2018考研数学重点题型:极限存在性的判定

时间:2019-05-14 16:01:04下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《2018考研数学重点题型:极限存在性的判定》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《2018考研数学重点题型:极限存在性的判定》。

第一篇:2018考研数学重点题型:极限存在性的判定

凯程考研辅导班,中国最权威的考研辅导机构

2018考研数学重点题型:极限存在性的判定

在考研数学试卷中,有一类型的题目是考查极限是否存在,有的题目是我们判断极限是否存在,有的题目是证明数列极限或函数极限存在。这也是考研数字中常考的一类题型,就做题当中常用的一些解题方法,本文来给同学们进行总结归纳一下。

命题1(单调有界准则)单调有界数列必有极限,即必收敛。

证明数列的极限存在或收敛,一般用的就是命题1。

下列几类函数的极限常由单侧极限准则判断其存在性.若存在,也用它求其极限.(1)在分段点两侧函数表达式不同的分段函数,判定其在分段点处的极限存在性;

(2)含绝对值符号的函数,需先去掉绝对值符号化为分段函数进行讨论;

凯程考研辅导班,中国最权威的考研辅导机构

上面所介绍的命题1主要用于证明数列极限的存在性,而命题2和命题3 用于判断函数的极限的存在性,而命题3也是求某些特定的函数在某点的极限。

希望同学们对于上面的基本原理可以搞清楚,且应用它们可以灵活解题即可,明白在何种情形下,应该用哪个命题进行解题即可。

页 共 2 页

第二篇:2018考研数学:二重极限

东莞中公教育

2018考研数学:二重极限

以下是中公考研数学研究院的老师为大家整理了2018考研数学:二重极限的题型讲解,供大家复习参考。

高等数学的研究对象是函数,而极限则是研究函数的最重要的工具,对于一元函数如此,对于多元函数亦是如此。那么在学习多元微分学之前,首先来认识多重极限的概念,在此以二重极限为例进行说明。东莞中公教育

2.考试要求会计算二重极限,最直接的想法就是一元函数求极限的方法中哪些还可以继续使用,其中四则运算法则,等价无穷小替换和夹逼定理及其推论(无穷小量乘以有界量等于无穷小量)可以使用。

【注记】1.取路径的方法只是用来验证函数的极限不存在,不能用于求极限。并且路径一般取为直线,便于计算。

2.考试不会直接考查二重极限的计算,而是在研究函数的连续性、可导性和可微性的时候需要计算二重极限。

最后,中公考研祝全体考生考研成功!

第三篇:考研数学必考题型

进了六月份,这个一年中最热的季节,考研备考者的复习也进行得如火如荼。虽然天气炎热,虽然备考压力巨大,但复习中一定要保持清楚的头脑,特别对于考研数学的复习。数学不仅需要严密的逻辑思维,还需要灵活的处理手法,更需要善于总结的习惯。考研数学专业老师分析了近年考试真题与大纲,深入研究了硕士教育对于考生数学素养的要求,总结出2012考研高等数学考试会重点考查的六大题型,供备考者复习参考。

第一:求极限。

无论数学

一、数学二还是数学三,求极限是高等数学的基本要求,所以也是每年必考的内容。区别在于有时以4分小题形式出现,题目简单;有时以大题出现,需要使用的方法综合性强。比如大题可能需要用到等价无穷小代换、泰勒展开式、洛比达法则、分离因子、重要极限等中的几种方法,有时考生需要选择其中简单易行的组合完成题目。另外,分段函数个别点处的导数,函数图形的渐近线,以极限形式定义的函数的连续性、可导性的研究等也需要使用极限手段达到目的,须引起注意!

第二:利用中值定理证明等式或不等式,利用函数单调性证明不等式。

证明题虽不能说每年一定考,但也基本上十年有九年都会涉及。等式的证明包括使用4个微分中值定理,1个积分中值定理;

不等式的证明有时既可使用中值定理,也可使用函数单调性。这里泰勒中值定理的使用是一个难点,但考查的概率不大。第三:一元函数求导数,多元函数求偏导数。

求导数问题主要考查基本公式及运算能力,当然也包括对函数关系的处理能力。一元函数求导可能会以参数方程求导、变限积分求导或应用问题中涉及求导,甚或高阶导数;多元函数(主要为二元函数)的偏导数基本上每年都会考查,给出的函数可能是较为复杂的显函数,也可能是隐函数(包括方程组确定的隐函数)。另外,二元函数的极值与条件极值与实际问题联系极其紧密,是一个考查重点。极值的充分条件、必要条件均涉及二元函数的偏导数。

