2014年初二数学下册训练题

时间:2019-05-14 13:43:14下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《2014年初二数学下册训练题》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《2014年初二数学下册训练题》。

第一篇:2014年初二数学下册训练题

2014年初二数学下册训练题

一、填空题(本大题共10小题,每小题2分,共20分)1.下列4个事件:①异号两数相加,和为负数;②异号两数相减,差为负数;③异号两数相乘,积为正数;④异号两数相除,商为负数。这4个事件中,必然事件是________,随机事件是____________.(将事件的序号填上即可)2.某校有500名学生参加外语口语考试,考试成绩在70分~85分之间的有120人,则这个分数段的频率是.3.在一次数学课上,胡老师请四位同学举出生活中运用全面调查或抽样调查的例子.小张:为了了解玉米种的发芽情况,采用抽样调查.小冠:为了了解全班同学早餐情况,采用全面调查.小李:为了了解刚生产的一批灯泡的使用寿命,采用全面调查.小戴:为了了解全国中学生安全自救知识掌握情况,采用抽样调查.你认为以上四位同学所举事例的调查方式错误的有.4.在□ABCD中,若 ang;A=750,则ang;B=,ang;C=.5.若□ABCD的对角线交于点O,其周长为80,△AOB的周长比△BOC的周长大8,则AB= ,BC=.6.若平行四边形一个角的平分线分一边为4cm和5cm的两部分,则平行四边形周长为_____。

7.如图,平行四边形ABCD中,CEperp;AB,垂足为E,如果ang;A=115deg;,则ang;BCE=_________deg;.8.请从①AB∥CD;②BC=AD;③BC∥AD;④AB=CD这四个条件中选取两个,使四边形ABCD成为平行四边形:______________________.(只需填写所选取的两个条件的序号即可)9.平行四边形 在平面直角坐标系中的位置如图所示,AO=2,则点 的坐标为。

10.□ABCD中,若AB、BC、CD三条边的长度分别为(x-2)cm,(x+3)cm,8cm,则□ABCD的周长是。

二、选择题(本大题共8小题,每题3分,共24分)11.为调查某市七年级学生体重情况,从中抽查了500名学生的体重。正确的是()A.样本的容量是500名学生 B.500名学生是总体的一个样本

C.总体是该市七年级学生的体重的全体 D.每一名七年级学生是个体

12.在一个不透明的袋子中装有1个白球、2、个黄球和3个红球,每个球除颜色外完全相同,将球摇匀,从中任取l球.①恰好取出白球;②恰好取出黄球;③恰好取出红球.根据你的判断,将这些事件按发生的可能性从小到大的顺序排列是()A.①③② B.②①③ C.①②③ D.③②①

13.下列图案中既是中心对称图形,又是轴对称图形的是()14.如果4张扑克按图1的形式摆放在桌面上,将其中一张旋转 后,扑克的放置情况如图2所示,那么旋转的扑克是().15.如图,在周长为24cm的□ABCD中,ABne;AD,AC、BD相交于点O,OEperp;BD交AD于E,则△ABE的周长为()A、6cm B、10cm C、12cm D、15cm 16.如图,平行四边形ABCD中,ang;ABC=60#61616;,E、F分别在CD、BC的延长线上,AE∥BD,EFperp;BC,DF=1cm,则EF的长为()A、2 cm B、1cm C、cm D、2 cm 17.若平行四边形的一边长是11㎝,则这个平行四边形的两条对角线长可以是().A.5㎝和7㎝ B.10㎝和12㎝ C.16㎝和36㎝

D.8㎝和10㎝

18.如图,□ ABCD中,AEperp;BC于点E,AFperp;CD于点F,若AE =4,AF=6,□ ABCD的周长为40,则□ABCD的面积为()A.24 B.36 C.40 D.48

三、解答题(本大题共7小题,共56分,解答应写出必要的计算过程、推演步骤或文字说明)19.(8分)如图,在□ABCD中,点E是AD的中点,连接CE并延长,交BA的延长线于点F.求证:FA=AB.20.(8分)随着我市经济发展水平的提高和新兴产业的兴起,劳动力市场已由体力型向专业技能型转变,为了解我市外来务工人员的专业技术状况,劳动部门随机抽查了一批外来务工人员,并根据所收集的数据绘制了两幅不完整的统计:

(1)本次共调查了 名外来务工人员,其中有初级技术的务工人员有_______人,有中级技术的务工人员人数占抽查人数的百分比是____________;(2)若我市共有外来务工人员15 000人,试估计有专业技术的外来务工人员共有多少人? 21.(8分)学习了统计知识后,小明的数学老师要求每个学生就本班同学的上学方式进行一次凋查统计,如图是小明通过收集数据后绘制的两幅不完整的统计图.请根据图中提供的信息,解答下列问题:(1)该班共有_________名学生;(2)将“骑自行车”部分的条形统计图补充完整;(3)在扇形统计图中,求出“乘车”部分所对应的圆心角的度数;(4)若全年级有800名学生,试估计该年级骑自行车上学的学生人数.22.(8分)某校课外兴趣小组从我市七年级学生中抽取2 000人做了如下问卷调查,将统计结果绘制了如下两幅统计图.根据上述信息解答下列问题:

(1)求条形统计图中n的值.(2)求出“喝饮料”扇形区域的圆心角.(3)如果每瓶饮料平均3元钱,“少2瓶以上”按少喝3瓶计算.求抽取的这2000名学生一个月通过少喝饮料能节省多少钱捐给希望工程? 23.(本题满分8分)如图,在平面直角坐标系中,的顶点坐标为.(1)若将 向右平移3个单位长度,再向上平移1个单位长度,请画出平移后的;(2)画出 绕原点旋转 后得到的;(3)若 与 是中心对称图形,则对称中心的坐标为___________.24.(本题满分8分)如图,请在下列四个关系中,选出两个恰当的关系作为条件,推出四边形 是平行四边形,并予以证明.(写出一种即可)关系:① ∥,②,③,④.已知:在四边形 中,;求证:四边形 是平行四边形.

第二篇:数学初二下册几何题

1、如图,在△ABC中,点D在AB上,且CD=CB,点E为BD的中点,点F为AC的中点,连结EF交CD于点M,连接AM.

(1)求证:EF= 1/2AC

(2)若∠BAC=45°,求线段AM、DM、BC之间数量关系.

2、如图,在△ABC中,D、E分别是的中点,过点E作EF∥AB,交BC于点F.

(1)求证:四边形DBFE是平行四边形.(2)当△ABC满足什么条件时,四边形DBFE是菱形?为什么?

3、D、E分别是不等边三角形ABC(即AB≠BC≠AC)的边AB、AC的中点.O是△ABC所在平面上的动点,连接OB、OC,点G、F分别是OB、OC的中点,顺次连接点D、G、F、E.

(1)如图,当点O在△ABC的内部时,求证:四边形DGFE是平行四边形;(2)若四边形DGFE是菱形,则OA与BC应满足怎样的数量关系?

4、如图,在△ABC中,点D,E,F分别是AB,BC,CA的中点,AH是边BC上的高.(1)求证:四边形ADEF是平行四边形;(2)求证:∠DHF=∠DEF.

5、如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.(1)求证:AF=DC;(2)若AB⊥AC,试判断ADCF的形状,并证明你的结论.6、如图,平行四边形ABCD中,BD⊥AD,∠A=45°,E、F分别是AB,CD上的点,且BE=DF,连接EF交BD于O.(1)求证:BO=DO;

(2)若EF⊥AB,延长EF交AD的延长线于G,当FG=1时,求AD的长.

7、.在四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点,顺次连接EF、FG、GH、HE.

(1)请判断四边形EFGH的形状,并给予证明;

(2)试探究当满足什么条件时,使四边形EFGH是菱形,并说明理由。

8、如图,在直角三角形ABC中,∠ACB=90°,AC=BC=10,将△ABC绕点B沿顺时针方向旋转90°得到△A1BC1.

(1)线段A1C1的长度是多少?∠CBA1的度数是多少?(2)连接CC1,求证:四边形CBA1C1是平行四边形.

