2018四川公务员省考行测数量关系模拟题(11.9)

时间:2019-05-14 10:43:41下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《2018四川公务员省考行测数量关系模拟题(11.9)》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《2018四川公务员省考行测数量关系模拟题(11.9)》。

第一篇:2018四川公务员省考行测数量关系模拟题(11.9)

2018四川公务员省考行测数量关系模拟题(11.9)四川公务员考试行测测试内容包括言语理解与表达、常识判断、数量关系、判断推理、资料分析等。

四川公务员考试行测,数量关系之数学运算主要测查考生理解、把握数量事物间量化关系和解决数量关系问题的技能技巧,主要涉及数字和数据关系的分析、推理、判断、运算等方面。

[行测数量关系题] 1.王明抄写一份报告,如果每分钟抄写30个字,则用若干小时可以抄完。当抄完2/5时,将工作效率提高40%,结果比原计划提前半小时完成。问这份报告共有多少字?()A.6025字 B.7200字 C.7250字 D.5250字

2.有若干只鸡和兔子同在一个笼子里,共有88个头,244只脚,则下列说法中,正确的是:()。

A.鸡比兔多10只 B.兔比鸡多10只 C.鸡与兔一样多 D.鸡比兔多20只

3.某中学同年级两个班进行一次数学考试,两个班学生平均分分别为75分和78分,而所有学生的平均分为76.6分,那么参加考试的这两个班的人数比为:()。

A.5∶6 B.6∶7 C.7∶8 D.8∶9 4.某校有100个学生参加数学竞赛,平均得63分,其中男生平均60分,女生平均70分,则男生比女生多()人。

A.30 B.32 C.40 D.45 5.马尾“胜利”号货轮在3天内共航行了150海里,请问货轮平均每天约航行多少千米?()

A.92.6千米 B.78.4千米 C.120.6千米 D.140.5千米

6.甲、乙各有钱若干元,甲拿出1/3给乙后,乙再拿出总数的1/5给甲,这时他们各有160元,问甲、乙原来各有多少钱?()A.120元 200元 B.150元 170元 C.180元 140元 D.210元 110元 【参考答案与解析】 1.【答案】D 解析:效率提高前后的比例为1∶1.4=5∶7,由于工作量不变,所以时间比为效率的反比,即7∶5.。设效率提高前抄完剩下的3/5需要7份时间,缩短的2份时间即半小时(30分钟),那么1份是15分钟。故按原效率完成所有工作需要时间为15×7÷(3/5)=175分钟。这份报告有175×30=5250字。

2.【答案】D 解析:鸡兔同笼问题。设笼子里全部是鸡,那共有88×2=176只脚,因此笼子中有兔子(244-176)÷2=34只,故鸡为88-34=54只,因此鸡比兔多54-34=20只。

3.【答案】C 解析:利用十字交叉法。

两个班的人数之比为1.4∶1.6=7∶8,选择C项。4.【答案】C 解析:根据十字交叉法

可知男女比例为7∶3,总人数为10份,由总人数为100人可知每份对应10人,男生比女生多4份,即40人。

5.【答案】 A 解析:本题应注意单位的换算,1海里=1.852千米,由题意知货船平均每天航行1.852×150÷3=92.6千米。故正确答案为A。

6.【答案】C 解析:解析1:乙拿出1/5给甲后甲乙各有160元,说明之前乙有160÷4/5=200元,甲有120元,这是甲给乙1/3后剩余的钱数,则甲原有120÷2/3=180元,乙有200-60=140元。

解析2:设甲乙原有钱分别为x、y,根据题意有,2/3x+1/5(1/3x+y)=160,4/5(1/3x+y)=160,解得x=180,y=140。

第二篇:公务员行测数量关系知识总结

整除基本法则

其末一位的两倍,与剩下的数之差,或其末三位与剩下的数之差为7的倍数,则这个数就为7的倍数。奇数位与偶数做差,为11的倍数,则这个数为11的倍数,或末三位与剩下的数之差为11的倍数则这个数为11的倍数。

末三位与剩下的数之差为13的倍数,则这个数为13的倍数。末两位能被4和25整除,则这个数能被4和25整除。末三位能被8和125整除,则这个数能被8和125整除。有N颗相同的糖,每天至少吃一颗,可以有2N-1种吃法。因式分解公式

