北师大七下 第二章平行线的证明

时间:2019-05-14 13:48:22下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《北师大七下 第二章平行线的证明》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《北师大七下 第二章平行线的证明》。

第一篇:北师大七下 第二章平行线的证明

平行证明

1.珠江流域某江段江水流向经过B、C、D三点拐弯后与原来相同,如图,若∠ABC=120°,∠BCD=80°,求∠CDE的度数.

4.已知∠AOB是一个直角,作射线OC,再分别作∠AOC和∠BOC的平分线OD、OE.

2.已知如图射线AB∥CD,P为一动点,∠BAP与∠DCP的平分线AE与CE交于点E(1)当P运动到线段AC上时,∠APC=180°(图1),此时∠AEC为多少度?(不要求证明)

(2)当P运动到如图2的位置时,猜想∠AEC与∠APC 的关系,并说明理由?(3)当P运动到如图3的位置时,上述结论还成立吗?(不要求说明理由)

(1)如图①,当∠BOC=70°时,求∠DOE的度数;

(2)如图②,当射线OC在∠AOB内绕O点旋转时,∠DOE的大小是否发生变化,说明理由;

(3)当射线OC在∠AOB外绕O点旋转且∠AOC为钝角时,画出图形,直接写出相应的∠DOE的度数(不必写出过程).

5.如图,已知∠HDC与∠ABC互补,∠HFD=∠BEG,∠H=20°,求∠G的度数.

3.如图,已知AB∥DE∥CF,若∠ABC=70°,CD是∠BCF的平分线,求∠CDE的度

6.如图,已知直线AB∥DF,∠D+∠B=180°.

(1)求证:DE∥BC;(2)如果∠AMD=75°,求∠AGC的度数.

数.

第1页(共9页)

7.已知:如图,CD∥AB,CD∥GF,FA与AB交于点A,FA与CD交于点E. 求证:∠A=∠1+∠C.

11.如图,已知DC∥FP,∠1=∠2,∠FED=28°,∠AGF=80°,FH平分∠EFG.(1)说明:DC∥AB;(2)求∠PFH的度数.

8.已知:如图,AE⊥BC,FG⊥BC,∠1=∠2,∠D=∠3+60°,∠CBD=70°.(1)求证:AB∥CD;(2)求∠C的度数.

12.如图,已知射线AB与直线CD交于点O,OF平分∠BOC,OG⊥OF于O,AE∥OF,且∠A=30°.

(1)求∠DOF的度数;(2)试说明OD平分∠AOG.

9.如图,已知∠1+∠2=180°,∠3=B,(1)证明:EF∥AB.(2)试判断∠AED与∠C的大小关系,并说明你的理由.

13.如图,直线AB,CD被直线BD,DF所截,AB∥CD,FB⊥DB,垂足为B,EG平分∠DEB,∠CDE=50°,∠F=25°.(1)求证:EG⊥BD;(2)求∠CDB的度数.

10.如图,在四边形纸片ABCD中,∠B=∠D=90°,点E在BC边上,把纸片按图中所示的方式折叠,使点B落在AD边上的F点处,折痕为AE.

(1)判断EF与CD的位置关系,并说明理由;(2)如果∠C=110°,求∠AEB的度数.

14.如图,EF∥AD,AD∥BC,∠DAC=120°.(1)若AB平分∠DAC,求∠ABC的度数.(2)若∠ACF=20°,求∠BCF的度数.

(3)在(2)的条件下,若CE平分∠BCF,求∠CEF的度数.

第2页(共9页)

第3页(共9页)

2018年04月10日138****6042的初中数学组卷

参考答案与试题解析

一.填空题(共1小题)1.珠江流域某江段江水流向经过B、C、D三点拐弯后与原来相同,如图,若∠ABC=120°,∠BCD=80°,则∠CDE= 20 度.

(3)当P运动到如图3的位置时,上述结论还成立吗?(不要求说明理由)

【分析】(1)根据∠BAP与∠DCP的平分线AE与CE交于点E,即可得出∠BAE=∠EAC,∠DCE=∠ACE,再利用平行线的性质求出即可;

(2)作EM∥BA,PN∥BA,根据平行的传递性,再根据两直线平行内错角相等的性质可求;

(3)根据平行的传递性,再根据两直线平行内错角相等的性质以及平角性质即可求出. 【解答】解:(1)过E作EF∥AB,∵AB∥CD,∴∠BAC+∠DCA=180°,∵∠BAP与∠DCP的平分线AE与CE交于点E,∴∠BAE=∠EAC,∠DCE=∠ACE,∴∠BAE+∠CEF=90°;

∴∠AEC=180°,此时∠AEC为90度;

(2)作EM∥BA,PN∥BA,∴∠BAE=∠AEM,∠MEC=∠ECD,∠APN=∠BAP,∠NPC=∠PCD,∵∠BAE=∠EAP,∠PCE=∠ECD,又∵∠AEC=∠AEM+∠MEC,∠APC=∠APN+∠NPC,∴∠AEC=∠APC;

(3)作EW∥AB,EP∥AB,同理即可得出:2∠AEC=360°﹣∠APC,∴∠AEC=180°﹣∠APC.

