形ABCD的顶点坐标分别为A(1,1),B(2,-1),C(-2,-1),D(-1,1).y轴上一点P(0,2)绕点A旋转180°得点P1,点P1绕点B旋转180°得点P2,点P2绕点C旋转180°得点P3,点P3绕点D旋转180°得点P4,……,重复操作依次得到点P1,P2,…,则点P2010的坐标是().

(A)(2010,2)

(B)(2010,)

(C)(2012,)

(D)(0,2)

解:B由已知可以得到,点,的坐标分别为(2,0),(2,).

(第5题)

记,其中.

根据对称关系,依次可以求得:,,.

令,同样可以求得,点的坐标为(),即(),由于2010=4502+2,所以点的坐标为(2010,).

二、填空题

6.已知a=-1,则2a3+7a2-2a-12的值等于

解:0

由已知得

(a+1)2=5,所以a2+2a=4,于是

2a3+7a2-2a-12=2a3+4a2+3a2-2a-12=3a2+6a-12=0.

7.一辆客车、一辆货车和一辆小轿车在一条笔直的公路上朝同一方向匀速行驶.在某一时刻,客车在前,小轿车在后,货车在客车与小轿车的正中间.过了10分钟,小轿车追上了货车;又过了5分钟,小轿车追上了客车;再过t分钟,货车追上了客车,则t=

解:15

设在某一时刻,货车与客车、小轿车的距离均为S千米,小轿车、货车、客车的速度分别为

(千米/分),并设货车经x分钟追上客车,由题意得,①,②

由①②,得,所以,x=30.

(分).

8.如图,在平面直角坐标系xOy中,多边形OABCDE的顶点坐标分别是O(0,0),A(0,6),B(4,6),C(4,4),D(6,4),E(6,0).若直线l经过点M(2,3),且将多边形OABCDE分割成面积相等的两部分,则直线l的函数表达式是

(第8题

(第8题)

解:

如图,延长BC交x轴于点F;连接OB,AFCE,DF,且相交于点N.

由已知得点M(2,3)是OB,AF的中点,即点M为矩形ABFO的中心,所以直线把矩形ABFO分成面积相等的两部分.又因为点N(5,2)是矩形CDEF的中心,所以,过点N(5,2)的直线把矩形CDEF分成面积相等的两部分.

于是,直线即为所求的直线.

设直线的函数表达式为,则

解得,故所求直线的函数表达式为.

9.如图,射线AM,BN都垂直于线段AB,点E为AM上一点,过点A作BE的垂线AC分别交BE,BN于点F,C,过点C作AM的垂线CD,垂足为D.若CD=CF,则

(第9题)

解:

见题图,设.

因为Rt△AFB∽Rt△ABC,所以

又因为

FC=DC=AB,所以

即,解得,或(舍去).

又Rt△∽Rt△,所以,即=.

10.对于i=2,3,…,k,正整数n除以i所得的余数为i-1.若的最小值满足,则正整数的最小值为

解:

因为为的倍数,所以的最小值满足,其中表示的最小公倍数.

由于,因此满足的正整数的最小值为.

三、解答题(共4题,每题20分,共80分)

11.如图,△ABC为等腰三角形,AP是底边BC上的高,点D是线段PC上的一点,BE和CF分别是△ABD和△ACD的外接圆直径,连接EF.求证:

(第12A题)

(第12B题)

(第11题)

(第12B题)

证明:如图,连接ED,FD.因为BE和CF都是直径,所以

ED⊥BC,FD⊥BC,因此D,E,F三点共线.…………(5分)

连接AE,AF,则,所以,△ABC∽△AEF.…………(10分)

(第11题)

作AH⊥EF,垂足为H,则AH=PD.由△ABC∽△AEF可得,从而,所以

.…………(20分)

12.如图,抛物线(a0)与双曲线相交于点A,B.已知点A的坐标为(1,4),点B在第三象限内,且△AOB的面积为3(O为坐标原点).(1)求实数a,b,k的值;

(2)过抛物线上点A作直线AC∥x轴,交抛物线于另一点C,求

所有满足△EOC∽△AOB的点E的坐标.解:(1)因为点A(1,4)在双曲线上,所以k=4.故双曲线的函数表达式为.(第12题)

设点B(t,),AB所在直线的函数表达式为,则有

解得,.于是,直线AB与y轴的交点坐标为,故,整理得,解得,或t=(舍去).所以点B的坐标为(,).