第四:级数问题。

常数项级数(特别是正项级数、交错级数)敛散性的判别,条件收敛与绝对收敛的本质含义均是考查的重点,但常常以小题形式出现。函数项级数(幂级数,对数一来说还有傅里叶级数,但考查的频率不高)的收敛半径、收敛区间、收敛域、和函数等及函数在一点的幂级数展开在考试中常占有较高的分值。第五:积分的计算。

积分的计算包括不定积分、定积分、反常积分的计算,以及二重积分的计算,对数学考生来说常主要是三重积分、曲线积分、曲面积分的计算。这是以考查运算能力与处理问题的技巧能力为主,以对公式的熟悉及空间想像能力的考查为辅的。需要注意在复习中对一些问题的灵活处理,例如定积分几何意义的使用,重心、形心公式的反用,对称性的使用等。

第六:微分方程问题。

解常微分方程方法固定,无论是一阶线性方程、可分离变量方程、齐次方程还是高阶常系数齐次与非齐次方程,只要记住常用形式,注意运算准确性,在考场上正确运算都没有问题。但这里需要注意:研究生考试对微分方程的考查常有一种反向方式,即平常给出方程求通解或特解,现在给出通解或特解求方程。这需要考生对方程与其通解、特解之间的关系熟练掌握。

这六大题型可以说是考试的重点考查对象,考生可以根据自己的实际情况围绕重点题型复习,争取达到高分甚至满分!

第四篇:2012年考研数学复习重点与典型题型

2012年考研数学复习重点与典型题型

来源:跨考教育发布时间:2011-11-15 16:28:26

近年来考研数学试题难度比较大,平均分比较低,而高等数学又是考研数学的重中之重,如何备考高等数学已经成为广大考生普遍关心的重要问题,要特别注意以下三个方面。第一,按照大纲对数学基本概念、基本方法、基本定理准确把握(也即三基的重要性务必引起重视)。数学是一门逻辑学科,靠侥幸押题是行不通的。只有对基本概念有深入理解,对基本定理和公式牢牢记住,才能找到解题的突破口和切入点。分析近几年考生的数学答卷可以发现,考生失分的一个重要原因就是对基本概念、定理理解不准确,数学中最基本的方法掌握不好,给解题带来思维上的困难。

第二,要加强解综合性试题和应用题能力的训练,力求在解题思路上有所突破。在解综合题时,迅速地找到解题的切入点是关键一步,为此需要熟悉规范的解题思路,考生应能够看出面前的题目与他曾经见到过的题目的内在联系。为此必须在复习备考时对所学知识进行重组,搞清有关知识的纵向与横向联系,转化为自己真正掌握的东西。解应用题的一般步骤都是认真理解题意,建立相关数学模型,如微分方程、函数关系、条件极值等,将其化为某数学问题求解。建立数学模型时,一般要用到几何知识、物理力学知识和经济学术语等。第三,重视历年试题的强化训练。统计表明,每年的研究生入学考试高等数学内容较之前几年都有较大的重复率,近年试题与往年考题雷同的占50%左右,这些考题或者改变某一数字,或改变一种说法,但解题的思路和所用到的知识点几乎一样。通过对考研的试题类型、特点、思路进行系统的归纳总结,并做一定数量习题,有意识地重点解决解题思路问题。对于那些具有很强的典型性、灵活性、启发性和综合性的题,要特别注重解题思路和技巧的培养。尽管试题千变万化,其知识结构基本相同,题型相对固定。提练题型的目的,是为了提高解题的针对性,形成思维定势,进而提高考生解题的速度和准确性。

下面以数学一为主总结一下高数各部分常见题型。

一、函数、极限与连续

求分段函数的复合函数;求极限或已知极限确定原式中的常数;讨论函数的连续性,判断间断点的类型;无穷小阶的比较;讨论连续函数在给定区间上零点的个数,或确定方程在给定区间上有无实根。

二、一元函数微分学

求给定函数的导数与微分(包括高阶导数),隐函数和由参数方程所确定的函数求导,特别是分段函数和带有绝对值的函数可导性的讨论;利用洛比达法则求不定式极限;讨论函数极值,方程的根,证明函数不等式;利用罗尔定理、拉格朗日中值定理、柯西中值定理和泰勒中值定理证明有关命题,如“证明在开区间内至少存在一点满足....。.”,此类问题证明经常需要构造辅助函数;几何、物理、经济等方面的最大值、最小值应用问题,解这类问题,主要是确定目标函数和约束条件,判定所讨论区间;利用导数研究函数性态和描绘函数图形,求曲线渐近线。

三、一元函数积分学

计算题:计算不定积分、定积分及广义积分;关于变上限积分的题:如求导、求极限等;有关积分中值定理和积分性质的证明题;定积分应用题:计算面积,旋转体体积,平面曲线弧长,旋转面面积,压力,引力,变力作功等;综合性试题。(注;高数中解答题的最后一步往往是求解一个积分,故积分的各种求解方法务必熟练再熟练!)

