第一篇:2018年数学一考试大纲汇总
2018年数学一考试大纲
考试科目:高等数学、线性代数、概率论与数理统计
考试形式和试卷结构
一、试卷满分及考试时间
试卷满分为150分,考试时间为180分钟.
二、答题方式 答题方式为闭卷、笔试
三、试卷内容结构 高等教学 约56% 线性代数 约22% 概率论与数理统计 约22%
四、试卷题型结构
单选题 8小题,每小题4分,共32分 填空题 6小题,每小题4分,共24分 解答题(包括证明题)9小题,共94分
高等数学
一、函数、极限、连续 考试内容
函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 复合函数、反函数、分段函数和隐函数 基本初等函数的性质及其图形
初等函数 函数关系的建立
数列极限与函数极限的定义及其性质 函数的左极限和右极限 无穷小量和无穷大量的概念及其关系 无穷小量的性质及无穷小量的比较 极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则 两个重要极限:
函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质 考试要求
1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.
2.了解函数的有界性、单调性、周期性和奇偶性.
3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念. 4.掌握基本初等函数的性质及其图形,了解初等函数的概念. 5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系. 6.掌握极限的性质及四则运算法则.
7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.
8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.
9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.
10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质. 二、一元函数微分学 考试内容
导数和微分的概念 导数的几何意义和物理意义 函数的可导性与连续性之间的关系平面曲线的切线和法线 导数和微分的四则运算 基本初等函数的导数 复合函数、反函数、隐函数以及参数方程所确定的函数的微分法 高阶导数 一阶微分形式的不变性 微分中值定理 洛必达(L'Hospital)法则 函数单调性的判别 函数的极值 函数图形的凹凸性、拐点及渐近线 函数图形的描绘 函数的最大值与最小值 弧微分 曲率的概念 曲率圆与曲率半径 考试要求
1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系. 2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.
3.了解高阶导数的概念,会求简单函数的高阶导数.
4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.
5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理. 6.掌握用洛必达法则求未定式极限的方法.
7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.
8.会用导数判断函数图形的凹凸性(注:在区间 内,设函数 具有二阶导数.当 时,的图形是凹的;当 时,的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形. 9.了解曲率、曲率圆与曲率半径的概念,会计算曲率和曲率半径. 三、一元函数积分学 考试内容
原函数和不定积分的概念 不定积分的基本性质 基本积分公式 定积分的概念和基本性质 定积分中值定理 积分上限的函数及其导数 牛顿-莱布尼茨(Newton-Leibniz)公式 不定积分和定积分的换元积分法与分部积分法 有理函数、三角函数的有理式和简单无理函数的积分 反常(广义)积分 定积分的应用 考试要求
1.理解原函数的概念,理解不定积分和定积分的概念.
2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.
3.会求有理函数、三角函数有理式和简单无理函数的积分. 4.理解积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式.
5.了解反常积分的概念,会计算反常积分.
6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数的平均值.
四、向量代数和空间 解析几何 考试内容
向量的概念 向量的线性运算 向量的数量积和向量积 向量的混合积 两向量垂直、平行的条件 两向量的夹角 向量的坐标表达式及其运算 单位向量 方向数与方向余弦 曲面方程和空间曲线方程的概念平面方程 直线方程平面与平面、平面与直线、直线与直线的夹角以及平行、垂直的条件点到平面和点到直线的距离 球面 柱面 旋转曲常用的二次曲面方程及其图形 空间曲线的参数方程和一般方程 空间曲线在坐标面上的投影曲线方程 考试要求
1.理解空间直角坐标系,理解向量的概念及其表示.
2.掌握向量的运算(线性运算、数量积、向量积、混合积),了解两个向量垂直、平行的条件.
3.理解单位向量、方向数与方向余弦、向量的坐标表达式,掌握用坐标表达式进行向量运算的方法. 4.掌握平面方程和直线方程及其求法.
5.会求平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系(平行、垂直、相交等))解决有关问题.
6.会求点到直线以及点到平面的距离. 7.了解曲面方程和空间曲线方程的概念.
8.了解常用二次曲面的方程及其图形,会求简单的柱面和旋转曲面的方程.
9.了解空间曲线的参数方程和一般方程.了解空间曲线在坐标平面上的投影,并会求该投影曲线的方程.
五、多元函数微分学 考试内容
多元函数的概念 二元函数的几何意义 二元函数的极限与连续的概念 有界闭区域上多元连续函数的性质 多元函数的偏导数和全微分 全微分存在的必要条件和充分条件
多元复合函数、隐函数的求导法 二阶偏导数 方向导数和梯度 空间曲线的切线和法平面 曲面的切平面和法线 二元函数的二阶泰勒公式 多元函数的极值和条件极值 多元函数的最大值、最小值及其简单应用 考试要求
1.理解多元函数的概念,理解二元函数的几何意义.
2.了解二元函数的极限与连续的概念以及有界闭区域上连续函数的性质.
3.理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性. 4.理解方向导数与梯度的概念,掌握其计算方法.
5.掌握多元复合函数一阶、二阶偏导数求法. 6.了解隐函数存在定理,会求多元隐函数的偏导数.
7.了解空间曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程.
8.了解二元函数的二阶泰勒公式.
9.理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题.
六、多元函数积分学 考试内容
二重积分与三重积分的概念、性质、计算两类曲线积分的概念、性质及计算两类曲线积分的关系 格林(Green)公式平面曲线积分与路径无关的条件 二元函数全微分的原函数 两类曲面积分的概念、性质及计算 两类曲面积分的关系 高斯(Gauss)公式 斯托克斯(Stokes)公式 散度、旋度的概念及计算 曲线积分和曲面积分的应用 考试要求
1.理解二重积分、三重积分的概念,了解重积分的性质,了解二重积分的中值定理.
2.掌握二重积分的计算方法(直角坐标、极坐标),会计算三重积分(直角坐标、柱面坐标、球面坐标).
3.理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系.
4.掌握计算两类曲线积分的方法.
5.掌握格林公式并会运用平面曲线积分与路径无关的条件,会求二元函数全微分的原函数.
6.了解两类曲面积分的概念、性质及两类曲面积分的关系,掌握计算两类曲面积分的方法,掌握用高斯公式计算曲面积分的方法,并会用斯托克斯公式计算曲线积分. 7.了解散度与旋度的概念,并会计算.