平方差公式:.a2-b2=(a+b)(a-b)完全平方公式: a2±2ab+b2=(a±b)2 立方和公式:a3+b3=(a+b)(a2-ab+b2).立方差公式:a3-b3=(a-b)(a2+ab+b2).完全立方公式: a3±3a2b+3ab2±b3=(a±b)3 两位尾数法

指利用计算过程当中,每个数的末两位来进行运算,求得的最后两位,过程和结果当中如果是负数,可以反复加100补成0-100之间的数。裂项相加法则 和=(分子11—)×

小=分母种最小的数,大=分母中最大的数

差小大乘方公式

底数留个位,指数末两位除以4(余数为0看做4)尾数为1、5、6的尾数乘方不变。循环数核心公式

例题:198198198=198*1001001 200720072007=2007*1001 三位数页码

页码=数字 +36 3同余问题

余同取余,和同加和,差同减差,公倍数做周期

1、余同:一个数除以4余1,除以5余1,除以6余1则取1 60n+1

2、同和:一个数除以4余3,除以5余2,除以6余1则取7 60n+7

3、差同:一个数除以4余1,除以5余2,除以6余3则取-3 60n-3 周期问题

一串数以T为周期,且A=N„a那么A项等同于第a项 N等差数列(如几层木头,相连的奇偶数等)

和=(首项末项)项数=平均数×项数=中位数×项数

2项数公式:项数=末项首项1

公差级差公式:第N项-第M项=(N-M)×公差 调和平均数

2ab ab十字交叉法

例题重量分别为A与B的溶液,其浓度分别为a与b,混合后浓度为r

Arb bar浓度相关问题

溶液=溶质+溶剂

浓度=溶质÷溶液

溶质=溶液×浓度

溶液=溶质÷浓度 多次混合问题核心公式

1、设盐水瓶中盐水的质量为M,每次操作中先倒出M0克盐水,再倒入M0克清水 Cn=C0×(MM0M)n

(C0 为原浓度,Cn为新浓度,n为共几次)

2、设盐水瓶中盐水的质量为M,每次操作中先倒入M0克清水,再倒出M0克盐水 Cn=C0×(M)n(C0 为原浓度,Cn为新浓度,n为共几次)

MM0行程问题

距离=速度×时间

火车过桥洞时间=(火车长度+桥洞长度)÷火车速度 相对速度

1、相遇追及问题

相遇距离=(大速度+小速度)×相遇时间 追及距离=(大速度-小速度)×追击时间

2、环形运动问题

环形周长=(大速度+小速度)×反向运动的两人两次相遇时间间隔 环形周长=(大速度-小速度)×同向运动的两人两次相遇时间间隔

3、队伍行进问题

队伍长度=(人速+队伍速度)×从队头到队尾所需时间 队伍长度=(人速-队伍速度)×从队尾到队头所需时间

4、流水行船、风中飞行问题

顺流时间=顺流速度×顺流时间=(船速+水速)×顺流时间 逆流时间=逆流速度×逆流时间=(船速-水速)×逆流时间

1、等距平均速度问题核心公式 往返平均速度=2u1u2

u1u22、沿途数车问题核心公式 沿途时间间隔=2t1t2tt

车速=人速=21 t1t2t2t13、漂流瓶问题核心公式 漂流所需时间=2t逆t顺

t逆t顺

4、两次相遇核心公式 单岸型

S=3s1s

2两岸型

S=3S1-S2

S表示两岸的距离 25、电梯运动问题

能看到的电梯级数=(人速+电梯速度)×沿电梯运动方向运动所需时间

能看到的电梯级数=(人速-电梯速度)×沿电梯运动所需时间

几何基本公式

圆周长C圆=2πr 圆面积 S圆=πr

2S三角=

11ah S梯=(a+b)h N边形内角和=(N-2)×180° 22几何特性:若一个几何图形其尺度为原来的M倍则

面积M2倍

体积M3倍

平面图形周长一定,越接近圆,面积越大平面图形面积一定,越接近圆,周长越小 立体图形,表面积一定,越接近球体积越大 立体图形,体积一定,越接近球体,表面积越小 两集合标准核心公式

满足条件Ⅰ的个数+满足条件Ⅱ的个数-两者都满足的个数=总个数-两者都不满足的个数 三集合标准核心公式

均如何=甲+乙+丙-(甲和乙)-(甲和丙)-(乙和丙)+都如何 三集合整体重复型核心公式

在三集合的题型中,假设满足三个条件的元素数量分别为A、B、C,而至少满足三个条件之一的元素总量为W,满足一个条件的元素数量为X,满足两个条件的数量为Y,满足三个条件的元素数量为Z,则

