八年级下册数学第18章《平行四边形》(八)(含答案)

2021-05-14 15:20:15下载本文作者:会员上传
简介:写写帮文库小编为你整理了这篇《八年级下册数学第18章《平行四边形》(八)(含答案)》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《八年级下册数学第18章《平行四边形》(八)(含答案)》。

第18章

《平行四边形》单元测试

一.选择题(每题3分,共30分)

1.已知▱ABCD中,∠A+∠C=240°,则∠B的度数是()

A.100°

B.160°

C.80°

D.60°

2.中,已知,则等于()

A.140°

B.40°

C.80°

D.50°

3.如图,在平面直角坐标系中,四边形OABC是菱形,点C的坐标为(1,2),则菱形OABC的面积是()

A.

B.

C.2+1

D.2﹣1

4.如图,在平行四边形ABCD中,过对角线BD上一点P作EF∥AB,GH∥AD,与各边交点分别为点E,F,G,H,则图中面积相等的平行四边形的对数为()

A.3对

B.4对

C.5对

D.6对

5.如图,在矩形中,,则()

A.6

B.

C.5

D.

6.已知菱形的两条对角线长分别为和8cm和10cm,则菱形的面积为()

A.

B.40

C.

D.

7.如图,在中,,垂足为点,点是的中点,若,则的长为()

A.10

B.12

C.13

D.11

8.如图,已知矩形ABCD中,DE=AD,则S矩形ABCD=()S△EBC.

A.2

B.3

C.4

D.5

9.根据下列条件,能作出平行四边形的是()

A.两组对边长分别是3cm和7cm

B.相邻两边的边长分别是2cm和4cm,一条对角线长是7cm

C.一条对角线长为6cm,另一条对角线长为10cm,一条边长为8cm

D.一条边长为7cm,两条对角线长为6cm和8cm

10.矩形ABCD中,E在AD上,AE=ED,F在BC上,若EF把矩形ABCD的面积分为1:2,则BF:FC=()(BF<FC)

A.1:3

B.1:4

C.1:5

D.2:9

二.填空题(每题4分,共20分)

11.如图,在平行四边形中,,于,则

12.菱形中,、分别是、的中点,且,那么等于

13.如图,在正方形ABCD中,点E,N,P,G分别在边AB,BC,CD,DA上,点M,F,Q都在对角线BD上,且四边形MNPQ和AEFG均为正方形,则的值等于________.

14.如图,正方形中,是对角线的交点,过点作,分别交于,若,则

15.如图,l1∥l2,菱形ABCD的顶点A、B分别在直线l1、l2上,直线l1过CD的中点E,AB⊥l2,AB=4,则AE=

三.解答题(每题10分,共50分)

16.如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连结AG、CF.

(1)求证:①△ABG≌△AFG;

②BG=GC;

(2)求△FGC的面积.

17.如图所示,在正方形ABCD中,E是AB的中点,F是AD上的一点且AF=AD,求证:

①CE平分∠BCF;

②判断△CEF的形状;

③CF=AF+AB.

18.如图,在△ABC中,AB=AC,D为边BC上一点,以AB,BD为邻边作▱ABDE,连接AD,EC.

(1)求证:△ADC≌△ECD;

(2)若BD=CD,求证:四边形ADCE是矩形.

19.如图,在矩形ABCD中,过对角线AC的中点O作AC的垂线,分别交射线AD和CB于点E,F连接AF,CE.

(1)求证:OE=OF;

(2)求证:四边形AFCE是菱形.

20.如图,E、F是平行四边形的对角线所在直线上的两点,且,求证:四边形是平行四边形.

21.已知:正方形的对角线交于点,是线段上的一动点,过点作交,交于.

(1)若动点在线段上(不含端点),如图(1),求证:;

(2)若动点在线段的延长线上,如图(2),试判断的形状,并说明理由.

22.如图1,在平行四边形ABCD中,AE⊥BC于点E,E恰为BC的中点,tanB=2.

(1)求证:AD=AE;

(2)如图2,点P在线段BE上,作EF⊥DP于点F,连接AF,求证:;

(3)请你在图3中画图探究:当P为射线EC上任意一点(P不与点E重合)时,作EF垂直直线DP,垂足为点F,连接AF,线段DF、EF与AF之间有怎样的数量关系?直接写出你的结论.

23.在平行四边形ABCD中,点E、F分别为边BC、AD的中点,连接AE、CF.

(1)如图1,求证:四边形AECF是平行四边形;

(2)如图2,过点D作DG⊥AB,垂足为点G,若AG=AB,在不添加任何辅助线的情况下,请直接写出图2中所有与CF相等的线段.

参考答案

一.选择题

1.D

2.B

3.B

4.A.

5.A.

6.B.

7.A.

8.A.

9.A.10.C

二.填空题(共5小题)

11.【答案】

【解析】∵四边形是平行四边形

又∵

∴,∴

又∵,∴

∴.

12..【答案】

13.【答案】 【解析】设BD=3a,∠CDB=∠CBD=45°,且四边形PQMN为正方形,∴DQ=PQ=QM=NM=MB,∴正方形MNPQ的边长为a,正方形AEFG的对角线AF=BD=a,∵正方形对角线互相垂直,∴S正方形AEFG=×a×a=a2,∴==.14.【答案】

15.2.