8.会用重积分、曲线积分及曲面积分求一些几何量与物理量(平面图形的面积、体积、曲面面积、弧长、质量、质心、形心、转动惯量、引力、功及流量等
七、无穷级数 考试内容
常数项级数的收敛与发散的概念 收敛级数的和的概念 级数的基本性质与收敛的必要条件 几何级数与 级数及其收敛性 正项级数收敛性的判别法交错级数与莱布尼茨定理任意项级数的绝对收敛与条件收敛 函数项级数的收敛域与和函数的概念 幂级数及其收敛半径、收敛区间(指开区间)和收敛域 幂级数的和函数 幂级数在其收敛区间内的基本性质 简单幂级数的和函数的求法 初等函数的幂级数展开式 函数的傅里叶(Fourier)系数与傅里叶级数 狄利克雷(Dirichlet)定理 函数在 上的傅里叶级数 函数在 上的正弦级
数和余弦级数 考试要求
1.理解常数项级数收敛、发散以及收敛级数的和的概念,掌握级数的基本性质及收敛的必要条件.
2.掌握几何级数与 级数的收敛与发散的条件.
3.掌握正项级数收敛性的比较判别法和比值判别法,会用根值判别法.
4.掌握交错级数的莱布尼茨判别法.
5.了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系.
6.了解函数项级数的收敛域的概念.
7.理解幂级数收敛半径的概念,并掌握幂级数的收敛半径、收敛区间及收敛域的求法.
8.了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求一些幂级数在收敛区间内的和函数,并会由此求出某些数项级数的和.
9.了解函数展开为泰勒级数的充分条件.
10.掌握麦克劳林(Maclaurin)展开式,会用它们将一些简单函数间接展开为幂级数.
八、常微分方程 考试内容
常微分方程的基本概念 变量可分离的微分方程 齐次微分方程
一阶线性微分方程 伯努利(Bernoulli)方程 全微分方程 可用简单的变量代换求解的某些微分方程 可降阶的高阶微分方程 线性微分方程解的性质及解的结构定理 二阶常系数齐次线性微分方程 高于二阶的某些常系数齐次线性微分方程 简单的二阶常系数非齐次线性微分方程 欧拉(Euler)方程 微分方程的简单应用 考试要求
1.了解微分方程及其阶、解、通解、初始条件和特解等概念. 2.掌握变量可分离的微分方程及一阶线性微分方程的解法. 3.会解齐次微分方程、伯努利方程和全微分方程,会用简单的变量代换解某些微分方程.
4.会用降阶法解下列形式的微分方程: 和 . 5.理解线性微分方程解的性质及解的结构.
6.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.
7.会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程. 8.会解欧拉方程.
9.会用微分方程解决一些简单的应用问题.
线性代数
一、行列式 考试内容
行列式的概念和基本性质 行列式按行(列)展开定理 考试要求
1.了解行列式的概念,掌握行列式的性质.
2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.
二、矩阵 考试内容
矩阵的概念 矩阵的线性运算 矩阵乘法 方阵的幂 方阵乘积的行列式 矩阵的转置 逆矩阵的概念和性质 矩阵可逆的充分必要条件 伴随矩阵 矩阵的初等变换 初等矩阵 矩阵的秩 矩阵的等价 分块矩阵及其运算 考试要求
1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵以及它们的性质.
2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.
3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.
三、向量 考试内容
向量的概念 向量的线性组合与线性表示 向量组的线性相关与线性无关 向量组的极大线性无关组 等价向量组 向量组的秩 向量组的秩与矩阵的秩之间的关系 向量空间及其相关概念 维向量空间的基变换和坐标变换 过渡矩阵 向量的内积 线性无关向量组的正交规范化方法 规范正交基 正交矩阵及其性质 考试要求
1.理解 维向量、向量的线性组合与线性表示的概念.
2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法.
3.理解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩.
4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系.
5.了解 维向量空间、子空间、基底、维数、坐标等概念. 6.了解基变换和坐标变换公式,会求过渡矩阵.
7.了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法.
8.了解规范正交基、正交矩阵的概念以及它们的性质.
四、线性方程组 考试内容
线性方程组的克拉默(Cramer)法则 齐次线性方程组有非零解的充分必要条件 非齐次线性方程组有 解的充分必要条件 线性方程组解的性质和解的结构 齐次线性方程组的基础解系和通解 解空间 非齐次线性方程组的通解 考试要求
1.会用克拉默法则.
2.理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件.
3.理解齐次线性方程组的基础解系、通解及解空间的概念,掌握齐次线性方程组的基础解系和通解的求法.
4.理解非齐次线性方程组解的结构及通解的概念.
五、矩阵的特征值和特征向量 考试内容
矩阵的特征值和特征向量的概念相似变换、相似矩阵的概念及性质 矩阵可相似对角化的充分必要条件及相似对角矩阵 实对称矩阵的特征值、特征向量及其相似对角矩阵 考试要求
1.理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量.
2.理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法. 3.掌握实对称矩阵的特征值和特征向量的性质 六、二次型 考试内容
二次型及其矩阵表示 合同变换与合同矩阵 二次型的秩 惯性定理 二次型的标准形和规范形 用正交变换和配方法化二次型为标准形 二次型及其矩阵的正定性
考试要求
1.掌握二次型及其矩阵表示,了解二次型秩的概念,了解合同变换与合同矩阵的概念,了解二次型的标准形、规范形的概念以及惯性定理.
2.掌握用正交变换化二次型为标准形的方法,会用配方法化二次型为标准形
概率论与数理统计
一、随机事件和概率 考试内容
随机事件与样本空间 事件的关系与运算 完备事件组 概率的概念 概率的基本性质 古典型概率 几何型概率 条件概率 概率的基本公式 事件的独立性 独立重复试验 考试要求
1.了解样本空间(基本事件空间)概念,理解随机事件的概念,掌握事件的关系及运算.
2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式以及贝叶斯(Bayes)公式.
二、随机变量及其分布 考试内容
随机变量 随机变量分布函数的概念及其性质 离散型随机变量的概
率分布 连续型随机变量的概率密度 常见随机变量的分布 随机变量函数的分布 考试要求
1.理解随机变量的概念,理解分布函数概念及性质,会计算与随机变量相联系的事件的概率.
2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布、几何分布、超几何分布、泊松(Poisson)分布 及其应用. 3.了解泊松定理的结论和应用条件,会用泊松分布近似表示二项分布.