【分析】由已知珠江流域某江段江水流向经过B、C、D三点拐弯后与原来相同,得AB∥DE,过点C作CF∥AB,则CF∥DE,由平行线的性质可得,∠BCF+∠ABC=180°,所以能求出∠BCF,继而求出∠DCF,又由CF∥DE,所以∠CDE=∠DCF. 【解答】解:过点C作CF∥AB,已知珠江流域某江段江水流向经过B、C、D三点拐弯后与原来相同,∴AB∥DE,∴CF∥DE,∴∠BCF+∠ABC=180°,∴∠BCF=60°,∴∠DCF=20°,∴∠CDE=∠DCF=20°. 故答案为:20.

【点评】此题考查的知识点是平行线的性质,关键是过C点先作AB的平行线,由平行线的性质求解.

二.解答题(共13小题)

2.已知如图射线AB∥CD,P为一动点,∠BAP与∠DCP的平分线AE与CE交于点E(1)当P运动到线段AC上时,∠APC=180°(图1),此时∠AEC为多少度?(不要求证明)

(2)当P运动到如图2的位置时,猜想∠AEC与∠APC 的关系,并说明理由?

第4页(共9页)

【点评】此题主要考查了平行线的性质以及平行线的传递性等知识,解题的关键是正确作出辅助线,然后根据两直线平行内错角相等的性质解此类题.

3.如图,已知AB∥DE∥CF,若∠ABC=70°,CD是∠BCF的平分线,求∠CDE的度数.(写理解)

【分析】由AB∥CF,∠ABC=70°,易求∠BCF,∠DCF,又DE∥CF,那么易求∠DCF. 【解答】解:∵AB∥CF,∠ABC=70°,∴∠BCF=∠ABC=70°,∵CD是∠BCF的平分线,∴∠BCD=∠DCF=35°,又∵DE∥CF,∴∠DCF+∠CDE=180°,∴∠CDE=145°.

【点评】本题利用了平行线的性质:两直线平行,内错角相等;两直线平行,同旁内角互补,牢记平行线的性质是解题的关键.

4.已知∠AOB是一个直角,作射线OC,再分别作∠AOC和∠BOC的平分线OD、OE.

(2)如图②,当射线OC在∠AOB内绕O点旋转时,∠DOE的大小是否发生变化,说明理由;

(3)当射线OC在∠AOB外绕O点旋转且∠AOC为钝角时,画出图形,直接写出相应的∠DOE的度数(不必写出过程). 【分析】(1)由∠BOC的度数求出∠AOC的度数,利用角平分线定义求出∠COD与∠COE的度数,相加即可求出∠DOE的度数;

(2)∠DOE度数不变,理由为:利用角平分线定义得到∠COD为∠AOC的一半,∠COE为∠COB的一半,而∠DOE=∠COD+∠COE,即可求出∠DOE度数为45度;

(3)分两种情况考虑,同理如图3,则∠DOE为45°;如图4,则∠DOE为135°. 【解答】解:(1)如图,∠AOC=90°﹣∠BOC=20°,∵OD、OE分别平分∠AOC和∠BOC,∴∠COD=∠AOC=10°,∠COE=∠BOC=35°,∴∠DOE=∠COD+∠COE=45°;

(2)∠DOE的大小不变,理由是:

∠DOE=∠COD+∠COE=∠AOC+∠COB=(∠AOC+∠COB)=∠AOB=45°;

(3)∠DOE的大小发生变化情况为,如图3,则∠DOE为45°;如图4,则∠DOE为135°,分两种情况:如图3所示,∵OD、OE分别平分∠AOC和∠BOC,∴∠COD=∠AOC,∠COE=∠BOC,∴∠DOE=∠COD﹣∠COE=(∠AOC﹣∠BOC)=45°;

(1)如图①,当∠BOC=70°时,求∠DOE的度数;

第5页(共9页)

如图4所示,∵OD、OE分别平分∠AOC和∠BOC,∴∠COD=∠AOC,∠COE=∠BOC,∴∠DOE=∠COD+∠COE=(∠AOC+∠BOC)=×270°=135°.

【点评】此题考查了角的计算,熟练掌握角平分线定义是解本题的关键.

5.如图,已知∠HDC与∠ABC互补,∠HFD=∠BEG,∠H=20°,求∠G的度数.

【分析】已知∠HFD=∠BEG且∠BEG=∠AEF,从而可得到∠HFD=∠AEF,根据同位角相等两直线平行可得到DC∥AB,根据平行线的性质可得到∠HDC=∠DAB,已知∠HDC与∠ABC互补,则∠DAB也与∠ABC互补,根据同旁内角互补即可得到AD∥BC,根据平行线的性质即可求得∠G的度数.