W=X+Y+Z

A+B+C=X×1+Y×2+Z×3 排列组合

取其一

①加法原理:分类用加法(要么„要么)排列与顺序有关

②乘法原理:分步用乘法(首先„然后)组合与顺序无关

3排列

A8=8×7×6 4组合 C10=10987

4321错位排列:有几个信封,且每个信封都不能装自己的信

D1=0 D2=1 D3=2 D4=9 D5=44 D6=265 传球问题核心公式

(M1)N M个人传N次球即

X=则X最接近的整数为传给“非自己的某人”的方法,与X第二接近的M正整数便是传给自己的方法数 比赛问题:N为人数

淘汰赛

①仅需决出冠亚军

比赛场次=N-1

②需要决出1、2、3、4名

比赛场次=N 循环赛

①单循环(任意两个打一场)比赛场次=C2N

②双循环(任意两个打两场)比赛场次=A2N 概率问题

1、单独条件概率=满足条件的情况数

总的情况数

2、某条件成立概率=1-不成立的概率

3、总体条件概率=满足条件的各种情况概率之和

4、分步概率=满足条件的各种情况概率之积

5、条件概率=“A成立”是B成立的概率=A、B同时成立的概率 植树问题

1、单边线型植树公式:棵树=总长÷间隔+1;总长=(棵树-1)×间隔

2、单边环型植树公式:棵树=总长÷间隔;总长=棵树×间隔

3、单边楼间植树公式:棵树=总长÷间隔-1;总长=(棵树+1)×间隔 裂增计数

如果一个量每个周期后变为原来的A倍,那么,N个周期后就是原来的AN倍 例:10分钟分裂一次(1个分裂为2个),经过90分钟,可有1分裂为几个 周期数为90÷10=9

公式=29 =512 剪绳问题

一根绳子连续对折N次,从中剪M刀,则被剪成了2N×M+1段 方阵问题

21、N 排N列的实心方阵人数为N人

2、M排N列的实心方阵人数为M×N

3、N排N列的方阵,最外层有4N-4人

4、在方阵或者长方阵中相邻两圈人数,外圈比内圈多8人

5、空心正M边形阵中,若每边有N个人,则共有MN-M个人

26、方阵中:方阵人数=(最外层人数÷4+1)

过河问题

M个人过河,船上能载N个人,1人划船故需

M1次,最后一次不用回来 N1牛吃草问题

草场原有草量=(牛数-每天长草量)×天数

出现M头牛吃W亩草时,牛数用MW代入,此时代表单位面积上牛的数量,如果计算为负数说明存量不增加而消之 时钟问题

钟面上每两格之间相差30° T=T0+1 11T为追及时间和时针要“达到条件要求”的真实时间,T0为静态时间,即假设时针不动,分针和时针“达到条件要求”的时间 经济利润相关问题

利润率=利润÷成本=(售价-成本)÷成本=售价÷成本-1 售价=成本×(1+利润率)成本=售价÷(1+利润率)两位数乘法:

一个数乘以5可以看成乘以10除以2 例:42×48=2016 等于后两位数相乘,前两位数也相乘在加上十位上相同的数。相同且互补(和为10)中间两边互补除外。

第三篇:粉笔2018年省考第3季行测数量模拟题

粉笔2018省考第3季行测模考数量关系

(1)甲、乙、丙三人每人收集了不超过20个古铜币。甲的古铜币数量乘以17与乙的古铜币数量乘以36之和等于丙的古铜币数量的54倍,则甲有多少个古铜币: 【粉笔模考】 A.9 B.12 C.18 D.20 楚香凝解析:17甲+36乙=54丙,可得甲为18的倍数,选C

(2)某商家以120元的单价进购了一批童装,并以每件80元的利润销售了这批童装中的60%。为了保证所有的童装售完后利润率不低于50%,则剩余童装最多可以打几折出售: 【粉笔模考】

A.七折 B.七五折 C.八折 D.八五折 楚香凝解析:假设买了10件,总利润不低于120*10*50%=600元;前6件的利润为6*80=480元,所以后4件的利润至少600-480=120元、每件利润30元、售价150元,折扣=150/(120+80)=75%,选B