9、如图,矩形ABCD中,点P是线段AD上一动点,O为BD的中点,PO的延长线交BC于Q.(1)求证:OP=OQ;

(2)若AD=8厘米,AB=6厘米,P从点A出发,以1厘米/秒的速度向D运动(不与D重合).设点P运动时间为t秒,请用t表示PD的长;并求t为何值时,四边形PBQD是菱形.

10、已知:如图,在平行四边形ABCD中,AE是BC边上的高,将△ABE沿BC方向平移,使点E与点C重合,得△GFC.(1)求证:BE=DG;

(2)若∠B=60°,当AB与BC满足什么数量关系时,四边形ABFG是菱形?试证明.11、如图,在四边形ABCD中,AD∥BC,E为CD的中点,连结AE、BE,BE⊥AE,延长AE交BC的延长线于点F.

求证:(1)FC=AD;(2)AB=BC+AD.

12、如图,在△ABC中,AB=AC,D是BC的中点,连结AD,在AD的延长线上取一点E,连结BE,CE.

(1)求证:△ABE≌△ACE

(2)当AE与AD满足什么数量关系时,四边形ABEC是菱形?并说明理由.

13、如图,在平行四边形ABCD中,点E是边AD的中点,BE的延长线与CD的延长线交于点F.(1)求证:△ABE≌△DFE;

(2)连结BD、AF,判断四边形ABDF的形状,并说明理由.14、如图,已知点D在△ABC的BC边上,DE∥AC交AB于E,DF∥AB交AC于F.(1)求证:AE=DF;

(2)若AD平分∠BAC,试判断四边形AEDF的形状,并说明理由.

15、在梯形ABCD中,AD∥BC,AB=DC,过点D作DE⊥BC,垂足为点E,并延长DE至点F,使EF=DE.连接BF、CF、AC.(1)求证:四边形ABFC是平行四边形;

(2)若DE²=BE-CE,求证:四边形ABFC是矩形.16、.如图,△ABC中,AB=AC,AD、AE分别是∠BAC和∠BAC的外角平分线,BE⊥AE.(1)求证:DA⊥AE(2)试判断AB与DE是否相等?并说明理由。

17、如图,在△ABC中,AB=AC,点D是BC上一动点(不与B、C重合),作DE∥AC交AB于点E,DF∥AB交AC于点F.(1)当点D在BC上运动时,∠EDF的大小_______(变大、变小、不变)(2)当AB=10时,四边形AEDF的周长是多少?

(3)点D在BC上移动的过程中,AB、DE与DF总存在什么数量关系?请说明.18、如图,四边形ABCD中,AB∥CD,AC平分∠BAD,CE∥AD交AB于E.(1)求证:四边形AECD是菱形;

(2)若点E是AB的中点,试判断△ABC的形状,并说明理由.19、如图,平行四边形ABCD中,E为BC的中点,连结AE并延长交DC的延长线于点F.(1)求证:AB=CF(2)当BC与AF满足什么数量关系时,四边形ABFC是矩形?并说明.20、如图,在正方形ABCD中,G是CD上一点,延长BC到E,使CE=CG,连结BG并延长交DE于点F.(1)求证:△BCG≌△DCE(2)将△DEC绕点D顺时针旋转90°得到△DMA,判断四边形MBGD是什么特殊四边形?

21、.将平行四边形纸片ABCD如图方式折叠,使点C与点A重合,点D落到D’处,折痕为EF.(1)求证:△ABE≌△AD’F D’

(2)连结CF,判断四边形AECF是什么特殊四边形,说明理由.22、.如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为E.(1)求证:四边形ADCE是矩形;

(2)当△ABC满足什么条件时,四边形ADCE是正方形?说明理由.23、四边形ABCD、DEFG都是正方形,连结AE、CG.(1)求证:AE=CG;(2)猜想AE与CG的位置关系,并证明.24、如图,在四边形ABFC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且CF=AE.(1)试探究四边形BECF是什么特殊四边形,并说明理由;

(2)当∠A的大小满足什么条件时,四边形BECF是正方形?请回答并证明你的结论.