四、向量代数和空间解析几何

计算题:求向量的数量积,向量积及混合积;求直线方程,平面方程;判定平面与直线间平行、垂直的关系,求夹角;建立旋转面的方程;与多元函数微分学在几何上的应用或与线性代数相关联的题目。此题型考研中占的分值较少,且若考的话直接考查概念。

五、多元函数的微分学

判定一个二元函数在一点是否连续,偏导数是否存在、是否可微,偏导数是否连续;求多元函数(特别是含有抽象函数)的一阶、二阶偏导数,求隐函数的一阶、二阶偏导数;求二元、三元函数的方向导数和梯度;求曲面的切平面和法线,求空间曲线的切线与法平面,该类型题是多元函数的微分学与前面向量代数与空间解析几何的综合题,应结合起来复习;多元函数的极值或条件极值在几何、物理与经济上的应用题;求一个二元连续函数在一个有界平面区域上的最大值和最小值。这部分应用题多要用到其他领域的知识,考生在复习时要引起注意。

六、多元函数的积分学

二重、三重积分在各种坐标下的计算,累次积分交换次序;第一型曲线积分、曲面积分计算;第二型(对坐标)曲线积分的计算,格林公式,斯托克斯公式及其应用;第二型(对坐标)曲面积分的计算,高斯公式及其应用;梯度、散度、旋度的综合计算;重积分,线面积分应用;求面积,体积,重量,重心,引力,变力作功等。数学一考生对这部分内容和题型要引起足够的重视。每年会有一道解答题出现!

七、无穷级数

判定数项级数的收敛、发散、绝对收敛、条件收敛;求幂级数的收敛半径,收敛域;求幂级数的和函数或求数项级数的和;将函数展开为幂级数(包括写出收敛域);将函数展开为傅立叶级数,或已给出傅立叶级数,要确定其在某点的和(通常要用狄里克雷定理);综合证明题。

八、微分方程

求典型类型的一阶微分方程的通解或特解:这类问题首先是判别方程类型,当然,有些方程不直接属于我们学过的类型,此时常用的方法是将x与y对调或作适当的变量代换,把原方程化为我们学过的类型;求解可降阶方程;求线性常系数齐次和非齐次方程的特解或通解;根据实际问题或给定的条件建立微分方程并求解;综合题,常见的是以下内容的综合:变上限定积分,变积分域的重积分,线积分与路径无关,全微分的充要条件,偏导数等。

总之,对考生来说,要想在数学考试中取得好成绩,必须认真系统地按照各类考试大纲的要求全面复习,掌握数学的基本概念、基本方法和基本定理。平时注意抓题型的解决方法和技巧,不断总结。最后按规定时间做几份模拟题,了解一下究竟掌握到什么程度,同时知道薄弱环节,抓紧时间补上。如果考生能够通过做题,将遇到的各种题进行延伸或变式,做到融会贯通,一定会取得好的成绩。数学的学习要做到一步一个脚印,步步为营才能取得理想中的成绩,未来是属于我们的也是属于你们的,但归根结底还是属于你们的!

考研数学教材三大重视原则

基础功夫要做牢:数学教材的三大“重视”原则

基础阶段的学习,我们的目标是通过对教材的复习理解大纲中要求的三基本--基本概念、基本理论、基本方法。考研试卷中大部分试题是以考察基本概念,基本的公式,基本的理论为主。在这个阶段,大家在看教材应遵循下面的三大主要原则。

重视结合大纲复习

大纲不仅是命题人要遵循的法律也是我们复习的依据。现在大家用08年的大纲也完全可以。数学的试题不同于政治的试题,数学试题具有连续性和稳定性。细心的同学可能注意到了,对不同知识点大纲有不同的要求,有要求理解的,有要求了解的,有要求掌握的,也有要求会求会计算的。那么我们应该怎么来对待呢?在基础阶段复习中,大家不要在意这几个字的区别,从历年试卷的内容分布上可以看出,凡是考试大纲中提及的内容,都有可能考到,甚至某些不太重要的内容,也可以以大题的形式在试题中出现。由此可见,以押题、猜题的复习方法来对付考研靠不住的,很容易在考场上痛失分数而败北,应当参照考试大纲,全面复习,不留遗漏。