(3)小王先调制了一杯浓度为15%的咖啡,又将90g咖啡粉倒入210g水中调制得到第二杯咖啡。在每杯咖啡分别喝了50g后发现一杯较浓一杯较淡,他便将第一杯咖啡全部倒入了第二杯中冲成浓度为20%的咖啡。则小王原本调制的第一杯咖啡有多少克: 【粉笔模考】 A、550 B、300 C、82.5 D、75 楚香凝解析:第二杯浓度为90/(90+210)=30%,都喝了50g后,15%和250g浓度为30%的 混合得到20%,十字交叉可得两杯剩余的溶液之比=(30-20):(20-15)=2:1=500:250,所以第一杯最初有500+50=550g,选A

(4)某科室有甲、乙、丙、丁、戊五人,计划分别到A、B、C、D、E五个片区进行入户调查,每个片区安排一人。若甲不去A片区,乙不去B片区,丙不去C片区,丁只去D片区,则有多少种不同的安排方法: 【粉笔模考】 A.11 B.9 C.44 D.108 楚香凝解析:丁固定去D区;对戊分类,若戊不去E区,相当于四个元素错位重排、有9种;若戊去E区,相当于三个元素错位重排、有2种;共9+2=11种,选A

(5)张健、李康、王强三人在10月份分别有19天、16天、12天去餐厅吃饭。其中有6天三人都去餐厅吃饭,有9天三人中只有两人去餐厅吃饭。则整个10月有多少天三人都没去餐厅吃饭: 【粉笔模考】 A.4 B.5 C.7 D.8 楚香凝解析:不包含的三容斥,31=19+16+12-9-(6*2)+x,可得x=5,选B

(6)黑箱子里装有6颗小红球、13颗小绿球、4颗小黄球,同时装有5颗大红球、12颗大绿球、7颗大黄球。小刘每次不放回地从黑箱子里摸出一颗球,则至少需要摸几次,才能保证摸出两颗大小和颜色均不相同的球: 【粉笔模考】 A.14 B.24 C.26 D.25 楚香凝解析:构造最不利的情况,取出13颗小绿球+12颗大绿球,此时再取一颗球必满足,选C

(7)甲、乙两人在周长为400米的正方形广场的一角同时出发背向沿边跑步,甲的速度是乙的2倍,乙跑完一圈需要2分40秒。当甲第二次距离起点50米时,乙接到紧急任务需要立刻赶回起点,若乙此时按最短直线距离返回起点,需要多少时间: 【粉笔模考】 A.40秒 B.50秒 C.60秒 D.70秒

楚香凝解析:乙速=400/160=2.5米/秒、甲速=5米/秒,当甲走了350米时、乙走了175米,最短直线距离=√(1002+752)=125米、时间=125/2.5=50秒,选B

(8)有A、B两项工程承包给甲、乙两个工程队,甲队单独做A工程恰好需要12天,乙队单独做B工程恰好需要18天,甲、乙两队一起做两项工程恰好需要14天。则甲队单独做B工程比乙队单独做A工程少花多少天? 【粉笔模考】 A.15 B.12 C.9 D.6 楚香凝解析:甲队12天完成了A工程、又帮乙做了两天的B工程,从而乙少做了4天;可得甲2天=乙4天,则甲单独做B工程需要18/2=9天,乙单独做A工程需要12*2=24天,24-9=15天,选A

(9)沈丽出生于2016年的一个星期六,已知她的出生月份的数字有6个约数,出生日期的数字是出生月份的数字的2倍。问:2018年的第一个星期六是几号: 【粉笔模考】 A.1月3日 B.1月4日 C.1月5日 D.1月6日

楚香凝解析:6=2*3,所以出生月份可以表示成a1*b2的形式,只能是31*22=12月,则出生日期为12*2=24,12月24日=12月31日为星期六,则2017.1.1为星期日、2018.1.1为星期一,再过5天2018.1.6为星期六,选D

(10)爸爸、妈妈、小明、妹妹一家四口在2017年时任意两人的年龄之差都是3的倍数,且妈妈与小明的年龄之差等于小明与妹妹的年龄之和。则2017年一家四口的年龄之和可能为: 【粉笔模考】

A.110 B.105 C.101 D.98 楚香凝解析:妈妈与小明的年龄差为3的倍数,可得小明与妹妹的年龄和为3的倍数,又因为小明与妹妹的年龄差也为3的倍数,则每人的年龄都为3的倍数,选B

第四篇:2013年公务员考试行测数量关系解题技巧

职业培训教育网()

2013年公务员考试行测数量关系解题技巧

公务员行测数学运算题型很多,考生不容易把握重点,归纳总结出5种必考题型,这些题型不但每年必考,甚至同一题型出现2次以上,因此,考生应给给予这几类题型足够的重视,把握出题规律,掌握答题技巧。