【解答】解:∵∠HFD=∠BEG且∠BEG=∠AEF,∴∠HFD=∠AEF,∴DC∥AB,∴∠HDC=∠DAB,∵∠HDC+∠ABC=180°,∴∠DAB+∠ABC=180°,∴AD∥BC,∴∠H=∠G=20°.

【点评】此题主要考查学生对平行线的判定及性质的综合运用能力.

6.如图,已知直线AB∥DF,∠D+∠B=180°.(1)求证:DE∥BC;

(2)如果∠AMD=75°,求∠AGC的度数.

【分析】(1)根据平行线的性质得出∠D+∠BHD=180°,求出∠B=∠DHB,根据平行线的判定得出即可;

(2)根据平行线的性质求出∠AGB=∠AMD=75°,根据邻补角的定义求出即可. 【解答】解:(1)∵AB∥DF,∴∠D+∠BHD=180°,∵∠D+∠B=180°,∴∠B=∠BHD,∴DE∥BC;

(2)∵DE∥BC,∴∠AGB=∠AMD,即∠AMD=75°,∴∠AGB=75°,∴∠AGC=180°﹣∠AGB=180°﹣75°=105°.

【点评】本题考查了平行线的性质和判定,邻补角的定义的应用,能求出DE∥BC是解此题的关键.

7.已知:如图,CD∥AB,CD∥GF,FA与AB交于点A,FA与CD交于点E. 求证:∠A=∠1+∠C. 证明:

∵CD∥GF,FA与CD交于点E(已知),∴∠C=∠GFC(两直线平行,内错角相等). ∵∠GFA=∠1+∠GFC(已知),∴∠GFA=∠1+∠C(等量代换). ∵CD∥AB,CD∥GF,(已知),∴AB∥GF(平行于同一直线的两直线平行),∴∠A=∠GFA(两直线平行,内错角相等),∴∠A=∠1+∠C(等量代换). .

【分析】先由平行线的性质得出∠C=∠GFC,再由∠GFA=∠1+∠GFC得出∠GFA=∠1+∠C,根据CD∥AB,CD∥GF可知AB∥GF,故可得出∠A=∠GFA,由此可得出结论. 【解答】证明:∵CD∥GF,FA与CD交于点E(已知),∴∠C=∠GFC(两直线平行,内错角相等).

第6页(共9页)

∵∠GFA=∠1+∠GFC(已知),∴∠GFA=∠1+∠C(等量代换). ∵CD∥AB,CD∥GF,(已知),∴AB∥GF(平行于同一直线的两直线平行),∴∠A=∠GFA(两直线平行,内错角相等),∴∠A=∠1+∠C(等量代换). 【点评】本题考查的是平行线的性质,熟知两直线平行,内错角相等是解答此题的关键.

8.已知:如图,AE⊥BC,FG⊥BC,∠1=∠2,∠D=∠3+60°,∠CBD=70°.(1)求证:AB∥CD;(2)求∠C的度数.

(1)证明:EF∥AB.

(2)试判断∠AED与∠C的大小关系,并说明你的理由.

【分析】(1)求出AE∥GF,求出∠2=∠A=∠1,根据平行线的判定推出即可;

(2)根据平行线的性质得出∠D+∠CBD+∠3=180°,求出∠3,根据平行线的性质求出∠C即可. 【解答】(1)证明:∵AE⊥BC,FG⊥BC,∴AE∥GF,∴∠2=∠A,∵∠1=∠2,∴∠1=∠A,∴AB∥CD;

(2)解:∵AB∥CD,∴∠D+∠CBD+∠3=180°,∵∠D=∠3+60°,∠CBD=70°,∴∠3=25°,∵AB∥CD,∴∠C=∠3=25°.

【点评】本题考查了平行线的性质和判定的应用,注意:平行线的性质有:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,反之亦然,题目比较好,难度适中.

9.如图,已知∠1+∠2=180°,∠3=B,【分析】(1)根据∠1+∠2=180°,∠1+∠DFE=180°,可得∠2=∠DFE,由内错角相等,两直线平行证明EF∥AB;

(2)根据∠3=∠ADE,∠3=∠B,由同位角相等,两直线平行证明DE∥BC,故可根据两直线平行,同位角相等,可得∠AED与∠C的大小关系. 【解答】解:(1)∵∠1+∠4=180°(平角定义),∠1+∠2=180°(已知),∴∠2=∠4,∴EF∥AB(内错角相等,两直线平行);

(2)∠AED与∠C相等. ∵EF∥AB,∴∠3=∠ADE(两直线平行,内错角相等),∵∠3=∠B(已知),∴∠B=∠ADE(等量代换),∴DE∥BC(同位角相等,两直线平行),∴∠AED=∠C(两直线平行,同位角相等).