25、如图,在平行四边形ABCD中,AB⊥AC,AB=1,BC=根号5,对角线AC、BD相交于点O,将直线AC绕点O顺时针旋转,分别交BC、AD于点E、F.(1)证明:当旋转角为90°时,四边形ABEF是平行四边形;

(2)试探究在旋转过程中,线段AF与EC有怎样的数量关系,并证明;

(3)在旋转过程中,四边形BEDF可能是菱形吗?如果不能,请说明理由;如果能,说明理由并求出此时AC绕点O顺时针旋转的度数.26、如图,B、C、E是同一直线上的三个点,四边形ABCD与四边形CEFG都是正方形,连结BG、DE.(1)猜想BG与DE之间的大小关系,并证明你的结论;

(2)在图中是否存在通过旋转能够互相重合的两个三角形?若存在,请指出,并说明旋转过程;若不存在,请说明理由.27、如图,矩形ABCD中,O是AC与BD的交点,过点O的直线EF与AB、CD的延长线分别交于点E、F.(1)求证:△BOC≌△DOF;

(2)当EF与AC满足什么关系时,四边形AECF是菱形?并说明.28、如图,△ABC是等边三角形,D、E分别在边BC、AC上,且CD=CE,连结DE并延长至点F,使EF=AE,连结AF、BE和CF.(1)请在图中找出一对全等三角形,并加以证明;(2)判断四边形ABDF的形状,并说明理由.29、如图,△ABC是等边三角形,点D是线段BC上的动点(点D不与B、C重合),△ADE是以AD为边的等边三角形,过E作BC的平行线,分别交AB、AC于点F、G,连结BE.(1)求证:△AEB≌△ADC;

(2)四边形BCGE是怎样的四边形?说明理由.30、已知:如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,DE⊥AC于点F,交BC于点G,交AB的延长线于点E,且AE=AC.(1)求证:BG=FG;

(2)若AD=DC=2,求AB的长.

31、如图,已知矩形ABCD,延长CB到E,使CE=CA,连结AE并取中点F,连结AE并取中点F,连结BF、DF,求证BF⊥DF.

32、已知:如图,在矩形ABCD中,E、F分别是边BC、AB上的点,且EF=ED,EF⊥ED.求证:AE平分∠BAD.33、如图,△ABC中,M是BC的中点,AD是∠A的平分线,BD⊥AD于D,AB=12,AC=18,求DM的长.34、如图,四边形ABCD为等腰梯形,AD∥BC,AB=CD,对角线AC、BD交于点O,且AC⊥BD,DH⊥BC.(1)求证:DH=1/2(AD+BC)

(2)若AC=6,求梯形ABCD的面积。

35、如图,P是正方形ABCD对角线BD上一点,PE⊥DC,PF⊥BC,E、F分别为垂足,若CF=3,CE=4,求AP的长.36、如图,等腰梯形ABCD中,AD∥BC,M、N分别是AD、BC的中点,E、F分别是BM、CM的中点.

(1)在不添加线段的前提下,图中有哪几对全等三角形?请直接写出结论;(2)判断并证明四边形MENF是何种特殊的四边形?(3)当等腰梯形ABCD的高h与底边BC满足怎样的数量关系时?四边形MENF是正方形(直接写出结论,不需要证明).1、雅美服装厂现有A种布料70m,B种布料52m,现计划用这两种布料生产M、N两种型号的时装共80套.已知做一套M型号的时装需用A种布料0.6m,B种布料0.9m,可获利润45元;做一套N型号的时装需用A种布料1.1m,B种布料0.4m,可获利润50元.若设生产N型号的时装套数为x套,总利润为y元.(1)请帮雅美服装厂设计出生产方案.(2)求y与x的函数关系式,利用一次函数性质,选出利润最大的方案.2、如图,直线L1的解析式为y=-3x+3,且L1与x轴交于点D,直线L2经过点A、B,点B的坐标为(3,-3/2),直线L1、L2交于点C.(第一套26题)(1)求直线L2的解析式.(2)求△ADC的面积.(3)在直线L2上存在异于点C的另一点P,使△ADP和△ADC的面积相等,求点P的坐标.(4)若点H为坐标平面内任意一点,在坐标平面内是否存在这样的点H,使A、D、C、H为顶点的四边形是平行四边形?若存在,求出H的坐标.3、如图,在平行四边形ABCD中,AB=6,E是BC边的中点,F为CD边上一点,DF=4.8,∠DFA=2∠BAE,则AF长多少?(第二套14题)