4.理解连续型随机变量及其概率密度的概念,掌握均匀分布、正态分布、指数分布及其应用,其中参数为 的指数分布 的概率密度为
三、多维随机变量及其分布 考试内容
多维随机变量及其分布 二维离散型随机变量的概率分布、边缘分布和条件分布 二维连续型随机变量的概率密度、边缘概率密度和条件密度 随机变量的独立性和不相关性 常用二维随机变量的分布 两个及两个以上随机变量简单函数的分布 考试要求
1.理解多维随机变量的概念,理解多维随机变量的分布的概念和性质,理解二维离散型随机变量的概率分布、边缘分布和条件分布,理解二维连续型随机变量的概率密度、边缘密度和条件密度,会求与二维随机变量相关事件的概率.
2.理解随机变量的独立性及不相关性的概念,掌握随机变量相互独立的条件.
3.掌握二维均匀分布,了解二维正态分布 的概率密度,理解其中参数的概率意义.
4.会求两个随机变量简单函数的分布,会求多个相互独立随机变量简单函数的分布.
四、随机变量的数字特征 考试内容
随机变量的数学期望(均值)、方差、标准差及其性质 随机变量函数的数学期望 矩、协方差、相关系数及其性质 考试要求
1.理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征.
2.会求随机变量函数的数学期望.
五、大数定律和中心极限定理 考试内容
切比雪夫(Chebyshev)不等式 切比雪夫大数定律 伯努利(Bernoulli)大数定律 辛钦(Khinchine)大数定律 棣莫弗-拉普拉斯(De Moivre-Laplace)定理 列维-林德伯格(Levy-Lindberg)定理 考试要求
1.了解切比雪夫不等式.
2.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律).
3.了解棣莫弗-拉普拉斯定理(二项分布以正态分布为极限分布)和列维-林德伯格定理(独立同分布随机变量序列的中心极限定理).
六、数理统计的基本概念 考试内容
总体 个体 简单随机样本 统计量 样本均值 样本方差和样本矩 分布 分布 分布 分位数 正态总体的常用抽样分布 考试要求
1.理解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念,其中样本方差定义为
2.了解 分布、分布和 分布的概念及性质,了解上侧 分位数的概念并会查表计算.
3.了解正态总体的常用抽样分布.
七、参数估计 考试内容
点估计的概念 估计量与估计值 矩估计法 最大似然估计法 估计量的评选标准 区间估计的概念 单个正态总体的均值和方差的区间估计 两个正态总体的均值差和方差比的区间估计 考试要求
1.理解参数的点估计、估计量与估计值的概念.
2.掌握矩估计法(一阶矩、二阶矩)和最大似然估计法.
3.了解估计量的无偏性、有效性(最小方差性)和一致性(相合性)的概念,并会验证估计量的无偏性.
八、假设检验 考试内容
显著性检验 假设检验的两类错误 单个及两个正态总体的均值和方差的假设检验 考试要求
1.理解显著性检验的基本思想,掌握假设检验的基本步骤,了解假设检验可能产生的两类错误.
2.掌握单个及两个正态总体的均值和方差的假设检验.
第二篇:2014考研数学一大纲 复习资料
Born to win
每3名成功跨校跨专业学员有2名来自跨考
2014考研数学一大纲 复习资料
文章来源:跨考考研
2014年考研数学一大纲揭晓,考研数学一复习资料,考研数学一大纲复习重点规划,下面考试介绍2014年考研数学一大纲全部内容。
一、试卷满分及考试时间(跨考教育)
试卷满分为150分,考试时间为180分钟.
二、试卷内容结构
线性代数约22%
高等教学约56%
概率论与数理统计 约22%
三、试卷题型结构
单选题:8小题,每小题4分,共32分
填空题:6小题,每小题4分,共24分
解答题(包括证明题):9小题,共94分
高等数学(跨考教育)
一、函数、极限、连续
考试内容
函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立
数列极限与函数极限的定义及其性质函数的左极限和右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:
函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质二、一元函数微分学(跨考教育)
考试内容
每3名成功跨校跨专业学员有2名来自跨考
导数和微分的概念导数的几何意义和物理意义函数的可导性与连续性之间的关系平面曲线的切线和法线导数和微分的四则运算基本初等函数的导数复合函数、反函数、隐函数以及参数方程所确定的函数的微分法高阶导数 一阶微分形式的不变性微分中值定理洛必达(L’Hospital)法则函数单调性的判别函数的极值函数图形的凹凸性、拐点及渐近线函数图形的描绘函数的最大值与最小值弧微分曲率的概念曲率圆与曲率半径三、一元函数积分学(跨考教育)
考试内容
原函数和不定积分的概念不定积分的基本性质基本积分公式定积分的概念和基本性质定积分中值定理积分上限的函数及其导数牛顿-莱布尼茨(Newton-Leibniz)公式不定积分和定积分的换元积分法与分部积分法有理函数、三角函数的有理式和简单无理函数的积分反常(广义)积分定积分的应用
四、向量代数和空间解析几何
考试内容
向量的概念向量的线性运算向量的数量积和向量积
向量的混合积两向量垂直、平行的条件两向量的夹角向量的坐标表达式及其运算单位向量方向数与方向余弦曲面方程和空间曲线方程的概念平面方程直线方程平面与平面、平面与直线、直线与直线的夹角以及平行、垂直的条件点到平面和点到直线的距离球面柱面旋转曲面常用的二次曲面方程及其图形空间曲线的参数方程和一般方程空间曲线在坐标面上的投影曲线方程
五、多元函数微分学
考试内容