当然,全面复习不简单的就是生记硬背所有的知识,相反,是要抓住问题的实质和各内容、各方法的本质联系,把要记的东西缩小到最小程度,要努力使自已理解所学知识,多抓住问题的联系,少记一些死知识,而且记住了就要牢靠,事实证明,有些记忆是终生不忘的,而其它的知识又可以在记住基本知识的基础上,运用它们的联系而得到。这就是全面复习的含义我们都需要把它掌握了。而在以后提高阶段中,我们就需要有针对性的复习,在考试大纲的要求中,对内容有理解,了解,知道三个层次的要求;对方法有掌握,会(能)两个层次的要求,一般地说,要求理解的内容,要求掌握的方法,是考试的重点。在历年考试中,这方面考题出现的概率较大;在同一份试卷中,这方面试题所占有的分数也较多。“猜题”的人,往往要在这方面下功夫。一般说来,也确能猜出几分来。但遇到综合题,这些题在主要内容中包含着次要内容。这时,“猜题”便行不通了。我们讲的这时要突出重点,不仅要在主要内容和方法上多下功夫,更重要的是要去寻找重点内容与次要内容间的联系,以主带次,用重点内容提挈整个内容。主要内容理解透了,其它的内容和方法迎刃而解。即抓出主要内容不是放弃次要内容而孤立主要内容,而是从分析各内容的联系,从比较中自然地突出主要内容要求理解,掌握的考的频率高,常常是以大题的形式出现,大家需要重点来复习,把它吃透;要求了解,会求,会计算的知识点考得频率低一点,所以要求也稍微弱一点,大家花在上面的时间可以相对少一点。这样复习的时候才能做到有的放矢。

重视做题质量

基础阶段的学习过程中,教材上的题目肯定是要做的,那是不是教材上的所有题目都需要做呢?具统计,《高等数学》的教材上题目共1900多道,《线性代数》教材上共400多道题目,《概率论与数理统计》教材上共230多道。学习数学,要把基本功练熟练透,但我们不主张“题海”战术,其实上面我们已经清楚大约要做的题目数量,这阶段我们提倡精练,即反复做一些典型的题,做到一题多解,一题多变。要训练抽象思维能力,对些基本定理的证明,基本公式的推导,以及一些基本练习题,要做到不用书写,就象棋手 下“盲棋”一样,只需用脑子默想,即能得到正确答案,这样才叫训练有素,“熟能生巧”。基本功扎实的人,遇到难题办法也多,不易被难倒。相反,作练习时,眼高手低,总找难题作,结果,上了考场,遇到与自己曾经作过的类似的题目都有可能不会;不少考生把会作的题算错了,将其归结为粗心大意,确实,人会有粗心 的,但基本功扎实的人,出了错立即会发现,很少会“粗心”地出错。

重视复习效果

看教材不是看小说,看完就算了。看的过程中一方面要提高数学的复习效率,不和别人比速度。要做到能用自己的语言叙述大纲中的概念和定理,切忌“一知半解”。不要一味做题而不注意及时归纳总结。及时总结可以实现“量变到质变”的飞跃。不要急于做以往的“考研试卷”,等到数学的三门课复习完毕并经过第二阶段的复习再做,这样的效果会更好些。既可了解考什么、怎么考,又可检验自己复习的情况。同学们还要不骄不躁,持之以恒。另外,我们一定要对自己看过的东西进行检验,看完一章后要看下自己是否可以继续下一章节的学习。那如何来检验呢?我们的方法是:做和考研比较接近的测试题。一般来说书后习题是不能反映出大家对每一章的掌握情况的。因为我们的目标不是期末考试而是考研,课后题是不能说明问题的,大家应该通过做一些难度适中的题目才能解决这个问题。