5种必考题型:

题型一:计数问题

题型二:费用问题

题型三:行程问题

题型四:工程问题

题型五:概率问题

第五篇:公务员考试行测数量关系总结(辛苦总结)

同余问题的口诀“公倍数作周期,余同取余,和同加和,差同减差”。

所谓同余问题,就是给出“一个数除以几个不同的数”的余数,反求这个数,称作同余问题。

首先要对这几个不同的数的最小公倍数心中有数,下面以4、5、6为例,请记住它们的最小公倍数是60。

1、最小公倍加:所选取的数加上除数的最小公倍数的任意整数倍(即上面1、2、3中的60n)都满足条件,称为:“最小公倍加”,也称为:“公倍数作周期”。

2、余同取余:用一个数除以几个不同的数,得到的余数相同,此时反求的这个数,可以选除数的最小公倍数,加上这个相同的余数,称为:“余同取余”。例:“一个数除以4余1,除以5余1,除以6余1”,因为余数都是1,所以取+1,表示为60n+1。

3、和同加和:用一个数除以几个不同的数,得到的余数,与除数的和相同,此时反求的这个数,可以选除数的最小公倍数,加上这个相同的和数,称为:“和同加和”。

例:“一个数除以4余3,除以5余2,除以6余1”,因为4+3=5+2=6+1=7,所以取+7,表示为60n+7。

4、差同减差:用一个数除以几个不同的数,得到的余数,与除数的差相同,此时反求的这个数,可以选除数的最小公倍数,减去这个相同的差数,称为:“差同减差”。

例:“一个数除以4余1,除以5余2,除以6余3”,因为4-1=5-2=6-3=3,所以取-3,表示为60n-3。

加减法——同奇同偶则为偶,一奇一偶则为奇;乘法——乘数有偶则为偶,乘数无偶则为奇。

【例题1】某次测验有50道判断题,每做对一题得3分,不做或做错一题倒扣1分,某学生共得82分,问答对题数和答错题数(包括不做)相差多少?

A.33 B.39 C.17 D.16

解析:此题答案为D。依题意可知,答对题数+答错题数=50。“加减法,同奇同偶则为偶”,50为偶数,则答对题数与答错题数同为奇数或同为偶数,二者之差也应是偶数,选项中只有D是偶数。

【例题2】某地劳动部门租用甲、乙两个教室开展农村实用人才培训。两教室均有5排座位,甲教室每排可坐10人,乙教室每排可坐9人。两教室当月共举办该培训27次,每次培训均座无虚席,当月共培训1290人次。问甲教室当月共举办了多少次这项培训?

A.8 B.10 C.12 D.15

解析:此题答案为D。根据题干可知,甲教室可坐50人,乙教室可坐45人,当月共培训1290人次,设甲教室举办了x次培训,乙教室举办了y次,则可列方程组如下:

x+y=27 ①50x+45y=1290 ② 利用数的奇偶性确定方程组的解。再由①式可推出奇偶性不同,则x是奇数,选项中只有D是奇数。

概率问题

【原题】有三个骰子,其中红色骰子上2、4、9点各两面;绿色骰子上3、5、7点各两面;蓝色骰子上1、6、8点各两面。两个人玩掷骰子的游戏,游戏规则是两人先各选一个骰子,然后同时掷,谁的点数大谁获胜。那么,以下说法正确的是?

A.先选骰子的人获胜的概率比后选的骰子的人高

B.选红色骰子的人比选绿色骰子的人获胜概率高

C.获胜概率的高低于选哪种颜色的骰子没有关系

D.没有任何一种骰子的获胜概率能同时比其他两个高

【解析】首先:捋顺题干信息。三个骰子:红色骰子(2、4、9);绿色骰子(3、5、7);蓝色骰子(1、6、8)。问那种颜色的骰子获胜的概率大。

其次:任选两种骰子进行比较。例如红色骰子(2、4、9)与绿色骰子(3、5、7)比较。

2<3;2<5;2<7; 4>3;4<5;4<7; 9>3;9>5;9>7

通过比较可以得出:红色骰子胜出的概率是4/9,绿色骰子胜出的概率是5/9。因此绿色骰子的获胜概率大于红色骰子。

同理将红色骰子(2、4、9)与蓝色骰子(1、6、8)比较,绿色骰子(3、5、7)与蓝色骰子(1、6、8)比较,可以得出:红色骰子的获胜概率大于蓝色骰子;蓝色骰子的获胜概率大于绿色骰子。综上得出,绿色>红色;红色>蓝色;蓝色>绿色。