多元函数的概念二元函数的几何意义二元函数的极限与连续的概念 有界闭区域上多元连续函数的性质多元函数的偏导数和全微分全微分存在的必要条件和充分条件
多元复合函数、隐函数的求导法二阶偏导数方向导数和梯度空间曲线的切线和法平面曲面的切平面和法线二元函数的二阶泰勒公式多元函数的极值和条件极值多元函数的最大值、最小值及其简单应用
六、多元函数积分学
考试内容
二重积分与三重积分的概念、性质、计算和应用两类曲线积分的概念、性质及计算两类曲线积分的关系格林(Green)公式平面曲线积分与路径无关的条件二元函
每3名成功跨校跨专业学员有2名来自跨考
数全微分的原函数两类曲面积分的概念、性质及计算两类曲面积分的关系高斯(Gauss)公式斯托克斯(Stokes)公式散度、旋度的概念及计算曲线积分和曲面积分的应用
七、无穷级数
考试内容
常数项级数的收敛与发散的概念收敛级数的和的概念级数的基本性质与收敛的必要条件几何级数与级数及其收敛性正项级数收敛性的判别法交错级数与莱布尼茨定理任意项级数的绝对收敛与条件收敛函数项级数的收敛域与和函数的概念幂级数及其收敛半径、收敛区间(指开区间)和收敛域幂级数的和函数幂级数在其收敛区间内的基本性质 简单幂级数的和函数的求法初等函数的幂级数展开式函数的傅里叶(Fourier)系数与傅里叶级数狄利克雷(Dirichlet)定理函数在上的傅里叶级数函数在上的正弦级数和余弦级数
八、常微分方程
考试内容
常微分方程的基本概念变量可分离的微分方程齐次微分方程一阶线性微分方程伯努利(Bernoulli)方程全微分方程可用简单的变量代换求解的某些微分方程可降阶的高阶微分方程线性微分方程解的性质及解的结构定理二阶常系数齐次线性微分方程高于二阶的某些常系数齐次线性微分方程简单的二阶常系数非齐次线性微分方程 欧拉(Euler)方程微分方程的简单应用
九、行列式
考试内容
行列式的概念和基本性质行列式按行(列)展开定理
十、矩阵
考试内容
矩阵的概念矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵
矩阵的秩矩阵的等价分块矩阵及其运算
十一、向量
考试内容
向量的概念向量的线性组合与线性表示向量组的线性相关与线性无关向量组的极大线性无关组等价向量组向量组的秩向量组的秩与矩阵的秩之间的关系向量空
每3名成功跨校跨专业学员有2名来自跨考
间及其相关概念维向量空间的基变换和坐标变换过渡矩阵向量的内积线性无关向量组的正交规范化方法 规范正交基正交矩阵及其性质
十二、线性方程组
考试内容
线性方程组的克拉默(Cramer)法则齐次线性方程组有非零解的充分必要条件非齐次线性方程组有解的充分必要条件线性方程组解的性质和解的结构齐次线性方程组的基础解系和通解解空间非齐次线性方程组的通解
十三、矩阵的特征值和特征向量
考试内容
矩阵的特征值和特征向量的概念、性质相似变换、相似矩阵的概念及性质矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值、特征向量及其相似对角矩阵十四、二次型
考试内容
二次型及其矩阵表示合同变换与合同矩阵二次型的秩惯性定理二次型的标准形和规范形用正交变换和配方法化二次型为标准形 二次型及其矩阵的正定性 概率论与数理统计
一、随机事件和概率
考试内容
随机事件与样本空间事件的关系与运算完备事件组概率的概念概率的基本性质古典型概率几何型概率 条件概率概率的基本公式事件的独立性独立重复试验
二、随机变量及其分布
考试内容
随机变量随机变量分布函数的概念及其性质离散型随机变量的概率分布连续型随机变量的概率密度常见随机变量的分布随机变量函数的分布
三、多维随机变量及其分布
考试内容
每3名成功跨校跨专业学员有2名来自跨考
多维随机变量及其分布二维离散型随机变量的概率分布、边缘分布和条件分布二维连续型随机变量的概率密度、边缘概率密度和条件密度随机变量的独立性和不相关性常用二维随机变量的分布两个及两个以上随机变量简单函数的分布
四、随机变量的数字特征
考试内容
随机变量的数学期望(均值)、方差、标准差及其性质随机变量函数的数学期望矩、协方差、相关系数及其性质
五、大数定律和中心极限定理
考试内容
切比雪夫(Chebyshev)不等式切比雪夫大数定律伯努利(Bernoulli)大数定律辛钦(Khinchine)大数定律棣莫弗-拉普拉斯(De Moivre-Laplace)定理列维-林德伯格(Levy-Lindberg)定理
六、数理统计的基本概念
考试内容
总体 个体 简单随机样本 统计量 样本均值 样本方差和样本矩 分布 分布 分布 分位数 正态总体的常用抽样分布
七、参数估计
考试内容
点估计的概念估计量与估计值矩估计法最大似然估计法估计量的评选标准区间估计的概念单个正态总体的均值和方差的区间估计两个正态总体的均值差和方差比的区间估计
八、假设检验
考试内容
显著性检验假设检验的两类错误单个及两个正态总体的均值和方差的假设检验
文章来源:跨考考研
第三篇:数学一模考试反思
一模考试反思
1班
2班
一模考试已经结束,下面将对于每班整体状况和具体学生进行分析:
一、班级分析:
1班:这半个学期以来,1班学生的整体氛围比较活跃、有序,学习比较好的学生在课堂上表现欲比较强,带动了全班所有人的参与,在这些学生的影响下,中等及偏下的学生没有退步,保持稳定的水平;也是在这种气氛的促进下,中上等的学生成绩逐渐集中到优秀水平,形成了互相竞争的局面,有了良好的学习环境,优秀生的成绩比较有进步,尖子生加工比较有效。在优秀生中,仍有个别学生状态不是很稳定,在此,需要给优秀生做好思想工作,以鼓励、肯定为主,继续发挥他们在班里的带头作用,关注其思想动态,严格要求,有负面情绪及时疏导。1班两级分化比较严重,剩下的6个人数学都在80分以下,魏骁基础比较差且没有良好的学习习惯,张一荻从模拟测试到一模进步了33分,应当及时鼓励,督促其认证完成平时的基础题,张璨,有一定的学习基础及学习能力,但是由于比较懒散成性至今没有明显进步,白宇豪、绳昊宇,这次都是将将及格,相比于之前的50分左右略有进步,但是进步的幅度不大,他们的目标分数是90分以上。