因为点A,B都在抛物线(a0)上,所以

解得

…(10分)

(2)如图,因为AC∥x轴,所以C(,4),于是CO=4.又BO=2,所以.设抛物线(a0)与x轴负半轴相交于点D,则点D的坐标为(,0).(第12题)

因为∠COD=∠BOD=,所以∠COB=.(i)将△绕点O顺时针旋转,得到△.这时,点(,2)是CO的中点,点的坐标为(4,).延长到点,使得=,这时点(8,)是符合条件的点.(ii)作△关于x轴的对称图形△,得到点(1,);延长到点,使得=,这时点E2(2,)是符合条件的点.

所以,点的坐标是(8,),或(2,).…………(20分)

13.求满足的所有素数p和正整数m.解:由题设得,所以,由于p是素数,故,或.……(5分)

(1)若,令,k是正整数,于是,故,从而.所以解得

…………(10分)

(2)若,令,k是正整数.当时,有,故,从而,或2.由于是奇数,所以,从而.于是

这不可能.当时,;当,无正整数解;当时,无正整数解.综上所述,所求素数p=5,正整数m=9.…………(20分)

14.从1,2,…,2010这2010个正整数中,最多可以取出多少个数,使得所取出的数中任意三个数之和都能被33整除?

解:首先,如下61个数:11,,…,(即1991)满足题设条件.(5分)

另一方面,设是从1,2,…,2010中取出的满足题设条件的数,对于这n个数中的任意4个数,因为,所以

.因此,所取的数中任意两数之差都是33的倍数.…………(10分)

设,i=1,2,3,…,n.由,得,所以,即≥11.…………(15分)

≤,故≤60.所以,n≤61.综上所述,n的最大值为61.…………(20分)

下载全国1995年初中数学联合竞赛试题(含解析)word格式文档
下载全国1995年初中数学联合竞赛试题(含解析).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    1999年全国初中数学竞赛试题及答案(推荐五篇)

    1999年全国初中数学竞赛试卷 一、选择题(本题共6小题,每小题5分,满分30分.每小题均给出了代号为A,B, C,D的四个结论,其中只有一个是正确的.请将正确答案的代号填在题后的括号里)1.一个......

    初二全国数学竞赛试题

    备考期间,考生可以适当放松,同时也要静下心来做好接下来的复习。下面小编为你整理了初二全国数学竞赛试题,希望能帮到你!初二全国数学竞赛试题1初二全国数学竞赛试题2初二全国数......

    全国初中数学竞赛试题及答案(1995年)(共五篇)

    中国数学教育网 http://www.xiexiebang.cominfo@mathedu.cn 1995年全国初中数学联赛试题 第一试 一、选择题 1.已知a=355,b=444,c=533,则有[] A.a<b<c B.c<b<a C.c<a<b D.a<c<b A.1 B.2 C.3 D.4......

    2001年TI杯全国初中数学竞赛试题(5篇可选)

    2001年TI杯全国初中数学竞赛试题 一、 选择题(30分) 2n42(2n)1. 化简,得。 n32(A)2n1177(B) 2n1 (C) (D) 884abbcca,,。 222答案:C 2. 如果a,b,c是三个任意整数,那么(A)都不是整......

    2013上海市初中数学竞赛试题版

    2013上海市初中数学竞赛(新知杯) 一、填空题(每题10分) 1.已知a 2.已知l1//l2//l3//l4,m1//m2//m3//m4,SABCD100,SILKJ20,则SEFGH_______. 11,则a3ab3b________,b. 2727 3.已......

    初中数学趣味知识竞赛试题

    数学趣味知识竞赛 1、小林今年10岁,爸爸的年龄是他的3倍还多6岁。再过几年,爸爸的年龄正好是小林的3倍。( ) A 2年 B 3年 C 4年 D 5年 2、今天是星期二,问:再过36天是星期几? ( ) A.......

    2007年全国初中数学竞赛天津赛区初赛试题(含答案)

    天津中考网tj.zhongkao.com 天津中考网tj.zhongkao.com 天津中考网tj.zhongkao.com 天津中考网tj.zhongkao.com 天津中考网tj.zhongkao.com......

    2018年度全国初中应用物理竞赛试题及答案

    2018年全国初中应用物理竞赛试题及答案 注意事项: 1.请在密封线内填写所在地区、学校、姓名和考号。 2.用蓝色或黑色钢笔、圆珠笔书写。 3.本试卷共有六个大题,满分100分。 ―......