10届全国高中数学联赛试题及答案

2021-08-20 09:40:01下载本文作者:会员上传
简介:写写帮文库小编为你整理了这篇《10届全国高中数学联赛试题及答案》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《10届全国高中数学联赛试题及答案》。

2010年全国高中数学联赛

一、填空题(每小题8分,共64分,)

1.函数的值域是

.2.已知函数的最小值为,则实数的取值范围是

.3.双曲线的右半支与直线围成的区域内部(不含边界)整点(纵横坐标均为整数的点)的个数是

.4.已知是公差不为的等差数列,是等比数列,其中,且存在常数使得对每一个正整数都有,则

.5.函数

在区间上的最大值为8,则它在这个区间上的最小值是

.6.两人轮流投掷骰子,每人每次投掷两颗,第一个使两颗骰子点数和大于6者为胜,否则轮由另一人投掷.先投掷人的获胜概率是

.7.正三棱柱的9条棱长都相等,是的中点,二面角,则

.8.方程满足的正整数解(x,y,z)的个数是

.二、解答题(本题满分56分)

9.(16分)已知函数,当时,试求的最大值.10.(20分)已知抛物线上的两个动点,其中且.线段的垂直平分线与轴交于点,求面积的最大值.11.(20分)证明:方程恰有一个实数根,且存在唯一的严格递增正整数数列,使得

.解

1.提示:易知的定义域是,且在上是增函数,从而可知的值域为.2.提示:令,则原函数化为,即

.由,及

.(1)

当时(1)总成立;

对;对.从而可知

.3.9800

提示:由对称性知,只要先考虑轴上方的情况,设与双曲线右半支于,交直线于,则线段内部的整点的个数为,从而在轴上方区域内部整点的个数为

.又轴上有98个整点,所以所求整点的个数为.4.提示

:设的公差为的公比为,则

(1),(2)

(1)代入(2)得,求得.从而有

对一切正整数都成立,即

对一切正整数都成立.从而,求得,.5.提示:令则原函数化为,在上是递增的.当时,,,所以;

当时,,所以

.综上在上的最小值为.6.提示:同时投掷两颗骰子点数和大于6的概率为,从而先投掷人的获胜概率为

.7.提示:解法一:如图,以所在直线为轴,线段中点为原点,所在直线为轴,建立空间直角坐标系.设正三棱柱的棱长为2,则,从而,.设分别与平面、平面垂直的向量是、,则

由此可设,所以,即

.所以

.解法二:如图,.设与交于点

.从而平面

.过在平面上作,垂足为.连结,则为二面角的平面角.设,则易求得.在直角中,,即

.又

..8.336675

提示:首先易知的正整数解的个数为

.把满足的正整数解分为三类:

(1)均相等的正整数解的个数显然为1;

(2)中有且仅有2个相等的正整数解的个数,易知为1003;

(3)设两两均不相等的正整数解为.易知,所以,即

.从而满足的正整数解的个数为

.9.解法一:

.所以,所以.又易知当(为常数)满足题设条件,所以最大值为.解法二:.设,则当时,.设,则..容易知道当时,.从而当时,即,从而,,由

知.又易知当(为常数)满足题设条件,所以最大值为.10.解法一:设线段的中点为,则,.线段的垂直平分线的方程是

.(1)

易知是(1)的一个解,所以线段的垂直平分线与轴的交点为定点,且点坐标为.由(1)知直线的方程为,即

.(2)

(2)代入得,即

.(3)

依题意,是方程(3)的两个实根,且,所以,..定点到线段的距离

..当且仅当,即,或时等号成立.所以,面积的最大值为.解法二:同解法一,线段的垂直平分线与轴的交点为定点,且点坐标为.设,则的绝对值,所以,当且仅当且,即,或

时等号成立.所以,面积的最大值是.11.令,则,所以是严格递增的.又,故有唯一实数根.所以,.故数列是满足题设要求的数列.若存在两个不同的正整数数列和满足,去掉上面等式两边相同的项,有,这里,所有的与都是不同的.不妨设,则,矛盾.故满足题设的数列是唯一的.加

1.(40分)如图,锐角三角形ABC的外心为O,K是边BC上一点(不是边BC的中点),D是线段AK延长线上一点,直线BD与AC交于点N,直线CD与AB交于点M.求证:若OK⊥MN,则A,B,D,C四点共圆.

2.(40分)设k是给定的正整数,.记,.证明:存在正整数m,使得为一个整数.这里,表示不小于实数x的最小整数,例如:,.

3.(50分)给定整数,设正实数满足,记

求证:

4.(50分)一种密码锁的密码设置是在正n边形的每个顶点处赋值0和1两个数中的一个,同时在每个顶点处涂染红、蓝两种颜色之一,使得任意相邻的两个顶点的数字或颜色中至少有一个相同.问:该种密码锁共有多少种不同的密码设置?

1.用反证法.若A,B,D,C不四点共圆,设三角形ABC的外接圆与AD交于点E,连接BE并延长交直线AN于点Q,连接CE并延长交直线AM于点P,连接PQ.

