向量叉乘的分配率的证明5篇

时间:2019-05-14 15:55:17下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《向量叉乘的分配率的证明》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《向量叉乘的分配率的证明》。

第一篇:向量叉乘的分配率的证明

三维向量外积(即矢积、叉积)可以用几何方法证明;也可以借用外积的反对称性、内积的分配律和混合积性质,以代数方法证明。

下面把向量外积定义为: a × b = |a|·|b|·Sin.分配律的几何证明方法很繁琐,大意是用作图的方法验证。有兴趣的话请自己参阅参考文献中的证明。

下面给出代数方法。我们假定已经知道了:

1)外积的反对称性: a × b =(a×b + a×c))= 0 这说明矢量a×(b + c)(a×b + a×c)= 0 所以有

a×(b + c)= a×b + a×c.证毕。

第二篇:证明向量共面

证明向量共面

已知O是空间任意一点,A.B.C.D四点满足任意三点均不共线,但四点共面,且O-A=2xB-O+3yC-O+4zD-O,则2x+3y+4z=?

写详细点怎么做谢谢了~明白后加分!!

我假定你的O-A表示向量OA。

由O的任意性,取一个不在ABCD所在平面的O,这时若OA=b*OB+c*OC+d*OD,那么b+c+d必定等于1。

(证明:设O在该平面上的投影为p,那么对平面上任何一点X,OX=Op+pX,然后取X=A、B、C、D代你给的关系式并比较Op分量即可。)

你给的右端向量都反向,所以2x+3y+4z=-1。

2充分不必要条件。

如果有三点共线,则第四点一定与这三点共面,因为线和直线外一点可以确定一个平面,如果第四点在这条线上,则四点共线,也一定是共面的。

而有四点共面,不一定就其中三点共线,比如四边形的四个顶点共面,但这四个顶点中没有三个是共线的。

“三点共线”可以推出“四点共面”,但“四点共面”不能推出“三点共线”。因此是充分不必要条件

任取3个点,如果这三点共线,那么四点共面;如果这三点不共线,那么它们确定一个平面,考虑第四点到这个平面的距离。方法二A、B、C、D四点共面的充要条件为向量AB、AC、AD的混合积(AB,AC,AD)=0。方法三A、B、C、D四点不共面的充要条件为向量AB、AC、AD线性无关。

3已知O是空间任意一点,A.B.C.D四点满足任意三点均不共线,但四点共面,且O-A=2xB-O+3yC-O+4zD-O,则2x+3y+4z=?

写详细点怎么做谢谢了我假定你的O-A表示向量OA。

由O的任意性,取一个不在ABCD所在平面的O,这时若OA=b*OB+c*OC+d*OD,那么b+c+d必定等于1。

(证明:设O在该平面上的投影为p,那么对平面上任何一点X,OX=Op+pX,然后取X=A、B、C、D代你给的关系式并比较Op分量即可。)

你给的右端向量都反向,所以2x+3y+4z=-1。

4Xa-Yb+Yb-Zc+Zc-Xa=0

∴Xa-Yb=-(Yb-Zc)-(Zc-Xa)

由共面判定定理知它们共面。

简单的说一个向量能够用另外两个向量表示,它们就共面。详细的看高中课本

41.若向量e1、e2、e3共面,(i)其中至少有两个不共线,不妨设e1,e2不共线,则e1,e2线性无关,e3可用e1,e2线性表示,即存在实数λ,μ,使得e3=λe1+μe2,于是

λe1+μe2-e3=0.即存在三个不全为零的实数λ,μ,υ=-1,使得

λe1+μe2+υe3=0”。

(ii)若e1,e2,e3都共线,则其中至少有一个不为0,不妨设e1≠0,则存在实数λ,使得e2=λe1.于是λe1-e2=0,即存在三个不全为零的实数λ,μ=-1,υ=0,使得λe1+μe2+υe3=0”.2.存在三个不全为零的实数λ,μ,υ,使得λe1+μe2+υe3=0”,不妨设λ≠0,就有e1=(-μ/λ)e2+(-υ/λ)e3,于是e1,e2,e3共面。

第三篇:向量空间证明

向量空间证明解题的基本方法:

1)在立体几何图形中,选择适当的点和直线方向建立空间直角坐标系 中 2)若问题中没有给出坐标计算单位,可选择合适的线段设置长度单位;3)计算有关点的坐标值,求出相关向量的坐标;4)求解给定问题

证明直线与平面垂直的方法是在平面中选择二个向量,分别与已知直线向量求数积,只要分别为零,即可说明结论。

证明直线与平面平行的关键是在平面中寻找一个与直线向量平行的向量。这样就转化为证明二个向量平行的问题,只要说明一个向量是另一向量的m(实数)倍,即可 只要多做些这方面的题,或看些这方面的例题,也会从中悟出经验和方法 2 解:

因为x+y+z=0 x=-y-z y=y+0*z z=0*y+z(x,y,z)=(-1,1,0)*y+(-1,0,1)*z y,z为任意实数

则:(-1,1,0);(-1,0,1)是它的一组基,维数为2(不用写为什么是2)步骤1 记向量i,使i垂直于AC于C,△ABC三边AB,BC,CA为向量a,b,c ∴a+b+c=0 则i(a+b+c)=i·a+i·b+i·c =a·cos(180-(C-90))+b·0+c·cos(90-A)=-asinC+csinA=0 接着得到正弦定理 其他 步骤2.在锐角△ABC中,设BC=a,AC=b,AB=c。

第四篇:向量证明重心

向量证明重心三角形ABC中,重心为O,AD是BC边上的中线,用向量法证明AO=2OD(1).AB=12b,AC=12c。AD是中线则AB+AC=2AD即12b+12c=2AD,AD=6b+6c;BD=6c-6b。OD=xAD=6xb+6xx。(2).E是AC中点。作DF//BE则EF=EC/2=AC/4=3c。平行线分线段成比OD/AD=EF/AF即(6xb+6xc)/(6b+6c)=3c/9c,x(6b+6c)/(6b+6c)=1/3,3x=1。(3).OD=2b+2c,AO=AD-OD=4b+4c=2(2b+2c)=2OD。2 设BC中点为M∵PA+PB+PC=0∴PA+2PM=0∴PA=2MP∴P为三角形ABC的重心。上来步步可逆、∴P是三角形ABC重心的充要条件是PA+PB+PC=0 3 如何用向量证明三角形的重心将中线分为2:1 设三角形ABC的三条中线分别为AD、BE、CF,求证AD、BE、CF交于一点O,且AO:OD=BO:OE=CO:OF=2:1 证明:用归一法

不妨设AD与BE交于点O,向量BA=a,BC=b,则CA=BA-BC=a-b 因为BE是中线,所以BE=(a+b)/2,向量BO与向量BE共线,故设BO=xBE=(x/2)(a+b)同理设AO=yAD=(y/2)(AB+AC)=y/2(-a+b-a)=-ya+(y/2)b 在三角形ABO中,AO=BO-BA 所以-ya+(y/2)b=(x/2)(a+b)-a=(x/2-1)a+(x/2)b 因为向量a和b线性无关,所以-y=x/2-1 y/2=x/2 解得x=y=2/3 所以A0:AD=BO:BE=2:3 故AO:OD=BO:OE=2:1 设AD与CF交于O',同理有AO’:O'D=CO':O'F=2:1 所以有AO:OD=AO':O'D=2:1,注意到O和O’都在AD上,因此O=O’ 因此有AO:OD=BO:OE=CO:OF=2:1 证毕!4 设三角形ABC的顶点A,B,C的坐标分别为(X1,Y1),(X2,Y2),(X3,Y3)证明:三角形ABC的重心(即三条中线的交点)M的坐标(X,Y)满足:X=X1+X2+X3/3 Y=Y1+Y2+Y3/3 设:AB的中点为D.∴Dx=(x1+x2)/2,又M为三角形的重心,∴CD=3MD,∴x3-(x1+x2)/2=3[x-(x1+x2)/2]===>x=(x1+x2+x3)/3同理: y=(y1+y2+y3)/3 5 如图。

第五篇:向量空间证明

向量空间证明

解题的基本方法:

1)在立体几何图形中,选择适当的点和直线方向建立空间直角坐标系中

2)若问题中没有给出坐标计算单位,可选择合适的线段设置长度单位;

3)计算有关点的坐标值,求出相关向量的坐标;

4)求解给定问题

证明直线与平面垂直的方法是在平面中选择二个向量,分别与已知直线向量求数积,只要分别为零,即可说明结论。

证明直线与平面平行的关键是在平面中寻找一个与直线向量平行的向量。这样就转化为证明二个向量平行的问题,只要说明一个向量是另一向量的m(实数)倍,即可

只要多做些这方面的题,或看些这方面的例题,也会从中悟出经验和方法

解:

因为x+y+z=0

x=-y-z

y=y+0*z

z=0*y+z

(x,y,z)=(-1,1,0)*y+(-1,0,1)*z

y,z为任意实数

则:(-1,1,0);(-1,0,1)是它的一组基,维数为2(不用写为什么是2)

步骤1

记向量i,使i垂直于AC于C,△ABC三边AB,BC,CA为向量a,b,c

∴a+b+c=0

则i(a+b+c)

=i·a+i·b+i·c

=a·cos(180-(C-90))+b·0+c·cos(90-A)

=-asinC+csinA=0

接着得到正弦定理

其他

步骤2.在锐角△ABC中,设BC=a,AC=b,AB=c。作CH⊥AB垂足为点H

CH=a·sinB

CH=b·sinA

∴a·sinB=b·sinA

得到a/sinA=b/sinB

同理,在△ABC中,b/sinB=c/sinC

步骤3.证明a/sinA=b/sinB=c/sinC=2R:

任意三角形ABC,作ABC的外接圆O.作直径BD交⊙O于D.连接DA.因为直径所对的圆周角是直角,所以∠DAB=90度

因为同弧所对的圆周角相等,所以∠D等于∠C.所以c/sinC=c/sinD=BD=2R

类似可证其余两个等式.希望对你有所帮助!