2班:整体来说,班级重男生的学习气氛不是很好,女生比较踏实,但是还存在学习态度偶尔懒散,作业得过且过的情况。班级的尖子生赵莹莹、田嘉怡在数学学习中没有发挥很大的作用,吴嘉骥、绳昊雯、吴怡静、于澜是可以培养的优秀生,他们目前状态比较有进步,应该进一步严格要求他们;耿祎雯、徐洋、郭启宸,他们的分数经常徘徊在及格线左右,有学习态度的问题,也有学习能力的问题,他们的目标分数应该在90分左右;朱彦吉、耿子龙、蒋东恒等人在数学学习上基础很差,所以对于他们的目标尽量保持在及格上下。
二、具体措施:
1班:继续鼓励尖子生,提高他们的“尖子意识”,即,在各个方面都应该严格要求自己,对自己的成绩应该控制再优秀的水平,不允许出现偏科的情况,如有这样的情况,应该尽快查漏补缺使各科均衡发展;在周末补课、7班上课的时候,更要有团体意识,他们的表现代表的是1班这个集体,更应该在学习的过程中稳固自己的学习水平,充分利用7班学习的时间与资源学有所成。第八节课在1班主要以模拟题目前1-25题为主要讲解题型,落实双基,重视基础定义、概念的讲解及落实。其中,1班目前有3人已决定回户籍考试:张一荻、白宇豪、绳昊宇。
2班:提高上课的学习氛围,以及女生的学习积极性,带动上课活跃气氛,使这个班的女生充分发挥更积极的作用,鼓励他们在班里数学学习中积极表现,承担自己学习的责任;合理布置任务,让学生在课后也能活跃起来,讨论数学,及时肯定。作业做到一对一辅导,对于作业态度不认真的学生,点到具体问题,督促其加强改正。对于后进生,在课堂上尽量少提问,多做个别辅导,找准每个人哪类题目不会做的根源,统一基础题目的解题方法,并落实检查。培优:培优培在平时的点滴问题。对于大题的讲解,是培优路上不可避免的,在今后40多天的教学中,综合大题的讲解必不可少,虽然讲解这样的题目时间会比较长,但还是要充分挖掘题目本身,1、综合题目分层讲解,将题目划分成多个小问题,在解决小问题的过程中,多设计一些知识之间联系的问题让学生思考。
2、几何课上多让学生观察图形,一题尽量多解。
3、代数问题,让学生回归问题的本质,立足基础探究问题本质。
总之,提高学生成绩从上好每一节课开始,冲刺的这些日子我将保持力争让所有的学生在数学课上有收获。
第四篇:专接本《数学一》考试大纲及重点知识总结
考试内容与要求(数一)
一、内容概述与总要求
参加数学
(一)考试的考生应理解或了解《高等数学》中函数、极限、连续、一元函数微分学、一元函数积分学、向量代数与空间解析几何、多元函数微积分学、无穷级数、常微分方程以及《线性代数》中行列式、矩阵、线性方程组的基本概念与基本理论;参加数学
二、考试形式与试卷结构
考试采用闭卷、笔试形式,全卷满分为100分,考试时间为60分钟。
考试包括选择题、填空题、计算题、解答题和证明题。选择题是四选一型的单项选择题;填空题只要求直接填写结果,不必写出计算过程或推理过程;计算题、解答题、证明题均应写出文字说明、演算步骤或推理过程。
选择题和填空题分值合计为46分。计算题、解答题和证明题分值合计为54分。数学
(一)中《高等数学》与《线性代数》试题的分值比例约为85:15。
一、函数、极限与连续
(一)函数 1.知识范围
函数的概念及表示方法 分段函数 函数的奇偶性、单调性、有界性和周期性 复合函数、反函数、分段函数和隐函数 基本初等函数的性质及其图形 初等函数 简单应用问题函数关系的建立
函数的概念:给定两个实数集D和M,若有对应法则
f,使对D内每一个数x,都有唯一的一个数yM
f:DM,xy与它相对应,则称f是定义在数集D上的函数,记作
数集D称为函数f的定义域,x所对应的数y,称为f在点x的函数值,常记为f(x)。全体函数值的集合 f(D)yyf(x),xD(M)
称为函数f的值域。
函数的表示法:在中学课程里,我们已经知道函数的表示法主要有三种,即解析法(或称公式法)、列表法和图象法。
有些函数在其定义域的不同部分用不同的公式表达,这类函数通常称为分段函数。
设f为定义在D上的函数,若存在正数M,使得对每一个xD有
f(x)M,则称f为D上的有界函数。
设f为定义在D上的函数,若对任何x1,x2D,当x1x2时,总有
(i)f(x1)f(x2),则称f为D上的增函数,特别当成立严格不等式f(x1)f(x2)时,称f为D上的严格增函数;
(ii)f(x1)f(x2),则称f为D上的减函数,特别当成立严格不等式f(x1)f(x2)时,称f为D上的严格减函数;
增函数和减函数统称为单调函数,严格增函数和严格减函数统称为严格单调函数。
设D为对称于原点的数集,f为定义在D上的函数,若对每一个xD有
f(x)f(x)(f(x)f(x)),则称f为D上的奇(偶)函数。
从函数图形上看,奇函数的图象关于原点对称,偶函数的图象则关于y轴对称。设f为定义在数集D上的函数,若存在0,使得对一切xD有f(x)f(x),则称f为周期函数,称为f的一个周期。
隐函数概念:设XR,YR,函数F:X×YR.对于方程
F(x,y)0(1)
若存在集合IX与JY,使得对于任何xI,恒有唯一确定的yJ,它与x一起满足方程(1),则称由方程(1)确定一个定义在I上,值域含于J的隐函数。
初等函数:常量函数 yc(c是常数);
幂函数 yxa(a为实数);
指数函数yax(a0,a1);
对数函数 ylogax(a0,a1);
三角函数ysinx(正弦函数),ycosx(余弦函数),ytanx(正切函数),ycotx(余切函数)反三角函数
2.考试要求
(1)理解函数的概念,会求函数的定义域、表达式及函数值,会建立实际问题中的函数关系式。
(2)了解函数的简单性质,会判断函数的有界性、奇偶性、单调性、周期性。(3)掌握基本初等函数的性质及其图形。(4)理解复合函数及分段函数的概念,了解反函数及隐函数的概念。掌握将一个复合函数分解为基本初等函数或者简单函数的复合的方法。