数学运算经典公式

第一:两次相遇公式:单岸型 :S=(3S1+S2)/2

两岸型

: S=3S1-S2

例1:两艘渡轮在同一时刻垂直驶离 H 河的甲、乙两岸相向而行,一艘从甲岸驶向乙 岸,另一艘从乙岸开往甲岸,它们在距离较近的甲岸 720 米处相遇。到达预定地点后,每艘船都要停留10分钟,以便让乘客上船下船,然后返航。这两艘船在距离乙岸 400 米处又重新相遇。问:该河的宽度是多少?()

A.1120 米 B.1280 米 C.1520 米 D.1760 米

解析:典型两次相遇问题,这题属于两岸型(距离较近的甲岸 720 米处相遇、距离乙岸400 米处又重新相遇)代入公式3×720-400=1760选D;如果第一次相遇距离甲岸x米,第二次相遇距离甲岸Y米,这就属于单岸型了,也就是说属于哪类型取决于参照的是:一边岸还是两边岸。

甲乙两位同学在环形跑道上的同一地点同时开始跑步,如果两位同学反向而行,3分钟后相遇,甲比乙多跑50米,如果两位同学同向而行,18分钟后相遇。请问跑道的长度是多少米?

A.200米

B.250米

C.300米

D.400米

3分钟甲多走50 得出18分钟多走300 多走一圈才能相遇 刚好一圈

第二:十字交叉法:A/B=(r-b)/(a-r)?????????

例2:某班男生比女生人数多80%,一次考试后,全班平均成绩为75分,而女生的平均分比男生的平均分高20%,则此班女生的平均分是()

(2007国考)

解析:设女生人数为5人·那么男生人数就是5(1+80%)=9人

某班的总分就是75x(5+9)=1050(分)设男生的平均成绩为X分。(1.2x)5+9 x=1050 x=70。那么女生的平均成绩就是70x(1+20%)=84(分)

第三:往返运动问题公式:

V均=(2v1×v2)/(v1+v2)

例3:一辆汽车从A地到B地的速度为每小时30千米,返回时速度为每小时20千米,则它的平均速度为多少千米/小时?()

A.24 B.24.5 C.25 D.25.5 解:代入公式得2×30×20/(30+20)=24,选A。

第四:过河问题:

M个人过河,船能载N个人。需A个人划船,共需过河(M-A)/(N-A)次.例4:有37名红军战士渡河,现在只有一条小船,每次只能载5人,需要几次才能渡完?()A.7 B.8 C.9 D.10

解:(37-1)/(5-1)=9

第五:牛吃草问题:草场原有草量=(牛数-每天长草量)×天数

例5:有一水池,池底有泉水不断涌出,要想把水池的水抽干,10台抽水机需抽8小时,8台抽水机需抽12小时,如果用6台抽水机,那么需抽多少小时?()

A.16 B.20

C.24 D.28

解:(10-X)×8=(8-X)×12 求得X=4.(10-4)×8=(6-4)×Y 求得答案Y=24 公式熟练以后可以不设方程直接求出来。第六:N人传接球M次公式:次数=(N-1)的M次方/ N,最接近的整数为末次传他人次数,第二接近的整数为末次传给自己的次数。

例6: 四人进行篮球传接球练习,要求每人接球后再传给别人。开始由甲发球,并作为第一次传球,若第五次传球后,球又回到甲手中,则共有传球方式()。A.60种

B.65种

C.70种

D.75种

公式解题:(4-1)5/4=60.75 最接近的是61为最后传到别人次数,第二接近的是60为最后传给自己的次数。

一、代入排除法

代入排除法广泛运用于多位数问题、不定方程问题、剩余问题、年龄问题、复杂行测问题、和差倍比问题等等。【例题1】

甲乙两个工程队,甲队的人数是乙队人数的70%。根据工程需要,现从乙队抽出40人到甲队,此时乙队比甲队多136人,则甲队原有人数是()。

A.504人

B.620人

C.630人

D.720人

解析:此题答案为A。甲队人数是乙队的70%,则甲队人数一定是7的倍数,这样可以排除B、D,缩小判断范围。代入C项,甲队人数是10的倍数,甲队是乙队人数的70%,则乙队人数也是10的倍数,从乙队抽出40人之后,甲乙两队相差的人数必然是10的倍数,这与题中条件不符,排除C,选择A。

二、特殊值法

把未知数设为便于计算的特殊值能够极大简化计算过程,几乎所有与方程有关的题目都可通过设特殊值来解决。【例题2】 一只装有动力桨的船,其单靠人工划船顺流而下的速度是水速的3倍。现该船靠人工划动从A地顺流到达B地,原路返回时只开足动力桨行驶,用时比来时少。问船在静水中开足动力桨行驶的速度是人工划船速度的多少倍?

