第一篇:数列极限四则运算法则的证明
数列极限四则运算法则的证明
设limAn=A,limBn=B,则有 法则1:lim(An+Bn)=A+B 法则2:lim(An-Bn)=A-B 法则3:lim(An·Bn)=AB 法则4:lim(An/Bn)=A/B.法则5:lim(An的k次方)=A的k次方(k是正整数)(n→+∞的符号就先省略了,反正都知道怎么回事.)
首先必须知道极限的定义: 如果数列{Xn}和常数A有以下关系:对于∀ε>0(不论它多么小),总存在正数N,使得对于满足n>N的一切Xn,不等式|Xn-A|<ε都成立, 则称常数A是数列{Xn}的极限,记作limXn=A.根据这个定义,首先容易证明: 引理1:limC=C.(即常数列的极限等于其本身)
法则1的证明: ∵limAn=A, ∴对任意正数ε,存在正整数N₁,使n>N₁时恒有|An-A|<ε.①(极限定义)同理对同一正数ε,存在正整数N₂,使n>N₂时恒有|Bn-B|<ε.② 设N=max{N₁,N₂},由上可知当n>N时①②两式全都成立.此时|(An+Bn)-(A+B)|=|An-A)+(Bn-B)|≤|An-A|+|Bn-B|<ε+ε=2ε.由于ε是任意正数,所以2ε也是任意正数.即:对任意正数2ε,存在正整数N,使n>N时恒有|(An+Bn)-(A+B)|<2ε.由极限定义可知,lim(An+Bn)=A+B.为了证明法则2,先证明1个引理.引理2:若limAn=A,则lim(C·An)=C·A.(C是常数)证明:∵limAn=A, ∴对任意正数ε,存在正整数N,使n>N时恒有|An-A|<ε.①(极限定义)①式两端同乘|C|,得: |C·An-CA|<Cε.由于ε是任意正数,所以Cε也是任意正数.即:对任意正数Cε,存在正整数N,使n>N时恒有|C·An-CA|<Cε.由极限定义可知,lim(C·An)=C·A.(若C=0的话更好证)
法则2的证明: lim(An-Bn)=limAn+lim(-Bn)(法则1)=limAn+(-1)limBn(引理2)=A-B.为了证明法则3,再证明1个引理.引理3:若limAn=0,limBn=0,则lim(An·Bn)=0.证明:∵limAn=0, ∴对任意正数ε,存在正整数N₁,使n>N₁时恒有|An-0|<ε.③(极限定义)同理对同一正数ε,存在正整数N₂,使n>N₂时恒有|Bn-0|<ε.④ 设N=max{N₁,N₂},由上可知当n>N时③④两式全都成立.此时有|An·Bn| =|An-0|·|Bn-0| <ε·ε =ε².由于ε是任意正数,所以ε²也是任意正数.即:对任意正数ε²,存在正整数N,使n>N时恒有|An·Bn-0|<ε².由极限定义可知,lim(An·Bn)=0.法则3的证明:令an=An-A,bn=Bn-B.则liman=lim(An-A)=limAn+lim(-A)(法则1)=A-A(引理2)=0.同理limbn=0.∴lim(An·Bn)=lim[(an+A)(bn+B)]=lim(an·bn+B·an+A·bn+AB)=lim(an·bn)+lim(B·an)+lim(A·bn)+limAB(法则1)=0+B·liman+A·limbn+limAB(引理
3、引理2)=B×0+A×0+AB(引理1)=AB.引理4:如果limXn=L≠0,则存在正整数N和正实数ε,使得对任何正整数n>N,有|Xn|≥ε.证明:取ε=|L|/2>0,则存在正整数N,使得对任何正整数n>N,有|Xn-L|<ε.于是有|Xn|≥|L|-|Xn-L|≥|L|-ε=ε
引理5: 若limAn存在,则存在一个正数M,使得对所有正整数n,有|An|≤M.证明:设limAn=A,则存在一个正整数N,使得对n>N有|An-A|≤1,于是有|An|≤|A|+1,我们取M=max(|A1|,...,|AN|,|A|+1)即可
法则4的证明: 由引理4,当B≠0时(这是必要条件),∃正整数N1和正实数ε0,使得对∀正整数n>N1,有|Bn|≥ε0.由引理5,又∃正数M,K,使得使得对所有正整数n,有|An|≤M,|Bn|≤K.现在对∀ε>0,∃正整数N2和N3,使得: 当n>N2,有|An-A|<ε0*|B|*ε/(M+K+1); 当n>N3,有|Bn-B|<ε0*|B|*ε/(M+K+1); 现在,当n>max(N1,N2,N3)时,有 |An/Bn-A/B| =|An*B-Bn*A|/|B*Bn| =|An(B-Bn)+Bn(An-A)|/|B*Bn| ≤(|An|*|B-Bn|+|Bn|*|A-An|)/(|B|*ε0)≤ε(M+K)/((M+K+1)<ε
法则5的证明: lim(An的k次方)=limAn·lim(An的k-1次方)(法则3)....(往复k-1次)=(limAn)的k次方 =A的k次方.