第三篇:初二生物训练题

1.下列四组动物中,不属于软体动物的是()

A.鲍鱼、牡蛎 B.海葵、海蜇 C.乌贼、鱿鱼 D.蜗牛、扇贝

【考察目的】软体动物的主要特征。

【答案】B

【解析】选项中的鲍鱼、牡蛎、乌贼、鱿鱼、蜗牛、扇贝都是身体柔软、有外套膜的软体动物;海葵、海蜇是结构简单、有口无肛门的腔肠动物.因此以上动物中不是软体动物的是海葵、海蜇。

2.下列有关蝗虫适于陆地生活的特征描述,不正确的是()

A.体表具有外骨骼B.身体分节,有三对足,两对翅

C.有三个单眼,仅能感光D.具有适于在陆地进行呼吸的肺

【考察目的】节肢动物――蝗虫的结构特点与其适应环境之间的关系。

【答案】D

【解析】蝗虫属于昆虫,身体分为头、胸、腹三部分,昆虫的体表有外骨骼,起到保护作用。具有三对足和两对翅,运动能力较强。在陆地上用气管呼吸。

3.下列动物中,都属于节肢动物的是()

A.螃蟹、苍蝇 B.羊、牛 C.青蛙、金龟子 D.田螺、水蛭

【考察目的】节肢动物的主要特征。

【答案】A

【解析】选项中的羊、牛为哺乳动物,青蛙为两栖动物,田螺是软体动物,水蛭是环节动物。

4.下列哪项不是节肢动物所具备的特点()

A.身体有许多体节构成B.体表有外骨骼

C.都有三对足,两对翅D.足和触角都分节

【考察目的】节肢动物的主要特征。

【答案】C

【解析】C选项只是节肢动物中的昆虫类群的特征,而其他节肢动物如虾、蜘蛛等不具有此特征。

第四篇:初二数学几何综合训练题及答案

初二几何难题训练题

1,如图矩形ABCD对角线AC、BD交于O,E F分别是OA、OB的中点(1)求证△ADE≌△BCF:(2)若AD=4cm,AB=8cm,求CF的长。

2,如图,在直角梯形ABCD中,AB∥DC,∠ABC=90°,AB=2DC,对角线AC⊥BD,垂足为F,过点F作EF∥AB,交AD于点E,CF=4cm.(1)求证:四边形ABFE是等腰梯形;(2)求AE的长.

3,如图,用三个全等的菱形ABGH、BCFG、CDEF拼成平行四边形ADEH,连接AE与BG、CF分别交于P、Q,(1)若AB=6,求线段BP的长;

(2)观察图形,是否有三角形与△ACQ全等?并证明你的结论

4,已知点E,F在三角形ABC的边AB所在的直线上,且AE=BF,FH//EG//AC,FH、EC分别交边BC所在的直线于点H,G 1 如果点E。F在边AB上,那么EG+FH=AC,请证明这个结论 2 如果点E在AB上,FH,AC的长度关系是什么? 点F在AB的延长线上,那么线段EG,3 如果点E在AB的反向延长线上,点F在AB的延长线上,那么线段EG,FH,AC的长度关系是什么? 请你就1,2,3的结论,选择一种情况给予证明

5,如图是一个常见铁夹的侧面示意图,OA,OB表示铁夹的两个面,C是轴,CD⊥OA于点D,已知DA=15mm,DO=24mm,DC=10mm,我们知道铁夹的侧面是轴对称图形,请求出A、B两点间的距离.

6,如图,在平行四边形ABCD中,过点B作BE⊥CD,垂足为E,连接AE,F为AE上一点,且∠BFE=∠C,(1)求证:△ABF∽△EAD ;(2)若AB=5,AD=3,∠BAE=30°,求BF的长

7,如图,AB与CD相交于E,AE=EB,CE=ED,D为线段FB的中点,GF与AB相交于点G,若CF=15cm,求GF之长。

8,如图1,已知四边形ABCD是菱形,G是线段CD上的任意一点时,连接BG交AC于F,过F作FH∥CD交BC于H,可以证明结论FH/AB =FG /BG 成立.(考生不必证明)(1)探究:如图2,上述条件中,若G在CD的延长线上,其它条件不变时,其结论是否成立?若成立,请给出证明;若不成立,请说明理由;(2)计算:若菱形ABCD中AB=6,∠ADC=60°,G在直线CD上,且CG=16,连接BG交AC所在的直线于F,过F作FH∥CD交BC所在的直线于H,求BG与FG的长.