A.2

B.3

C.4

D.5

解析:题中只出现相关量的倍数关系,要求的也是两个量的倍数关系,所以相关量的具体值不影响最后结果,可用特殊值法,便于计算。

设水速为1,则人工划船顺流而下的速度是3,人工划船在静水中的速度是3-1=2。开动力桨逆水行驶与人工划船顺水行驶的时间比为3∶5,则二者速度比为5∶3,开动力桨逆水行驶的速度为5,在静水中的速度为5+1=6。因此船在静水中开足动力桨行驶的速度是人工划船速度的6÷2=3倍,选B。

三、方程法

方程法是解决大部分算术应用题的工具,方程法未必是最好的方法,却是最适合普罗大众的方法。不定方程是近年来政法干警的重点,解决不定方程主要用到的是整数的奇偶性、质合性与尾数性质。

【例题3】 超市将99个苹果装进两种包装盒,大包装盒每个装12个苹果,小包装盒每个装5个苹果,共用了十多个盒子刚好装完。问两种包装盒相差多少个?

A.3

B.4

C.7

D.13 解析:设大包装盒用了x个,小包装盒用了y个。依题意,12x+5y=99。12x是偶数,则5y是奇数,5y的尾数是5。因此12x的尾数是4,x的尾数为2或7。当x=2时,y=15,两者之差为13,选D。当x=7时,y=3,题干条件说用了十多个盒子,排除。

四、图解法

图示有助于理解,很多题目用到了线段图,函数图则使得线性规划问题变得直观。图解法对揭示抽象条件有很大优势。【例题4】 草地上插了若干根旗杆,已知旗杆的高度在1至5米之间,且任意两根旗杆的距离都不超过他们高度差的10倍。如果用一根绳子将所有旗杆都围进去,在不知旗杆数量和位置的情况下,最少需要准备多少米长的绳子? A.40

B.60

C.80

D.100 解析:旗杆最高为5米,最矮为1米。因此任意两旗杆间的距离不超过(5-1)×10=40米。以最矮的旗杆为原点,最矮的旗杆与最高的旗杆连线为x轴建立直角坐标系。

当这两个旗杆间距最大时,如下左图所示。设其余任意旗杆高度为a。要满足与1米旗杆间距离不超过它们高度差的10倍,应在下图左边的圆范围内。要满足与5米旗杆间距离不超过它们高度差的10倍,应在下图右边的圆范围内。同时满足条件的旗杆只能位于两个旗杆的连线上。此时需要40×2=80米可把它们都围进去。

若两个旗杆间距小于40米,如右图所示,其余旗杆应该在两圆相交的阴影范围内分布,此时需要2×[10(a-1)+10(5-a)]=80米。因此不论旗杆怎样分布,都需要至少80米长的绳子来保证把全部旗杆围进去。五、十字交叉法

十字交叉法是加权平均数的简便算法,在平均数一节已经反复强调,通过下面这道题可知用这种方法求加权平均数的问法在不断变化。

【例题5】 某市气象局观测发现,今年第一、二季度本市降水量分别比去年同期增加了11%和9%,而两个季度降水量的绝对增量刚好相同。那么今年上半年该市降水量同比增长多少? A.9.5%

B.10%

C.9.9%

D.10.5% 解析:利用十字交叉法,设该市上半年降水量总体增长为x%

因此,去年一二季度降水量之比为(x-9)∶(11-x)。根据绝对增量相等可得,(x-9)×11%=(11-x)×9%,解得x%=9.9%,选C。例2:(广东2008)

某年级有4个班,不算甲班其余三个班的总人数有131人,不算丁班其余三个班的总人数是134人;乙、丙两班的总人数比甲、丁两班的总人数少1人,问这四个班共有多少人? A.177 B.176 C.266 D.265

解析:根据“乙、丙两班的总人数比甲、丁两班的总人数少1人”这句话可知,乙丙班人数的总和、甲丁班人数的总和一个是奇数一个是偶数,则总人数肯定是奇数,所以排除B、C。答案D,265=131+134,但这是六个班的人数,题目要求的是4个班的人数,所以选择答案A。

例3:(2011国考)某公司去年有员工830人,今年男员工人数比去年减少6%,女员工人数比去年增加5%,员工总数比去年增加3人,问今年男员工有多少人?