【点评】本题主要考查了平行线的性质和判定,综合运用平行线的判定与性质定理是解答此题的关键.

10.如图,在四边形纸片ABCD中,∠B=∠D=90°,点E在BC边上,把纸片按图中所示的方式折叠,使点B落在AD边上的F点处,折痕为AE.(1)试判断EF与CD的位置关系,并说明理由;(2)如果∠C=110°,求∠AEB的度数.

【分析】(1)EF与CD平行,理由为:由EF,CD都与AD垂直,得到一对直角相等,利用同位角相等两直线平行即可得证;

(2)由EF与CD平行,利用两直线平行同位角相等得到∠BEF=∠C=110°,由折叠得到

第7页(共9页)

∠AEB=∠AEF,即可求出∠AEB的度数. 【解答】解:(1)EF与CD平行,理由为: ∵∠B=∠AFE,∠B=∠D=90°,∴∠AFE=∠D,∴EF∥CD;

(2)∵EF∥CD,∴∠BEF=∠C=110°,∵∠AEB=∠AEF,∴∠AEB=∠C=55°.

【点评】此题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解本题的关键.

11.如图,已知DC∥FP,∠1=∠2,∠FED=28°,∠AGF=80°,FH平分∠EFG.(1)说明:DC∥AB;(2)求∠PFH的度数.

∴∠GFH=∠GFE=54°,∴∠PFH=∠GFP﹣∠GFH=80°﹣54°=26°.

【点评】此题主要考查了平行线的性质与判定,首先利用同位角相等两直线平行证明直线平行,然后利用平行线的性质得到角的关系解决问题.

12.如图,已知射线AB与直线CD交于点O,OF平分∠BOC,OG⊥OF于O,AE∥OF,且∠A=30°.

(1)求∠DOF的度数;

(2)试说明OD平分∠AOG.

【分析】(1)由DC∥FP知∠3=∠2=∠1,可得;

(2)由(1)利用平行线的判定得到AB∥PF∥CD,根据平行线的性质得到∠AGF=∠GFP,∠DEF=∠EFP,然后利用已知条件即可求出∠PFH的度数. 【解答】解:(1)∵DC∥FP,∴∠3=∠2,又∵∠1=∠2,∴∠3=∠1,∴DC∥AB;

(2)∵DC∥FP,DC∥AB,∠DEF=28°,∴∠DEF=∠EFP=28°,AB∥FP,又∵∠AGF=80°,∴∠AGF=∠GFP=80°,∴∠GFE=∠GFP+∠EFP=80°+28°=108°,又∵FH平分∠EFG,【分析】(1)根据两直线平行,同位角相等可得∠FOB=∠A=30°,再根据角平分线的定义求出∠COF=∠FOB=30°,然后根据平角等于180°列式进行计算即可得解;

(2)先求出∠DOG=60°,再根据对顶角相等求出∠AOD=60°,然后根据角平分线的定义即可得解. 【解答】解:(1)∵AE∥OF,∴∠FOB=∠A=30°,∵OF平分∠BOC,∴∠COF=∠FOB=30°,∴∠DOF=180°﹣∠COF=150°;

(2)∵OF⊥OG,∴∠FOG=90°,∴∠DOG=∠DOF﹣∠FOG=150°﹣90°=60°,∵∠AOD=∠COB=∠COF+∠FOB=60°,∴∠AOD=∠DOG,∴OD平分∠AOG.

【点评】本题考查了平行线的性质,对顶角相等的性质,垂线的定义,(2)根据度数相等得到相等的角是关键.

13.如图,直线AB,CD被直线BD,DF所截,AB∥CD,FB⊥DB,垂足为B,EG平分∠DEB,第8页(共9页)

∠CDE=50°,∠F=25°.(1)求证:EG⊥BD;(2)求∠CDB的度数.

【分析】(1)根据角平分线的定义,可得∠DAB的度数,再根据平行线的性质,即可得出∠ABC的度数;

(2)根据平行线的性质,即可得出∠ACB的度数,再根据角的和差关系,即可得到∠BCF的度数;

(3)根据角平分线的定义,可得∠BCE的度数,再根据平行线的性质,即可得出∠CEF的度数. 【解答】解:(1)∵AB平分∠DAC,∠DAC=120°,∴∠DAB=60°,又∵AD∥BC,∴∠ABC=∠DAB=60°;

(2)∵AD∥BC,∠DAC=120°,∴∠ACB=180°﹣120°=60°,又∵∠ACF=20°,∴∠BCF=60°﹣20°=40°;

(3)∵CE平分∠BCF,∴∠BCE=∠BCF=20°,又∵EF∥AD,AD∥BC,∴EF∥BC,∴∠CEF=∠BCE=20°.