(3)发现:通过上述过程,你发现G在直线CD上时,结论FH /AB =FG /BG 还成立吗?

9,如图,已知直角梯形ABCD中,AD∥BC,∠B=90°,AB=12cm,BC=8cm,DC=13cm,动点P沿A→D→C线路以2cm/秒的速度向C运动,动点Q沿B→C线路以1cm/秒的速度向C运动.P、Q两点分别从A、B同时出发,当其中一点到达C点时,另一点也随之停止.设运动时间为t秒,△PQB的面积为ycm2.(1)求AD的长及t的取值范围;

(2)当1.5≤t≤t0(t0为(1)中t的最大值)时,求y关于t的函数关系式;

(3)请具体描述:在动点P、Q的运动过程中,△PQB的面积随着t的变化而变化的规律.

第五篇:初二数学几何综合训练题及答案

初二几何难题训练题

1,如图矩形ABCD对角线AC、BD交于O,E F分别是OA、OB的中点(1)求证△ADE≌△BCF:(2)若AD=4cm,AB=8cm,求CF的长。证明:(1)在矩形ABCD中,AC,BD为对角线,∴AO=OD=OB=OC

∴∠DAO=∠ADO=∠CBO=∠BCO

∵E,F为OA,OB中点

∴AE=BF=1/2AO=1/2OB

∵AD=BC, ∠DAO=∠CBO,AE=BF

∴△ADE≌△BCF(2)过F作MN⊥DC于M,交AB于N

∵AD=4cm,AB=8cm ∴BD=4根号5

∵BF:BD=NF:MN=1:4

∴NF=1,MF=3 ∵EF为△AOB中位线

∴EF=1/2AB=4cm

∵四边形DCFE为等腰梯形

∴MC=2cm

∴FC=根号13cm。

2,如图,在直角梯形ABCD中,AB∥DC,∠ABC=90°,AB=2DC,对角线AC⊥BD,垂足为F,过点F作EF∥AB,交AD于点E,CF=4cm.(1)求证:四边形ABFE是等腰梯形;(2)求AE的长.

(1)证明:过点D作DM⊥AB,∵DC∥AB,∠CBA=90°,∴四边形BCDM为矩形. ∴DC=MB. ∵AB=2DC,∴AM=MB=DC. ∵DM⊥AB,∴AD=BD.

∴∠DAB=∠DBA.

∵EF∥AB,AE与BF交于点D,即AE与FB不平行,∴四边形ABFE是等腰梯形.(2)解:∵DC∥AB,∴△DCF∽△BAF.

∴CD AB =CF AF =1 2 . ∵CF=4cm,∴AF=8cm.

∵AC⊥BD,∠ABC=90°,在△ABF与△BCF中,∵∠ABC=∠BFC=90°,∴∠FAB+∠ABF=90°,∵∠FBC+∠ABF=90°,∴∠FAB=∠FBC,∴△ABF∽△BCF,即BF CF =AF BF,∴BF2=CF•AF. ∴BF=4 2 cm. ∴AE=BF=4 2 cm.

3,如图,用三个全等的菱形ABGH、BCFG、CDEF拼成平行四边形ADEH,连接AE与BG、CF分别交于P、Q,(1)若AB=6,求线段BP的长;

(2)观察图形,是否有三角形与△ACQ全等?并证明你的结论

解:(1)∵菱形ABGH、BCFG、CDEF是全等菱形 ∴BC=CD=DE=AB=6,BG∥DE ∴AD=3AB=3×6=18,∠ABG=∠D,∠APB=∠AED ∴△ABP∽△ADE ∴BP DE =AB AD∴BP=AB AD •DE=6 18 ×6=2;(2)

∵菱形ABGH、BCFG、CDEF是全等的菱形 ∴AB=BC=EF=FG ∴AB+BC=EF+FG ∴AC=EG

∵AD∥HE ∴∠1=∠2 ∵BG∥CF ∴∠3=∠4 ∴△EGP≌△ACQ.