A.329 B.350 C.371 D.504

解析:该题具有两个百分数:6%、5%,其中6%与问题相关,则考虑用数字整除特性解题。今年男员工与去年男员工之比是94:100,化简得47:50,所以只要观察答案选项哪个能被47整除就可以了。

例4:(江苏2011B)

《参考消息》、《青年能考》全年订价分别为292元,156元,全室人员都订阅这两种报纸中的一种,用去2084元,如果他们换订另一品种,需要1948元。该室有多少人?()

A.7 B.9 C.11 D.15

解析:该题属于经济类问题,可以列方程组求解,但是比较耗时间。可以换一种思维,假设全室人员两种报纸都订阅了,则每个人共用去292+156=448元,实际总共用去2084+1948=4032,所以总共有4032/448=9,选择答案B

一个快中每小时比标准时间快1分钟,一个满钟每小时比标准时间慢3分钟,若将2个钟表同时调到标准时间,结果在24小时内,快钟显示9点整,慢钟显示8点整,此时标准时间是多少??

1.员工对奖酬分配的公平感(或不平感)是影响巨大而又十分敏感的因素。强烈的不平感不仅会使员工士气低落,工作消极,还会造成离心倾向,阻碍长期的组织归属感的养成,进而造成企业内部人际关系恶化,影响员工在工作和生活各方面的情绪和态度,成为不安定因素。

由此可以推出()。

A.员工缺乏组织归属感,是因为其它员工工作消极

B.员工产生离心倾向,是因为社会资源分配不公正

C.员工情绪和态度不良,是因为员工士气低落

D.员工人际关系良好,是因为员工有良好的组织归属感

下载2018四川公务员省考行测数量关系模拟题(11.9)word格式文档
下载2018四川公务员省考行测数量关系模拟题(11.9).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    2007年河北省公务员考试行测数量关系

    http://v.huatu.com/hebei/ 2007年河北省公务员考试行测数量关系 一.数字推理。 给你一个数列,但其中缺少一项,要求你仔细观察数列的排列规律,然后从四个供选择的选项中选择......

    国考行测数量关系重要解题方法

    关注吉林华图微信号:jilinht,免费领取元事业单位学习卡! 关注后,直接回复“事业单位学习卡”这7个字就可以啦! 欢迎大家登录吉林华图官网http://jl.huatu.com/,我们将第一时间发布......

    行测数量关系备考技巧

    公务员考试中,数量关系历来是考生备感头疼的题型,其主要有两大题型,一是数字推理,二是数学运算。数字推理主要是考察应试者对数字和运算的敏感程度。本质上来看,是考察是考生对出......

    2018上半年四川公务员省考行测逻辑判断题(10.17)

    2018上半年四川公务员省考行测逻辑判断题(10.17) 四川公务员考试行测测试内容包括言语理解与表达、常识判断、数量关系、判断推理、资料分析等。 四川公务员考试行测,行测判断......

    公务员考试行测备考:数量关系备考六禁忌

    给人改变未来的力量 2014年黑龙江省公务员考试目前正处于紧张的备考阶段,考生要想在数学部分拿高分就必须要靠自身认认真真、老老实实的复习,一步一步地总结归纳,将典型题型汇......

    2013年新疆公务员考试行测数量关系题型

    2013年新疆公务员考试行测数量关系题型 2013年新疆公务员考试将于7月6日举行笔试,本次新疆公务员招考涉及5435个职位,共计招录7757人,是一次规模较大的考试,在这最后一个月的复......

    2018下半年四川公务员考试行测数量关系题及答案(3.22)

    2018下半年四川公务员考试行测数量关系题及答案(3.22) 四川公务员考试行测考试内容包括言语理解与表达、常识判断、数量关系、判断推理、资料分析等。 四川公务员考试行测,数......

    2018四川公务员省考行测判断推理:逻辑判断题(12.5)

    2018四川公务员省考行测判断推理:逻辑判断题(12.5) 四川公务员考试行测测试内容包括言语理解与表达、常识判断、数量关系、判断推理、资料分析等。 四川公务员考试行测,行测判断......