第二篇:数列极限的证明
例1 设数列xn满足0x1,xn1sinxnn1,2,。(Ⅰ)证明limxn存在,并求该极限;
n
xn1xn(Ⅱ)计算lim。n
xn
解(Ⅰ)用归纳法证明xn单调下降且有下界,由0x1,得
0x2sinx1x1,设0xn,则
0xn1sinxnxn,所以xn单调下降且有下界,故limxn存在。
n
记alimxn,由xn1sinxn得
x
asina,所以a0,即limxn0。
n
(Ⅱ)解法1 因为
sinxlimx0
x
1xlime
x0
1sinxlnx2x
lime
x0
1cosx1
2xsinxx
xsinx6x2
xcosxsinx
lime
x0
2x3
lime
x0
e
又由(Ⅰ)limxn0,所以
n
1xn
xn1sinxnxn2
limlimnnxxnn
sinx
limx0x
解法2 因为
1xxe
sinxx
sinxx
sinxx1x
xsinxx
x3,又因为
limsinxx1sinxx,lim1x0x36x0x
xnxsinxxe,sinx6所以lim,ex0x1
故
11xlimn1nxnxnsinxnlimnxn
sinxlimx0xxn1x e1
6.
第三篇:数列极限的证明
例1 设数列xn满足0x1,xn1sinxnn1,2,。(Ⅰ)证明limxn存在,并求该极限;
n1xn1xn2(Ⅱ)计算lim。nxn解(Ⅰ)用归纳法证明xn单调下降且有下界,由0x1,得
0x2sinx1x1,设0xn,则
0xn1sinxnxn,所以xn单调下降且有下界,故limxn存在。
n记alimxn,由xn1sinxn得
xasina,所以a0,即limxn0。
n(Ⅱ)解法1 因为
sinxlimx0x1x2limex01sinxlnx2xlimex01cosx12xsinxx
xsinx6x2xcosxsinxlimex02x3limex0e16又由(Ⅰ)limxn0,所以
n12xn1xn1sinxnxn2limlimnnxxnn1
sinxlimx0x解法2 因为
1x2x2e16sinxxsinxxsinxx1xxsinxxx3,又因为
limsinxx1sinxx,lim1x0x36x0x12xnxsinxxe,sinx6所以 lim,ex0x1故
11xlimn1nxn2xnsinxnlimnxnsinxlimx0x2xn1x2
e16.