(二)极限 1.知识范围
数列极限与函数极限的定义及其性质 函数的左、右极限 极限的四则运算 无穷小无穷大 无穷小的变化
sinxx两个重要极限;limx011,lim1ex0x
数列极限设an为数列,a为定数。若对任给的正数,总存在正整数N,使得当nN时有
nana,则称数列an收敛于a,定数a称为数列an的极限,并记作
limanna或ana(n),读作“当n趋于无穷大时,an的极限等于a或an趋于a”。2.考核要求
(1)理解极限的概念(对极限定义中“ε—N”、“ε—δ”、“ε—M”等形式的描述不作要求),理解函数左、右极限的概念以及极限存在与左、右极限之间的关系,了解自变量趋向于无穷大时函数极限存在的充分必要条件。(2)了解极限的性质,掌握极限的四则运算法则。
(3)理解无穷小、无穷大以及无穷小的比较(高阶、低阶、同阶和等阶)的概念,会应用无穷小与无穷大的关系、有界变量与无穷小的乘积、等价无穷小代换求极限。
(4)掌握应用两个重要极限求极限的方法。
(三)函数的连续性 1.知识范围
函数连续的概念 函数的间断点 初等函数的连续性 闭区间上连续函数的性质(最大值与最小值定理、零点存在定理)2.考核要求
(1)理解函数连续性概念 会判断分段函数在分段点的连续性。(2)会求函数的间断点
(3)了解闭区间上连续函数的性质(最大值与最小值定理、零点存在定理),会用零点存在定理推正一些简单的命题。
(4)了解连续函数的性质和初等函数的连续性,理解函数在一点连续和极限存在的关系,会应用函数的连续性求极限。二、一元函数微分
(一)导数与微分 1.知识范围
导数与微分的概念 导数的几何意义与物理意义 函数的可导性与连续性的关系平面、曲线的切线和法线 基本初等函数的导数 导数与微分的四则运算 复合函数、隐函数以及参加方程确定的函数的微分法 高阶导数的概念 某些简单函数的n阶导数 微分运算法则一阶微分形式的小变性 2.考试要求
(1)理解导数与微分的概念,理解导数的几何意义,了解函数的可导性与连续性之间的关系,会求分段函数在分段点处的导数。(2)会求平面曲线的切线方程与法线方程。
(3)掌握基本初等函数的导数公式,掌握导数的四则运算法则及复合函数的求导法则。
(4)会求隐函数和由参数方程所求导法。
(5)了解高阶导数的概念,会求某些简单函数的n阶导数。
(6)掌握微分运算法则及一阶微分形式不变性,了解可微分与可导的关系,会求函数的微分。
(二)微分中值定理和导数的应用
1 拉格朗日定理和函数的单调性
一 罗尔定理与拉格朗日定理
(罗尔中值定理)若函数f满足如下条件:
(i)f在闭区间a,b上连续;
(ii)f在开区间a,b内可导;
(iii)f(a)f(b),则在a,b内至少存在一点,使得
f`()0。
(拉格朗日中值定理)若函数f满足如下条件:
(i)f在闭区间a,b上连续;
(ii)f在开区间a,b内可导;
则在a,b内至少存在一点,使得
f(b)f(a)baf`()
(柯西中值定理)设函数f和g满足
(i)在a,b上都连续;(ii)在a,b内都可导;
(iii)f`(x)和g`(x)不同时为零;(iv)g(a)g(b),则存在(a,b),使得
f`()g`()f(b)f(a)g(b)g(a)
1.知识范围
罗尔Rolle中值定理 拉格朗日Lagrange中值定理 落必达L `Hospital法则 函数单调性的判定 函数极值及其求法 函数最大值、最小值的求法及简单应用 函数图形的凹凸性与拐点及其求法 函数图形的水平渐进线和铅直渐进线
2.考核要求
(1)理解罗尔中值定理、拉格朗日中值定理及其几何意义,会用罗尔定理、拉格朗日中值定理证明某些简单的不等式和证明某些方程根存在性。(2)掌握用落必达法则求 型未定式极限的方法。
(3)掌握利用导数判定函数单调性及求函数的单调区间的方法,会利用函数的单调性证明简单的不等式。
(4)理解函数极值的概念,掌握求函数极值的方法,掌握函数最大值、最小值的求法及其简单应用。
(5)会判断函数的凹凸性,会求函数图形的拐点。(6)会判断函数图形的水平渐进线和铅直渐进线。(7)会描绘简单号数的图形。三、一元函数积分学
(一)不定积分 1.知识范围 原函数与不定积分的概念 不定积分的基本性质 基本积分公式 第一换元法(即凑微分法)第二换元法 分布积分法 简单有理函数、简单无理函数及三角函数有理式的积分 2.考核要求
(1)理解原函数与不定积分的概念。(2)理解不定积分的基本性质。(3)掌握不定积分的基本公式。
(4)掌握不定积分的第一换元法、第二换元法(限于三角代换与简单的根式代换)和分布积分法。
(5)会求简单有理函数的不定积分(分解定理不做要求),会求简单物理函数及三角函数有理式的积分。
(二)定积分 1.知识范围
定积分的概念及性质 变上限定积分及其导数 牛顿—莱不尼茨(Newton—Leibniz)公式 定积分的换元法和分布积分法 定积分的应用(平面图形的面积,旋转体的体积)无穷区间的广义积分的概念与计算 2.考核要求
(1)理解定积分的概念,理解定积分的基本性质。
(2)理解变上限定积分是其上限的函数及其求导定理,掌握牛顿—莱不尼茨公式。
(3)掌握定积分的换元法和分布积分法,会证明一些简单的积分恒等式。(4)掌握用定积分求平面图形的面积和简单的封闭图形绕坐标轴的旋转所成旋转体体积。
(5)了解无穷区间的广义积分概念,会计算无穷区间的广义积分。
四、向量代数与空间解析几何
(一)向量代数 1.知识范围 向量的概念 向量的坐标表示 方向余弦 单位向量 向量的线性运算 向量的数量积与向量积及其运算 两向量的夹角 两向量垂直、平行的充分必要条件 2.考核要求
(1)理解空间直角坐标系,理解向量的概念及其表示;了解单位向量、向量的模与方向余弦,向量在坐标轴上的投影。
(2)掌握向量的线性运算、数量积、向量积,以及用坐标表达式进行向量运算的方法。