设向量AB=a,向量AC=b,向量AM=c向量BM=d,延长AM到D使AM=DM,连接BD,CD,则ABCD为平行四边形

则向量a+b=2c(a+b)平方=4c平方a平方+2ab+b平方=4c

平方(1)

向量b-a=2d(b-a)平方=4d平方a平方-2ab+b平方=4d

平方(2)

(1)+(2)2a平方+2b平方=4d平方+4c平方

c平方=1/2(a+b)-d平方

AM^2=1/2(AB^2+AC^2)-BM^2

已知EF是梯形ABCD的中位线,且AD//BC,用向量法证明梯形的中位线定理

过A做AG‖DC交EF于p点

由三角形中位线定理有:

向量Ep=½向量BG

又∵AD‖pF‖GC且AG‖DC∴向量pF=向量AD=向量GC(平行四边形性质)

∴向量pF=½(向量AD+向量GC)

∴向量Ep+向量pF=½(向量BG+向量AD+向量GC)

∴向量EF=½(向量AD+向量BC)

∴EF‖AD‖BC且EF=(AD+BC)

得证

先假设两条中线AD,BE交与p点

连接Cp,取AB中点F连接pF

pA+pC=2pE=Bp

pB+pC=2pD=Ap

pA+pB=2pF

三式相加

2pA+2pB+2pC=Bp+Ap+2pF

3pA+3pB+2pC=2pF

6pF+2pC=2pF

pC=-2pF

所以pC,pF共线,pF就是中线

所以ABC的三条中线交于一点p

连接OD,OE,OF

OA+OB=2OF

OC+OB=2OD

OC+OC=2OE

三式相加

OA+OB+OC=OD+OE+OF

OD=Op+pD

OE=Op+pE

OF=Op+pF

OA+OB+OC=3Op+pD+pE+pF=3Op+1/2Ap+1/2Bp+1/2Cp

由第一问结论

2pA+2pB+2pC=Bp+Ap+Cp

2pA+2pB+2pC=0

1/2Ap+1/2Bp+1/2Cp

所以OA+OB+OC=3Op+pD+pE+pF=3Op

向量Op=1/3(向量OA+向量OB+OC向量)

下载向量叉乘的分配率的证明5篇word格式文档
下载向量叉乘的分配率的证明5篇.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    向量证明重心(5篇模版)

    向量证明重心三角形ABC中,重心为O,AD是BC边上的中线,用向量法证明AO=2OD.AB=12b,AC=12c。AD是中线则AB+AC=2AD即12b+12c=2AD,AD=6b+6c;BD=6c-6b。OD=xAD=6xb+6xx。.E是AC中......

    向量证明四点共面

    向量证明四点共面 由n+m+t=1 , 得 t=1-n-m ,代入op=nox+ moy +toz, 得 OP=n OX +mOY +(1-n-m)OZ, 整理,得OP-OZ =n(OX-OZ) +m(OY-OZ)即ZP =nZX +mZY即P、X、Y、Z 四点共面。......

    向量法证明不等式

    向量法证明不等式高中新教材引入平面向量和空间向量,将其延伸到欧氏空间上的n维向量,向量的加、减、数乘运算都没有发生改变.若在欧式空间中规定一种涵盖平面向量和空间向量上......

    用向量法证明

    用向量法证明步骤1记向量i,使i垂直于AC于C,△ABC三边AB,BC,CA为向量a,b,c∴a+b+c=0则i(a+b+c)=i·a+i·b+i·c=a·cos(180-(C-90))+b·0+c·cos(90-A)=-asinC+csinA=0接着得到......

    向量证明正弦定理

    向量证明正弦定理表述:设三面角∠p-ABC的三个面角∠BpC,∠CpA,∠ApB所对的二面角依次为∠pA,∠pB,∠pC,则Sin∠pA/Sin∠BpC=Sin∠pB/Sin∠CpA=Sin∠pC/Sin∠ApB。目录1证明2全向量......

    向量积分配律的证明

    向量积分配律的证明三维向量外积(即矢积、叉积)可以用几何方法证明;也可以借用外积的反对称性、内积的分配律和混合积性质,以代数方法证明。下面把向量外积定义为:a×b=|a|·|......

    用向量可以证明不等式

    运用向量可以证明不等式向量一章中有两处涉及到不等式,其一,aa+bab或-bab;其二,abab。前者的几何意义是三角形两边之和大于第三边,两边之差小于第三边,后者是数量积的性质,这两个结......

    用向量证明四点共面

    用向量证明四点共面由n+m+t=1,得t=1-n-m,代入op=nox+moy+toz,得Op=nOX+mOY+(1-n-m)OZ,整理,得Op-OZ=n(OX-OZ)+m(OY-OZ)即Zp=nZX+mZY即p、X、Y、Z四点共面。以上是充要条件。2......