4,已知点E,F在三角形ABC的边AB所在的直线上,且AE=BF,FH//EG//AC,FH、EC分别交边BC所在的直线于点H,G 1 如果点E。F在边AB上,那么EG+FH=AC,请证明这个结论 2 如果点E在AB上,FH,AC的长度关系是什么? 点F在AB的延长线上,那么线段EG,3 如果点E在AB的反向延长线上,点F在AB的延长线上,那么线段EG,FH,AC的长度关系是什么? 请你就1,2,3的结论,选择一种情况给予证明

解:(1)∵FH∥EG∥AC,∴∠BFH=∠BEG=∠A,△BFH∽△BEG∽△BAC. ∴BF/FH=BE/EG=BA/AC ∴BF+BE/FH+EG=BA/AC 又∵BF=EA,∴EA+BE/FH+EG=AB/AC ∴AB/FH+EG=AB/AC. ∴AC=FH+EG.

(2)线段EG、FH、AC的长度的关系为:EG+FH=AC. 证明(2):过点E作EP∥BC交AC于P,∵EG∥AC,∴四边形EPCG为平行四边形. ∴EG=PC.

∵HF∥EG∥AC,∴∠F=∠A,∠FBH=∠ABC=∠AEP. 又∵AE=BF,∴△BHF≌△EPA. ∴HF=AP.

∴AC=PC+AP=EG+HF. 即EG+FH=AC.

5,如图是一个常见铁夹的侧面示意图,OA,OB表示铁夹的两个面,C是轴,CD⊥OA于

点D,已知DA=15mm,DO=24mm,DC=10mm,我们知道铁夹的侧面是轴对称图形,请求出A、B两点间的距离.

解:连接AB,同时连接OC并延长交AB于E,因为夹子是轴对称图形,故OE是对称轴,∴OE⊥AB,AE=BE,∴Rt△OCD∽Rt△OAE,∴OC:OA = CD:AE

AE= =15,∵AB=2AE ∴ AB =30(mm)∵OC²=OD²+CD² ∴OC =26,∴.(8分)答:AB两点间的距离为30mm.

6,如图,在平行四边形ABCD中,过点B作BE⊥CD,垂足为E,连接AE,F为AE上一点,且∠BFE=∠C,(1)求证:△ABF∽△EAD ;(2)若AB=5,AD=3,∠BAE=30°,求BF的长

解:

(1)∵四边形ABCD是平行四边形

∴AB∥CD,AD∥BC

∴∠BAE=∠AED,∠D+∠C=180°

且∠BFE+∠AFB=180°

又∵∠BFE=∠C

∴∠D=∠AFB

∵∠BAE=∠AED,∠D=∠AFB

∴△ABF∽△EAD(2)∵∠BAE=30°,且AB∥CD,BE⊥CD

∴△ABEA为Rt△,且∠BAE=30°

又 ∵AB=4

∴AE=3分之8倍根号3

7,如图,AB与CD相交于E,AE=EB,CE=ED,D为线段FB的中点,GF与AB相交于点G,若CF=15cm,求GF之长。

解∵CE=DE BE=AE,∴△ACE≌△BDE ∴∠ACE=∠BDE ∵∠BDE+∠FDE=180°

∴∠FDE+∠ACE=180°

∴AC∥FB

∴△AGC∽△BGF ∵D是FB中点 DB=AC ∴AC:FB=1:2 ∴CG:GF=1:2 ;

设GF为x 则CG为15-X

GF=CF/3C×2=10cm

8,如图1,已知四边形ABCD是菱形,G是线段CD上的任意一点时,连接BG交AC于F,过F作FH∥CD交BC于H,可以证明结论FH/AB =FG /BG 成立.(考生不必证明)(1)探究:如图2,上述条件中,若G在CD的延长线上,其它条件不变时,其结论是否成立?若成立,请给出证明;若不成立,请说明理由;(2)计算:若菱形ABCD中AB=6,∠ADC=60°,G在直线CD上,且CG=16,连接BG交AC所在的直线于F,过F作FH∥CD交BC所在的直线于H,求BG与FG的长.