【分析】(1)根据平行线的性质得到∠BED=∠CDE=50°,由角平分线的定义得到∠DEQ=25°,然后根据平行线的性质即可得到结论;

(2)由(1)得∠FBE=∠BFG=25°,根据平行线的性质即可得到结论. 【解答】解:(1)∵AB∥CD,∠CDE=50°,∴∠BED=∠CDE=50°,∵EG平分∠DEB,∴∠DEQ=25°,∵∠F=25°,∴BF∥EG,∵FB⊥BD,∴EG⊥BD;

(2)由(1)得∠FBE=∠BFG=25°,∵∠FBD=90°,∴∠EBD=65°,∵AB∥CD,∴∠CDB=115°. 【点评】本题考查了平行线的性质,垂直的定义,熟练掌握平行线的性质是解题的关键.

14.如图,EF∥AD,AD∥BC,∠DAC=120°.(1)若AB平分∠DAC,求∠ABC的度数.(2)若∠ACF=20°,求∠BCF的度数.

(3)在(2)的条件下,若CE平分∠BCF,求∠CEF的度数.

【点评】本题主要考查了平行线的性质以及角平分线的定义的运用,解题时注意:两直线平行,内错角相等;两直线平行,同旁内角互补.

第9页(共9页)

第二篇:北师大8上平行线的证明练习题

八年级数学上册平行线的证明单元测试题

一、填空题

1.在△ABC中,∠C=2(∠A+∠B),则∠C=________.2.如图,AB∥CD,直线EF分别交AB、CD于E、F,EG平分 ∠BEF,若∠1=72º,则∠2=;

3.在△ABC中,∠BAC=90º,AD⊥BC于D,则∠B与∠DAC的大小关系是 4.写出“同位角相等,两直线平行”的题设为_______,结论为_______. 5.如图,已知AB∥CD,BC∥DE,那么∠B +∠D =__________.A B E

C D B E

第7题 第5题 第6题

6.如图,∠1=27º,∠2=95º,∠3=38º,则∠4=_______

7.如图,写出两个能推出直线AB∥CD的条件________________________.8.满足一个外角等于和它相邻的一个内角的△ABC是_____________

二、选择题

9.下列语句是命题的是()(A)延长线段AB(B)你吃过午饭了吗?(C)直角都相等(D)连接A,B两点

10.如图,已知∠1+∠2=180º,∠3=75º,那么∠4的度数是()(A)75º(B)45º(C)105º(D)135º 11.以下四个例子中,不能作为反例说明“一个角的余角大于这个角”是假命题是(A)设这个角是30º,它的余角是60°,但30°<60°(B)设这个角是45°,它的余角是45°,但45°=45°(C)设这个角是60°,它的余角是30°,但30°<60°(D)设这个角是50°,它的余角是40°,但40°<50°

第10题 12.若三角形的一个内角等于另外两个内角之差,则这个三角形是()(A)锐角三角形(B)直角三角形(C)钝角三角形(D)不能确定 13.如图,△ABC中,∠B=55°,∠C=63°,DE∥AB,则∠DEC等于()(A)63°(B)118°(C)55°(D)62°

14.三角形的一个外角是锐角,则此三角形的形状是()(A)锐角三角形

(B)钝角三角形(C)直角三角形

A

E

B

C

F

2G

D

(D)无法确定

15.下列各语句是命题的是()A.1个B.2个C.3个D.4个

(1)动物都需要氧气;(2)同位角相等;

(3)若两直线被第三直线所截,同位角相等,则内错角一定相等;

(4)平面内过一点只能作一条直线与已知直线平行。

16.下列图形中,已知∠1=∠2,则可得到AB∥CD的是()

BAAAB

BA1EB

1D C

2CDC2D

FCDDCFBCDA

317.如图,AB∥CD,AD∥BC,则下列各式中正确的是()

AB

A.∠1+∠2>∠3B.∠1+∠2=∠3C.∠1+∠2<∠3D.∠1+∠2与∠3无关

18.如图:AB∥CD,MP∥AB,MN平分∠AMD,若∠A=40°,∠D=30°,则∠NMP为()A.10°B.15°C.5°D.7.5°

19.一个角的两边与另一个角的两边分别平行,那么这两个角()

A.相等B.互补C.相等或互补D.不能确定

20.如图,△ABC中,∠1=∠2,∠3=∠4,若∠D=25°,则∠A=()A.25°B.50°C.65°D.75°

21.在直角三角形中,其中一个锐角是另一个锐角的2倍,则这个三角形中最小的角是()

A.15°B.30°C.60°D.90°

22.如图所示,∠

1、∠

2、∠

3、∠4恒满足的关系式是()A.∠1+∠2=∠3+∠4B.∠1+∠2=∠4-∠3 C.∠1+∠4=∠2+∠3D.∠1+∠4=∠2-∠

3423.学习了平行线后,小敏想出了过已知直线外一点画这条直线的平行线的新方法,她是通过折一张透明的纸得到的,如图从图中可知,小敏化平行线的依据有①两直线平行,同位角相等;②两直线平行,内错角相等;③同位角相等,两直线平行;④内错角相等,两直线平行。()A.①②B.②③C.③④D.①④