第四篇:数列极限的证明
数列极限的证明X1=2,Xn+1=2+1/Xn,证明Xn的极限存在,并求该极限 求极限我会
|Xn+1-A|<|Xn-A|/A 以此类推,改变数列下标可得 |Xn-A|<|Xn-1-A|/A;|Xn-1-A|<|Xn-2-A|/A;……
|X2-A|<|X1-A|/A;向上迭代,可以得到|Xn+1-A|<|Xn-A|/(A^n)2 只要证明{x(n)}单调增加有上界就可以了。用数学归纳法:
①证明{x(n)}单调增加。
x(2)=√[2+3x(1)]=√5>x(1);设x(k+1)>x(k),则
x(k+2)-x(k+1))=√[2+3x(k+1)]-√[2+3x(k)](分子有理化)=[x(k+1)-3x(k)]/【√[2+3x(k+1)]+√[2+3x(k)]】>0。②证明{x(n)}有上界。x(1)=1<4,设x(k)<4,则
x(k+1)=√[2+3x(k)]<√(2+3*4)<4。3 当0 当0 构造函数f(x)=x*a^x(0 令t=1/a,则:t>
1、a=1/t 且,f(x)=x*(1/t)^x=x/t^x(t>1)则:
lim(x→+∞)f(x)=lim(x→+∞)x/t^x =lim(x→+∞)[x'/(t^x)'](分子分母分别求导)=lim(x→+∞)1/(t^x*lnt)=1/(+∞)=0 所以,对于数列n*a^n,其极限为0 4 用数列极限的定义证明
3.根据数列极限的定义证明:(1)lim[1/(n的平方)]=0 n→∞
(2)lim[(3n+1)/(2n+1)]=3/2 n→∞
(3)lim[根号(n+1)-根号(n)]=0 n→∞
(4)lim0.999…9=1 n→∞ n个9 5几道数列极限的证明题,帮个忙。。Lim就省略不打了。。
第五篇:数列极限的证明
数列极限的证明
X1=2,Xn+1=2+1/Xn,证明Xn的极限存在,并求该极限
求极限我会
|Xn+1-A|<|Xn-A|/A
以此类推,改变数列下标可得|Xn-A|<|Xn-1-A|/A;
|Xn-1-A|<|Xn-2-A|/A;
……
|X2-A|<|X1-A|/A;
向上迭代,可以得到|Xn+1-A|<|Xn-A|/(A^n)
2只要证明{x(n)}单调增加有上界就可以了。
用数学归纳法:
①证明{x(n)}单调增加。
x(2)=√=√5>x(1);
设x(k+1)>x(k),则
x(k+2)-x(k+1))=√-√(分子有理化)
=/【√+√】>0。
②证明{x(n)}有上界。
x(1)=1<4,设x(k)<4,则
x(k+1)=√<√(2+3*4)<4。
3当0
当0
构造函数f(x)=x*a^x(0
令t=1/a,则:t>
1、a=1/t
且,f(x)=x*(1/t)^x=x/t^x(t>1)
则:
lim(x→+∞)f(x)=lim(x→+∞)x/t^x
=lim(x→+∞)(分子分母分别求导)
=lim(x→+∞)1/(t^x*lnt)
=1/(+∞)
=0
所以,对于数列n*a^n,其极限为0
用数列极限的定义证明
3.根据数列极限的定义证明:
(1)lim=0
n→∞
(2)lim=3/2
n→∞
(3)lim=0
n→∞
(4)lim0.999…9=1
n→∞n个9
5几道数列极限的证明题,帮个忙。。Lim就省略不打了。。
n/(n^2+1)=0
√(n^2+4)/n=1
sin(1/n)=0
实质就是计算题,只不过题目把答案告诉你了,你把过程写出来就好了
第一题,分子分母都除以n,把n等于无穷带进去就行
第二题,利用海涅定理,把n换成x,原题由数列极限变成函数极限,用罗比达法则(不知楼主学了没,没学的话以后会学的)
第三题,n趋于无穷时1/n=0,sin(1/n)=0
不知楼主觉得我的解法对不对呀limn/(n^2+1)=lim(1/n)/(1+1/n^2)=lim(1/n)/(1+lim(1+n^2)=0/1=0
lim√(n^2+4)/n=lim√(1+4/n^2)=√1+lim(4/n^2)=√1+4lim(1/n^2)=1
limsin(1/n)=lim=lim(1/n)*lim/(1/n)=0*1=0