因为P的幂(关于⊙O)K的幂(关于⊙O),同理,所以,故⊥.

由题设,OK⊥MN,所以PQ∥MN,于是

由梅内劳斯(Menelaus)定理,得,②

由①,②,③可得,所以,故△DMN

△DCB,于是,所以BC∥MN,故OK⊥BC,即K为BC的中点,矛盾!从而四点共圆.注1:“P的幂(关于⊙O)K的幂(关于⊙O)”的证明:延长PK至点F,使得,④

则P,E,F,A四点共圆,故,从而E,C,F,K四点共圆,于是,⑤

⑤-④,得

P的幂(关于⊙O)K的幂(关于⊙O).

注2:若点E在线段AD的延长线上,完全类似.

2.记表示正整数n所含的2的幂次.则当时,为整数.

下面我们对用数学归纳法.

当时,k为奇数,为偶数,此时

为整数.

假设命题对成立.

对于,设k的二进制表示具有形式,这里,或者1,.

于是,①

这里

.显然中所含的2的幂次为.故由归纳假设知,经过f的v次迭代得到整数,由①知,是一个整数,这就完成了归纳证明.

3.由知,对,有.

注意到当时,有,于是对,有,故

4.对于该种密码锁的一种密码设置,如果相邻两个顶点上所赋值的数字不同,在它们所在的边上标上a,如果颜色不同,则标上b,如果数字和颜色都相同,则标上c.于是对于给定的点上的设置(共有4种),按照边上的字母可以依次确定点上的设置.为了使得最终回到时的设置与初始时相同,标有a和b的边都是偶数条.所以这种密码锁的所有不同的密码设置方法数等于在边上标记a,b,c,使得标有a和b的边都是偶数条的方法数的4倍.

设标有a的边有条,标有b的边有条,.选取条边标记a的有种方法,在余下的边中取出条边标记b的有种方法,其余的边标记c.由乘法原理,此时共有种标记方法.对i,j求和,密码锁的所有不同的密码设置方法数为

这里我们约定.

当n为奇数时,此时

代入①式中,得

当n为偶数时,若,则②式仍然成立;若,则正n边形的所有边都标记a,此时只有一种标记方法.于是,当n为偶数时,所有不同的密码设置的方法数为

综上所述,这种密码锁的所有不同的密码设置方法数是:当n为奇数时有种;当n为偶数时有种.

下载10届全国高中数学联赛试题及答案word格式文档
下载10届全国高中数学联赛试题及答案.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    04全国高中数学联赛试题及参考答案

    2004年全国高中数学联赛试题【第一试】一、选择题(本题满分36分,每小题6分)1、设锐角q使关于x的方程有重根,则q的弧度数为A.B。C。D。答:2、已知M=,N=,若对于所有的,均有则的取值范......

    93全国高中数学联赛试题及详细解析

    一、选择题(每小题5分,共30分)1.若M={(x,y)||tanpy|+sin2px=0},N={(x,y)|x2+y2≤2},则M∩N的元素个数是(A)4(B)5(C)8(D)95.在△ABC中,角A,B,C的对边长分别为a,b,c,若c-a等于AC边上的高h,则......

    12全国高中数学联赛试题及详细解析

    2012年全国高中数学联赛一、填空题:本大题共8小题,每小题8分,共64分.把答案填在题中的横线上.1.设是函数的图像上任意一点,过点分别向直线和轴作垂线,垂足分别为,则的值是__________......

    2014全国高中数学联赛试题及解答(范文大全)

    2014年全国高中数学联合竞赛一试试题(A) 一.填空题:本大题共8小题,每小题8分,共64分. 1. 若正数a,b满足2+log2a3log3blog6(ab),则11的值为_______________ 解:设2+log2a3log3blog6(a......

    2014全国高中数学联赛试题3及解答(范文)

    2014年全国高中数学联合竞赛一试试题(A) 一.填空题:本大题共8小题,每小题8分,共64分. 3.若函数f(x)x2ax1在[0,)上单调递增,则实数a的取值范围是___________ x2axa解:f(x)xax1=2xaxa2......

    11全国高中数学联赛试题与参考答案

    2011年全国高中数学联合竞赛一试试题(A卷)考试时间:2011年10月16日8:00—9:20一、填空题:本大题共8小题,每小题8分,共64分。把答案填在横线上.1.设集合,若中所有三元子集的三个元素之和......

    09年全国初中数学联赛试题及答案

    09年全国初中数学联赛试题及答案 时间:2009-6-3 14:33:52 点击:15833 2009年全国初中数学联合竞赛试题参考答案 第一试 一、选择题(本题满分42分,每小题7分) 1. 设,则. D. ( ) .......

    2014年全国高中数学联赛江苏赛区初赛试题

    10.(2014年全国高中数学联赛江苏赛区初赛试题). 如果正整数m可以表示为x24y2 (x,yZ),那么称m为“好数”.问1,2,3,„,2014中“好数”的个数为. 解:设x24y2=m=ab,(b>a),则有(x+2y)(x-2y)=ab.......