24.已知△ABC的三个内角,∠A、∠B、∠C满足关系式:∠B+∠C=2∠A,则此三角形()A.一定有一个内角是45°; B一定有一个内角是60°; C.一定是直角三角形;D.一定是钝角三角形。

25.命题“邻补角的平分线互相垂直”的条件是_______,结论是,26.一名道路勘测员从A点出发向北偏东60°方向走到B点,再从B点出发向南偏西15°方向走到C点,则∠ABC的度数是。

A

27.把命题“相似多边形的面积比等于相似比的平方”改写成如果,那么。28.若一个三角形的三个内角之比为4︰3︰2,则这个三角形的最大内角为____

E

29.如图,BE平分∠ABC,DE∥BC,图中相等的角共有对。

B

C

30.把一张长方形纸片如图所示折叠后,再展开,若∠1=55°,则∠2等于。16.如图,已知∠1=20°,∠2=25°,∠A=55°,求∠BDC的度数.

31.三角形的第二个角是第一个角的1.5倍,第三个角比这两个角的和大30°,则最大角的度数为。

18.如图,三角形的两内角平分线的交角∠BO′

三、解答题

19.如图,AB∥CD,AD∥BC,∠B=50°,∠EDA=60°,求∠CDO.17.如图,BE,CD相交于点A,∠DEA、∠BCA的平分线相交于F.(1)探求:∠F与∠B、∠D有何等量关系?

(2)当∠B︰∠D︰∠F=2︰4︰x时,x为多少?

20.如图所示,∠1=∠2,∠3=∠B,FG⊥AC于G,猜想CD与AB的关系,并证明你的猜想。

18.如图,已知点A在直线l外,点B、C在直线l上.

(1)点P是△ABC内一点,求证:∠P>∠A;

(2)试判断:在△ABC外又和点A在直线l同侧,21.如图所示,已知∠1+∠2=180°,∠3=∠B,试判断∠AED与∠C的大小关系,并对结论进行证明。是否存在一点Q,使∠BQC>∠A?试证明你的结论.

15.如图,AD=CD,AC平分∠DAB,求证DC∥AB.-A

D C

第三篇:平行线证明难题

第二章平行线的性质和判定拔高训练

1.(1)如图1所示,把一个长方形纸片沿EF折叠后,点D,C分别落在D,C的位置.若∠EFB=65°,则AED等于__________.

(2)如图2所示,AD∥EF,EF∥BC,且EG∥AC.那么图中与∠1相等的角(不包括∠1)的个数是__________.

(3)如图3所示,AB∥CD,直线AB,CD与直线l相交于点E,F,EG平分∠AEF,FH平分∠EFD,则GE与FH的位置关系为__________.

''

'

2.如果一个角的两边分别平行于另一个角的两边,且其中一个角比另一个角的4倍少30°,那么这两个角分别是()A.30°和150°

B.42°和138°

C.都等于10°

D.42°和138°或都等于10°

3.如图所示,点E在CA延长线上,DE、AB交于点F,且∠BDE=∠AEF,∠B=∠C,∠EFA比∠FDC的余角小10°,P为线段DC上一动点,Q为PC上一点,且满足∠FQP=∠QFP,FM为∠EFP的平分线.则下列结论:①AB∥CD,②FQ平分∠AFP,③∠B+∠E=140°,④∠QEM的角度为定值.其中正确的结论有()个数 A.1

B.2

C.3

D.4

4.如图所示,AB∥EF,EF∥CD,EG平分∠BEF,∠B+∠BED+∠D=192°,∠B-∠D=24°,则∠GEF=__________.

5.已知:如图所示,AD⊥BC于点D,EG⊥BC于点G,∠E=∠3.求证:AD平分∠BAC. 6.如图所示,AB∥CD,∠1=∠2,∠3=∠4,试说明:AD∥BE.

7.如图所示,已知∠DBF=∠CAF,CE⊥FE.垂足为E,∠BDA+∠ECA=180°,求证:DA⊥EF

8.已知,如图所示,∠1+∠2=180°,∠1+∠EFD=180°,∠3=∠B,试判断∠AED与∠C的关系,并证明你的结论.

9.已知,如图所示,AC∥DE,DC∥EF,CD平分∠BCA.求证:EF平分∠BED.

10.如图所示,在△ABC中,CE⊥AB于点E,DF⊥AB于点F,AC∥ED,CE是△ACB的角平分线.求证:∠EDF=∠BDF.