三.解答题(共5小题)

16.解:(1)证明:①在正方形ABCD中,AD=AB,∠D=∠B=∠C=90°,又∵△ADE沿AE对折至△AFE,延长EF交边BC于点G

∴∠AFG=∠AFE=∠D=90°,AF=AD,即有∠B=∠AFG=90°,AB=AF,AG=AG,在直角△ABG和直角△AFG中,∴△ABG≌△AFG;

②∵AB=6,点E在边CD上,且CD=3DE,∴DE=FE=2,CE=4,不妨设BG=FG=x,(x>0),则CG=6﹣x,EG=2+x,在Rt△CEG中,(2+x)2=42+(6﹣x)2

解得x=3,于是BG=GC=3,(2)∵=,∴=,∴S△FGC=S△EGC=××4×3=.

17.①证明:∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠A=∠B=∠C=∠D=90°,∵E是AB的中点,AF=AD,∴AE=BE=2AF,AB=BC=CD=AD=4AF,设AF=a,则FD=3a,DC=BC=4a,AE=EB=2a,由勾股定理得:EF==a,CE==2a,CF==5a,∵,,∴,∴△CEF∽△CBE,∴∠ECF=∠BCE,∴CE平分∠BCF;

②解:△CEF是直角三角形;理由如下:

∵EF2+CE2=25a2,CF2=25a2,∴EF2+CE2=CF2,∴△CEF是直角三角形;

③证明:作EM⊥CF于M,如图所示:

则BE=ME,∠EMC=90°,在Rt△BCE和Rt△MCE中,∴Rt△BCE≌Rt△MCE(HL),∴BC=MC,同理:Rt△AEF≌△MEF,∴AF=FM,∵CF=FM+MC,∴CF=AF+AB.

18.证明:(1)∵四边形ABDE是平行四边形(已知),∴AB∥DE,AB=DE(平行四边形的对边平行且相等);

∴∠B=∠EDC(两直线平行,同位角相等);

又∵AB=AC(已知),∴AC=DE(等量代换),∠B=∠ACB(等边对等角),∴∠EDC=∠ACD(等量代换);

∵在△ADC和△ECD中,∴△ADC≌△ECD(SAS);

(2)∵四边形ABDE是平行四边形(已知),∴BD∥AE,BD=AE(平行四边形的对边平行且相等),∴AE∥CD;

又∵BD=CD,∴AE=CD(等量代换),∴四边形ADCE是平行四边形(对边平行且相等的四边形是平行四边形);

在△ABC中,AB=AC,BD=CD,∴AD⊥BC(等腰三角形的“三合一”性质),∴∠ADC=90°,∴▱ADCE是矩形.

19.解:(1)∵四边形ABCD是矩形,∴,∴∠EAO=∠FCO,∵AC的中点是O,∴OA=OC,在和中,,∴OE=OF;

(2)∵OE=OF,AO=CO,∴四边形AFCE是平行四边形,∵EF⊥AC,∴四边形AFCE是菱形.

20证明:∵四边形是平行四边形,∴,∴,∵,∴(SAS),∴,∵,∴,∴,∴四边形是平行四边形.

21.(1)证明:∵四边形为正方形,∴,∴∠OBE+∠OEG=90°,∵于点,∴,∴∠OAF+∠OEG=90°,∴,在和中,∴,∴;

(2)解:是等腰直角三角形,理由如下:

∵四边形为正方形,∴,∴∠OBE+∠OEG=90°,∵于点,∴,∴∠OAF+∠OEG=90°,∴,在和中,∴

∴;

又∵,∴是等腰直角三角形.

22.(1)证明:∵tanB=2,∴AE=2BE;

∵E是BC中点,∴BC=2BE,即AE=BC;

又∵四边形ABCD是平行四边形,则AD=BC=AE;

(2)证明:作AG⊥AF,交DP于G;(如图2)

∵AD∥BC,∴∠ADG=∠DPC;

∵∠AEP=∠EFP=90°,∴∠PEF+∠EPF=∠PEF+∠AEF=90°,即∠ADG=∠AEF=∠FPE;

又∵AE=AD,∠FAE=∠GAD=90°﹣∠EAG,∴△AFE≌△AGD,∴AF=AG,即△AFG是等腰直角三角形,且EF=DG;

∴FG=AF,且DF=DG+GF=EF+FG,故DF﹣EF=AF;

(3)解:如图3,①当EP在线段BC上时,有DF+EF=AF

②当EP≤2BC时,DF﹣EF=AF,解法同(2).

③当EP>2BC时,EF﹣DF=AF.

23.(1)证明:如图1中,∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∵AF=AD,EC=BC,∴AF=EC.AF∥EC,∴四边形AECF是平行四边形.

(2)与CF相等的线段有:AF,DF,AE,BE.EC.

理由:如图2中,连接AC.

∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∵AB=AG,∴AG=CD,AG∥CD,∴四边形ACDG是平行四边形,∵∠G=90°,∴四边形ACDG是矩形,∴∠ACD=90°,∵AF=DF,∴AF=CF=DF,∵四边形AECF是平行四边形,∴四边形AECF是菱形,∴CF=AF=DF=AE=EC=BE.

下载八年级下册数学第18章《平行四边形》(八)(含答案)word格式文档
下载八年级下册数学第18章《平行四边形》(八)(含答案).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