(1)acaccos(a,c)x1x2y1y2z1z2
(2)ac的大小acacsin(a,c),方向按右手系与a,c所在平面垂直。
iacx1x2jy1y2kz1 z2(3)掌握两向量平行、垂直的条件,会求向量的夹角。
(二)平面与直线 1.知识范围
平面点法式方程和一般式方程 点到平面的距离 空间直线的标准式(又称对称式或点向式)方程、一般式(又称交面式)方程和参数方程 直线与直线、直线与平面、平面与平面平行、垂直的条件和夹角 2.考核要求
(1)掌握平面的方程,会判定两平面平行、垂直或重合。
两平面的平行、垂直或交角,就是它们法向量的平行、垂直和相交。(2)会求点到平面的距离。
点M0(x0,y0,z0)与平面AxByCzD0间的距离为 dAx0By0Cz0DABC222
(3)掌握空间直线式的标准方程、一般式方程、参数方程。会判定两直线平行、垂直或重合。空间直线的方程
(1)标准式(对称式):过点(x0,y0,z0)、方向向量为n(i,m,n)的直线方程为xx0iyy0mzz0n
xx1x1x2yy1y1y2zz1z1z2(2)两点式:过点(x1,y1,z1)和(x2,y2,z2)的直线方程为
A1xB1yC1zD0(3)一般式:(作为两平面的交线)
AxByCzD0222xx0lt(4)参数式:yy0mt
zznt0判定空间两直线(1)与(2)的相关位置的充要条件为 1 异面:
x2x1X1X2y2y1Y1Y2z2z1Z1Z20;2 相交:
X1:Y1:Z1X2:Y2:Z2;3平行:
X1:Y1:Z1X2:Y2:Z2,(x2x1)(y2y1)(z2z1)重合: X1:Y1:Z1X2:Y2:Z2(x2x1)(y2y1)(z2z1)
(4)会判定直线与平面间的位置关系(垂直、平行、斜交或直线在平面上)。
(三)曲面的方程 1.知识范围
曲面方程的概念 球面 母线平行于坐标轴的柱面 旋转轴为坐标轴的旋转曲面 常用的二次曲面 2.考核要求
(1)理解多元函数的概念。了解母线平行于坐标轴的柱面、旋转轴为坐标轴的旋转曲面的方程及其图形。
(2)了解球面、椭球面、圆柱面、圆锥面和旋转抛物面等常用二次曲面的方程及其图形。
五、多元函数微分学 1.知识范围
多元函数的概念 二元函数的极限与连续的概念 偏导数、全微分的概念 权威费存在的必要条件与充分条件 二阶偏导数 复合函数、隐函数的求导法 偏导数的几何应用 多元函数的极值、条件函数的概念 多元函数极值的必要条件 二元函数极值的充分条件 极值的求法 拉格朗日乘数法 2.考核要求
(1)理解多元函数的概念,了解二元函数的几何意义和定义域。了解二元函数极限与连续概念(对计算不做要求)。
(2)理解偏导数的概念,了解全微分的概念和全微分存在的必要条件和充分条件。
(3)掌握二元初等函数的一、二阶偏导数的计算方法,会求全微分。如果函数f(x,y)在点(x,y)处的全增量zAxBy(x2y2),则函数在该点可微分,且dzAxByAdxBdy称为f(x,y)的全微分。结论:函数f(x,y)在点(x,y)处:两个一阶偏导数都连续可微分偏导数存在。(4)掌握复合函数的一、二阶偏导数的计算方法(含抽象函数)。(5)掌握由方程 所确定的隐函数zz(x,y)的一阶、二阶偏导数的求法。(6)会求空间曲面的切平面方程和法线方程。
曲面F(x,y,z)0上一点M0(x0,y0,z0)处的法向量为(Fx,Fy,Fz)M;曲面
0zf(x,y)上一点M0(x0,y0,z0)处的法向量为(fx,fy,1)M0,由此可以用点法式、对称式分别写出曲面在点M0处的切平面和法线方程。
(7)会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求二元函数的最大值、最小值并会解一些简单的应用问题。多元函数的条件极值,拉格朗日乘数法
求函数uf(x,y,z)在约束条件(x,y,z)0下的极值:
构造拉格朗日函数F(x,y,z,)f(x,y,z)(x,y,z); 分别对该函数的各自变量求导,并令各偏导数为零,得方程组
0Fxfxx0Fyfyy Ff0zzzF0解此方程组得到的(x0,y0,z0)就是可能的极值点;通过进一步的判断可以确定其是否为极值点。
六、多元函数积分学
(一)二重积分 1.知识范围 二重积分的概念及性质 二重积分的计算 二重积分的几何应用 2.考核要求
(1)理解二重积分的概念,了解其性质。
(2)掌握二重积分(直角坐标系、极坐标系)的计算方法。(3)会在直角坐标系内交换两次定积分的次序。(4)会用二重积分求空间曲面所围成立体的体积。
(二)曲线积分 1.知识范围
对坐标的平面曲线积分的概念和性质 对坐标的平面曲线积分的计算 格林(Green)公式平面曲线积分与路径无关的条件 2.考核要求
(1).理解对坐标的平面曲线积分的概念及性质。(2).掌握对坐标的曲线积分计算的方法。
(3).掌握格林公式,会应用平面曲线积分与路径无关的条件。若函数P(x,y),Q(x,y)在闭区域D上连续,且有连续的一阶偏导数,则有
(DQxPy)dLPdxQdy
这里L为区域D的边界曲线,并取正方向。公式称为格林公式。
七、无穷级数
(一)常数项级数 1.知识范围
常数项级数收敛、发散的概念 收敛级数的和 级数收敛的基本性质和必要条件 正项级数收敛性的比较判别法、比值判别法 交错级数的莱不尼茨判别法 绝对收敛与条件收敛 2.考核要求·
(1).理解常数项级数收敛、发散以及收敛级数的和的概念。理解级数的必要条件和基本性质。
(2).掌握几何级数 的敛散性。
(3).掌握调和级数 与 级数 的敛散性。
(4).掌握正项级数的比值判别法,会用正项级数的比较判别法。
比较判别法:un,vn都是正项级数且unvn(nN),则vn收敛n1n1n1un1n收敛;un发散n1v发散。
nn1比值判别法:un是正项级数,且limn1un1unnl,则l1时级数收敛;l1时级数发散;l1时级数可能收敛也可能发散。