11.如图,AB∥CD,∠ABF=∠DCE,求证∠BFE=∠FEC

第四篇:平行线证明练习

田野教育集团一对一辅导中心

证明题练习如图所示,若∠1=52°,问∠C为多少度时,能使直线AB∥CD? 2 如图所示,∠1=45°,∠2=135°,l1∥l2吗?为什么?如图所示,∠1=120°,∠2=60°,问直线a与b有什么关系?

A

B

l1 2 l

3C

1题图

D

a3题图

4 如图,已知直线AB、CD被直线EF所截且∠AGE=46°,∠EHD=134°,那么AB∥

CD吗?说明理由。如图,已知∠1和∠D互余,CF⊥DF,问AB与CD平行吗?如图所示,∠EFB=∠GHD=53°,∠IGA=127°,由这些条件你能找到几对平行线?说说你的理由。

E

4题图

F

F

I

B

D 6题图 F

E B

C

5题图

C D如图,∠BAF=46°,∠ACE=136°,CE⊥CD,问CD∥AD吗?为什么? 8 如图,∠1=∠2,能判断AB∥CD吗?为什么?

若不能判断AB∥DF,你认为还需要再添加一个条件是什么?写出这个条件,并说明你的理由?如图,AB∥CD,EF∥GH,CD与EF相交于点I,试探究∠1与∠2的关系,并说明理由。

F C E 7题图

C

D

D F

C

8题图 9题图

第五篇:平行线证明 2

第九讲平行线的证明

1、定义的概念:

对名称和术语的含义加以描述,作出明确的规定,就是给出它们的定义。例子:下列语句属于定义的是()

A、明天是晴天

B、长方形的四个角都是直角

C、等角的补角相等

D、平行四边形是两组对边分别平行的四边形

2、命题:

判断一件事情的句子,叫做命题。

注意:(1)命题必须是一个完整的句子,通常是陈述句,包括肯定句和否定句。

(2)命题必须对某件事情作出肯定或否定的判断。

(3)错误的判断性语句也是命题。

(4)一般命题都可以写成“如果....那么.....”的形式。

例子:下列语句中哪些是命题?哪些不是命题?

(1)相等的角不是对顶角

(2)同位角相等,两直线平行

(3)过点O作直线AB的平行线

(4)若x2=y2,则x=y

(5)老师今天表扬你了吗?

3、正确的命题称为真命题,不正确的命题称为假命题。

4、公认的真命题称为真理。

5、演绎推理的过程称为证明。

6、经过证明的真命题称为定理。

7、平行线的判定

(1)同位角相等两直线平行。

(2)同旁内角互补两直线平行。

(3)内错角相等两直线平行。

8、平行线的性质

(1)两直线平行,同位角相等

(2)两直线平行,内错角相等

(3)两直线平行,同旁内角互补

基础练习

一、选择题

1、下列图形中,由AB∥CD,能得到12的是()

A B A BCD D C 2

2、如图,直线A. LB C.

D.

1∥L2 ,则∠α为().A.1500B.1400C.1300D.12003、下列命题:

1①不相交的两条直线平行; ②梯形的两底互相平行;

③同垂直于一条直线的两直线平行; ④同旁内角相等,两直线平行.(第2题图)其中真命题有()

A.1个B.2个C.3个D.4个

4、下列命题:

①两个连续整数的乘积是偶数;②带有负号的数是负数;

③乘积是1的两个数互为倒数;④绝对值相等的两个数互为相反数.其中假命题有()

A.1个B.2个C.3个D.4个 A

5、如图,AB∥CD,那么∠BAE+∠AEC+∠ECD =()A.1800B.2700C.3600D.5400

6、下列说法中,正确的是()

A.经过证明为正确的真命题叫公理B.假命题不是命题

E

C

D

C.要证明一个命题是假命题,只要举一个反例,即举一个具备命题的条件,而不具备命题结论的命题即可

D.要证明一个命题是真命题,只要举一个例子,说明它正确即可.7、下列选项中,真命题是().A.a>b,a>c,则b=cB.相等的角为对顶角

C.过直线l外一点,有且只有一条直线与直线l平行D.三角形中至少有一个钝角

8、下列命题中,是假命题的是()

A.互补的两个角不能都是锐角B.如果两个角相等,那么这两个角是对顶角 C.乘积为1的两个数互为倒数D.全等三角形的对应角相等,对应边相等.9、下列命题中,真命题是()

A.任何数的绝对值都是正数B.任何数的零次幂都等于

1C.互为倒数的两个数的和为零 D.在数轴上表示的两个数,右边的数比左边的数大

10、如图所示,下列条件中,能判断AB∥CD的是()

A.∠BAD=∠BCDB.∠1=∠2;C.∠3=∠4D.∠BAC=∠ACD

二、填空题

11、观察如图所示的三棱柱.用符号表示下列线段的位置关系:

ACCC1 ,BCB1C1 ;

C

B(第13题图)(第12题图)

(第11题图)

12、如图三角形ABC中,∠C = 900,AC=23,BC=32,把

AC、BC、AB的大小关系用“>”号连接:.13、如图,直线AB、CD相交于点E ,DF∥AB,若∠AEC=1000,则∠D的度数等于.D

(第14题图)

14、如图,把长方形ABCD沿EF对折,若∠1=500,则∠

15、图中有对对顶角.三.解答题

16、如图,AB∥CD,AD∥BC,∠A﹦∠B.求∠A、∠B、∠C、∠D的度数.D

C17、如图,AB∥CD,直线EF交AB、CD于点G、H.如果GM平分∠BGF,HN平分∠CHE,那么,GM与HN平行吗?为什么?