(3)发现:通过上述过程,你发现G在直线CD上时,结论FH /AB =FG /BG 还成立吗?

解:(1)结论FH AB =FG BG 成立 证明:由已知易得FH∥AB,∴FH/ AB =HC/ BC,∵FH∥GC,HC BC =FG BG∴FH/ AB =FG/ BG .(2)∵G在直线CD上,∴分两种情况讨论如下:

①G在CD的延长线上时,DG=10,如图1,过B作BQ⊥CD于Q,由于四边形ABCD是菱形,∠ADC=60°,∴BC=AB=6,∠BCQ=60°,.

又由FH∥GC,可得FH/ GC =BH /BC,而△CFH是等边三角形,∴BH=BC-HC=BC-FH=6-FH,∴FH 16 =6-FH 6,∴FH=48 11,由(1)知FH/ AB =FG/ BG,②G在DC的延长线上时,CG=16,如图2,过B作BQ⊥CG于Q,∵四边形ABCD是菱形,∠ADC=60°,∴BC=AB=6,∠BCQ=60°.

又由FH∥CG,可得FH/ GC =BH/ BC,∴FH 16 =BH 6 .

∵BH=HC-BC=FH-BC=FH-6,9,如图,已知直角梯形ABCD中,AD∥BC,∠B=90°,AB=12cm,BC=8cm,DC=13cm,动点P沿A→D→C线路以2cm/秒的速度向C运动,动点Q沿B→C线路以1cm/秒的速度向C运动.P、Q两点分别从A、B同时出发,当其中一点到达C点时,另一点也随之停止.设运动时间为t秒,△PQB的面积为ycm2.(1)求AD的长及t的取值范围;

(2)当1.5≤t≤t0(t0为(1)中t的最大值)时,求y关于t的函数关系式;

(3)请具体描述:在动点P、Q的运动过程中,△PQB的面积随着t的变化而变化的规律.

下载2014年初二数学下册训练题word格式文档
下载2014年初二数学下册训练题.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    关于初二年级下册的英语同步训练题

    在背诵一些课本知识点的同时还需要做一些练习题。1.I____________(go)tothebeachifit________________(notrain)thisweek.2.__________they__________(have)amatchiftheP.E.......

    初二下册典型题

    初二政治下册典型题第10课、我与集体共发展1、一天,释迦牟尼问弟子:“一滴水怎样才能不干涸?”弟子们面面相觑,不知如何回答。佛祖说:“把它放到大海中,于汹涌澎湃的大海融为一体,......

    小学一年级数学下册应用题训练(300题)

    小学一年级数学下册应用题训练(1—20题) 6、动物园里黄狗和花狗有12只,9只是黄的,有几只是花的?7、小红拿30元钱去买一本书15元和一枝笔8元,售货员应找回多少元? 8、小图书室有90本......

    一年级下册数学认识人民币训练题

    同学们在学习的过程中是用什么样的方法来巩固自己所学的知识点呢?编辑老师建议大家多做一些与之相关的题,接下来就为大家整理了一年级下册数学认识人民币练习题,希望大家学习......

    初二下册材料作文专项训练

    精英辅导学校邓超鸿专用2013-7-23 初二年级下 材料作文专项训练 【命题解读】 材料作文是一种把阅读材料、梳理要点与写作考查结合的作文命题形式。因为阅读材料的多向性、......

    初二下册数学难题

    一、 填空题 1、某天的最高温度为12oC,最低温度为aoC,则这天的温差是_______. 2、用代数式表示比m的4倍大2的数为______. 3、小彬上次数学成绩80分,这次成绩提高了a%,这次数......

    初二数学下册教学计划

    八年级数学下册教学计划为了稳步提高学生的数学学习成绩,根据该生的实际情况特制订以下计划 一、对基础知识的辅导 该同学数学成绩属于中等偏上,对基础知识的掌握有一定的基础......

    初二下册数学教学计划

    漫长的假期过去了,新学期又悄悄地来临了。在新的一个学期,我也有一些新的打算,我要在新的一学期更上一层楼。 在新的学期里,我一定要完成老师留下的作业,努力在每一次考试中都获......