(5).会用莱不尼茨判别法判定交错级数收敛。
n1若交错级数(1)n1un(un0)满足unun1(nN),un0n1,则级数收敛,且级数的和不超过u1。
(6).了解级数绝对收敛与条件收敛的概念,会判定任意项级数的绝对收敛与条件收敛。
若级数un收敛,则级数un绝对收敛;
n1n1若级数un发散而级数un收敛,称级数un条件收敛
n1n1n
1(二)幂级数 1.知识范围 幂级数的收敛半径、收敛区间和收敛域 幂级数在收敛区间内的基本性质 函数的马克劳林(Maclaurin)展开式 2.考核要求
(1).了解幂级数的概念。
(2).了解幂级数在其收敛区间内的基本性质(逐项求和,逐项求导与逐项积分)。
(3).掌握幂级数的收敛半径、收敛域的方法(包括端点处的收敛性)。(4).会运用的马克劳林展开式,将一些简单的初等函数展开为x域(或)的幂级数。
八、常微分方程
(一)微分方程基本概念 1.知识范围
常微分方程的概念 微分方程的阶、解、通解、初始条件和特解 2.考核要求
(1)了解微分方程的阶、解、通解、初始条件和特解的概念。(2)会验证常微分方程的解、通解和特解。(3)会建立一些微分方程,解决简单的应用问题。
(二)一阶微分方程 1.知识范围
一阶可分离变量微分方程 一阶线性微分方程 2.考核要求
(1)掌握一阶可分离变量微分方程的解法。(2)会用公式法解一阶线性微分方程。
(三)二阶线性微分方程 1.知识范围
二阶线性微分方程解的性质和解的结构 二阶常系数齐次线性微分方程 二阶常系数非齐次线性微分方程 2.考核要求
(1)了解二阶线性微分方程解的性质和解的结构。(2)掌握二阶常系数非齐次线性微分方程的解法。
(3)掌握二阶常系数非齐次线性微分方程特解的形式,其中自由项限定为(a是常数,是n次多项式)或(a,b,A,B是常数),并会求二阶常系数非齐次线性微分方程的通解。九 线性代数 1.知识范围
行列式的概念 余子式和代数余子式 行列式的性质 行列式按一行(列)展开定理 克莱姆(Cramer)法则及推论 2.考核要求
(1)了解行列式的定义,理解行列式的性质。(2)理解行列式按一行(列)展开定理。(3)掌握计算行列式的基本方法。
(4)会用克莱姆法则及推论解线性方程组。
(二)矩阵 1.知识范围
矩阵的概念 矩阵的线性运算 矩阵的乘法 矩阵的转置 单位矩阵 对角矩阵 三角矩阵 方阵的行列式 方阵乘积的行列式 逆矩阵的概念 矩阵可逆的充分必要条件 伴随矩阵 矩阵的初等变换 矩阵的秩 初等变换求矩阵的秩和逆矩阵 2.考核要求
(1)了解矩阵的概念,了解单位矩阵、对角矩阵和三角矩阵。(2)掌握矩阵的线性运算、乘法和矩阵的转置。(3)会用伴随矩阵法求二、三阶方阵的逆矩阵。
(4)理解矩阵秩的概念,会用初等变换法求矩阵的秩和逆矩阵,会用简单的矩阵方程。
(三)线性方程组 1.知识范围
向量的概念 向量组的线性相关与线性无关 向量组的极大无关组 向量组的秩与矩阵的秩的关系 齐次线性方程组有非零解的充分必要条件 非齐次线性方程组的基础解系和通解 非齐次线性方程组的通解 用行初等变换求解线性方程组的方法 2.考核要求
(1)理解n维向量的概念,理解向量组线性相关与线性无关的定义,了解向量组的极大无关组和向量组的秩的概念。(2)了解判别向量组的线性相关性的方法。
(3)会求齐次线性方程组的基础解系,会求齐次线性方程组和非齐次线性方程组的一般解和通解。
第五篇:九年级数学一模考试反思
九年级数学一模考试反思
孟会荣
时光荏苒,转眼间九年级第二学期已接近中期,一模考试完毕。学生对模拟考试都很重视,充满期待,又充满忐忑。尽管一模考试最多的是让学生进行体验和感受。感受出题的角度,感受题目的难易程度。体验模拟考试的考场氛围。通过考试发现自己的不足以便寻找应对措施。
一模考试是在各科基本刚结课后进行的。基本没有充分复习更称不上是系统复习。对知识点的掌握不够全面扎实,对方法的掌握不够科学有效。尤其是初中七、八年级的知识有些遗忘了,还有一些压根就没学透,存在漏洞。对综合性题型接触相对较少。融会贯通能力有待提高。
数学一模考试后,从整体成绩看高分不是很多并且低分也不少,中等水平的学生依然是原来的中等成绩。但总体各水平段学生成绩较九年级期末考试成绩或各章节考试成绩偏低。分析原因有如下几点:
一、模拟试卷难度偏大(各科均存在)
二、数学九年级下册刚结课,可以说没有进行一点复习。学生对之前所学尤其是七、八年级知识有遗忘,漏洞也未补。
三、学生对知识的内在联系认识不清;对整体把握不够,以至于综合性题型解答不全面,或完全不知如何下手,找不出解题的突破口。
四、部分学生对考试存在压力过大,考场紧张的情况,以
至于解题思路混乱,影响答题速度,甚至已知条件完
全看错。
五、部分学生对答题技巧掌握不好,方法不灵活。特别是
做选择题时,不能在有限时间内迅速找出最快捷的思
路。
六、一些学生平时轻视计算题,运算能力太低。
针对上述问题,作为教师我及时与学生进行了交流和分析:首先让学生不要过于紧张,特别在考场上。如果出现紧张情绪,可以闭上眼睛深呼吸,并且对自己进行积极暗示:我已经准备得很充分了,没什么大不了的。第二、对我们现在因为没有进行系统复习客观存在的知识点模糊或漏洞进行客观坦然接受,以便心平气和的看待由此造成的本次考试失误。第三:通过本次一模考试,我们也确实看到了我们知识存在的漏洞和解题技能的不高和不灵活。以后的学习和复习要引起注意。第四、对于在考试中出现的计算失误,有这方面情况的同学要注重自己运算能力的提高。作为教师我会通过一些计算类的题目帮助大家提高运算能力。第五、注重平时对同类型题目解题思路的归纳、总结和思考。以便达到融会贯通、触类旁通的目的。第五、要求每个同学针对自己情况对试卷进行反思并找出应对措施。
以后的教学中,我也会注重以上几点情况,复习中做到针对性强,科学有效。期待二模考试中学生能避免上述问题的困扰,考出
自己的水平。