EA B

CH

F 0018、如图,AB∥CD,∠BAE=30,∠ECD=60,那么∠AEC度数为多少?

A

E

D C19、如图,B处在A处的南偏西450方向,C处在B处的北偏东800方向.(1)求∠ABC.(2)要使CD∥AB,D处应在C处的什么方向?(12分)

D20、如图所示,已知直线a,b,c,d,e,且∠1=∠2,∠3+∠4=180°,则a与c平行吗?•为什么?(13分)

de

abc

参 考 答 案

一、1.B2.D3.B4.B5.C6.C7.C8.B9.D10.D

二、11.(1)⊥

12.AB >BC >AC13.80014.115015.9

三、16.1350,450,1350,450

提示:可以用方程.设∠B=x0 ,根据AD∥BC,得x+3x=180(两直线平行,同旁内角互补),解得x=45.以下略.17.GM∥HN.理由:因为GM平分∠BGF,HN平分∠CHE,所以∠MGF= ∠BGF,∠NHE=

∠CHE,又因为AB∥CD,所以∠BGF=∠CHE(两直线平行,内错角相等),所以∠MGF=2

∠NHE.所以GM∥HN(内错角相等,两直线平行).18.如图,过E作EF∥AB,则∠1=∠A=300

(„„);

因为AB∥CD,所以EF∥CD(如果两条直线 都与第三条直线平行,那么这

两条直线也互相平行),C 所以∠2=∠C=600(„„),那么∠AEC=∠1+∠2=300+600=900.19.(1)∠ABC=800-450=350.(2)要使CD∥AB,D处应在C处的南偏西450方向.20.解:平行.∵∠1=∠2, ∴a∥b,又∵∠3+∠4=180°, ∴b∥c, ∴a∥c.D

下载北师大七下 第二章平行线的证明word格式文档
下载北师大七下 第二章平行线的证明.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    平行线证明基础训练

    例1、已知,如图,EF//BC,AD,AOB70,1C150,求B的度数.解:EFBC,AD(已知)ABCD(内错角相等,两直线平行)COE1180(两直线平行,同旁内角互补)AOBCOE70(对顶角相等)118070110(等式的性质)1C150(已知)C15......

    平行线证明 复习题

    平行线证明1.平行线的性质:⑴两直线平行,同位角相等.⑵两直线平行,内错角相等.⑶两直线平行,同旁内角互补.2.平行线判定定理:平行线判定定理1:同位角相等,两直线平行平行线判定定理......

    1平行线的证明

    平行线的证明一.知识导学本节是以一个公理作为基础,从而推出两个定理。公理:同位角相等,两直线平行。定理:同旁内角互补,两直线平行。定理:内错角相等,两直线平行。以上定理说明,在现......

    平行线的证明辅导

    平行线的证明一.知识导学本节是以一个公理作为基础,从而推出两个定理。公理:同位角相等,两直线平行。定理:同旁内角互补,两直线平行。定理:内错角相等,两直线平行。以上定理说明,在现......

    平行线证明提高训练

    平行线证明提高训练1、如图所示:⑴ ∠1=∠2,求证:∠3=∠5 4L1⑵∠4+∠6=1800,求证:∠1=∠365322、如图所示:A D⑴ AB∥DE,∠A=∠D,求证: AC∥DF ⑵ AC∥DF, ∠A=∠D,求证:∠B=∠......

    平行线的证明测试题

    第七章平行线的证明本章测试题一、 填空题(每题4分,共32分)1.在△ABC中,∠C=2(∠A+∠B),则∠C=________.2.如图,AB∥CD,直线EF分别交AB、CD于E、F,EG平分∠BEF,若∠1=72º,则∠2=;3.在△AB......

    平行线相交的证明

    证明: a p cp′ b′ θ′ a′ 在两条平行直线之间,任意取三点,连成三角形。为计算简便(三角关系),我采用直角三角形; 设长边为c,直角边分别为a,b,其中b是两平行线间的距离。 开始时,p点......

    平行线的证明练习

    练习1、已知,如图AB∥CD,直线EF分别截AB、 CD于点M、N,MG、NH分别是∠EMB与 ∠END的平分线,试说明MG∥NH.。 证明:∵AB∥CD(已知), ∴________=________. ∵MG平分∠EMB(已知), ∴____......