只要坚持并把握好以上三点重视原则,相信你的数学复习一定会顺利。最后,祝愿所有备考考生都能取得令自己满意的数学成绩。

名师指导:2012年考研数学解题技巧

2012年全国硕士研究生入学统一考试数学试卷题型及分值分布:选择题8个,每个4分,共32分;填空题6个,每个4分,共24分;解答题9个,共94分。满分150分。

对于四选一的选择题,其中三个都是干扰项,一个是正确选项,答案只给出正确选项前面的字母,不给出推导过程,选对得满分,选错得0分,不倒扣分。选择题有多种解题方法,常用的方法有:首肯法、排除法、反例法、图示法、逆推法等。如果各种方法都不奏效,鼓励考生猜测选项。选择题属客观题,答案是唯一正确的,数学考试中的多选题也都以单选的形式出现,最终答案只有一个,评分是不偏不倚的。对于考生来说,会做的题目靠扎实的知识得分,不会做的只能靠自身的运气。选择题的难度一般适中,以2011年试卷为例,其中的选择题都是中等难度,没有特别难的题目,也没有一眼就能看出答案的题目。选择题主要考查考生对数学概念、数学性质的理解,要求考生能进行简单的推理、判定、计算和比较。这一部分的32分需要考生在读书的时候深入思考,并要不完全依赖臆想,而要思考与动手相结合才能稳拿。

填空题的答案是确定和唯一的,只填出最终结果,不需给出推导计算过程,答对得满分,答错得0分。这部分题目一般需要进行有一定技巧的计算,但不会有太复杂的计算题。题目

难度与选择题不相上下,即难度适中。方法只有一个:认真审题,高效率计算。填空题总共只有6个,高等数学(4个)、线性代数(1个)、概率论与数理统计(1个)各有分布,主要考查的是数学基本概念、基本原理、基本方法及数学的重要性质。这一部分24分的获取需要基础复习阶段就融会贯通的知识作保障。

解答题占总分的百分之六十多,其中有计算题、证明题及其他解答题,一般都会有多种解题方法和证明思路,有些甚至有初等解法,但考试解答时尽量用与《考试大纲》规定的考试内容和考试目标相一致的解法和证明方法,步骤表述清楚,避免因表达不清而失分。每题的分值与完成该题所花费的时间以及考核目标的有关,综合性较强的试题,推理过程较多的试题和应用性的试题分值较高。基本计算题、常规性试题和简单应用题的分值较低。解答题属主观题,其答案有时并不唯一,这就要求考生不仅要能处理一个题目,更要能看到出题人的考核意图,选择合适的方法解答。

计算题的正确解答要靠平时对各种计算方法,以及对综合题如何选择有效的解题方法的熟练掌握。如二元函数求最值的方法和步骤,曲线积分、曲面积分的计算方法及其与重积分的关系,以及格林公式、高斯公式等,重积分的计算方法及一些特殊结论(如积分区域对称,被积对象具有一定的奇偶性时的情形)等都需要非常熟悉。证明题是大多数考生感到无从下手的题目,所以一些简单的证明题在考试中也会得分率极低。证明题考查最多的是中值定理(微分中值定理及积分中值定理),其次从题型来说就是不等式的证明,方法却比较庞杂,但仍然是有章可寻的。考生如果在平时就没有留太多的精力在证明题上,那么在考前的这两个月可以给出一点时间琢磨一下推理的问题,只要腾出一点脑力思考一下,这个东西并不难。解答题除考查基本运算外,还考查考生的逻辑推理能力和综合运用能力,需要考生在强化阶段加强提高这方面的能力。

考研复习新大纲刚刚出台,考生应仔细阅读《大纲导读》一类的辅导书,以求更准确的瞄准目标进行重点复习备考!

高等数学(微积分)推荐绿皮儿的同济大学第五版(或之后更新的)《高等数学》,里面有大量对定理的证明过程;线性代数当然是清华的黄蓝相间的教材《线性代数》最权威,但千万别通读;而概率论首选浙江大学出版的《概率论与数理统计》,比较通俗易懂。教材一定要吃透,把基础打牢,每一个公式、定理、每一道例题都要信手拈来,不能有丝毫差错。建议教材至少要过三遍,第一遍认真学习每一个知识点,做每一道习题,注意做题前不要看参考答案,做到独立思考。第二遍总结各知识点,做到所有的知识点都能够记在心里面,张嘴就能从头到尾说出来,甚至于达到能说出来在哪里能出什么题。第三遍查找自己的知识死角,弱点,难点,重点。三遍之后,可以开始大量的做题,包括市面上或者辅导班发的类似100题、200题的这种,而且每个题集最好做两遍,第二遍主要是针对那些在第一遍中做错的题,通过不断地纠错来提高自己的数学水平。考研数学主要是考查对基础知识的掌握,里面并没有特别难的题,只要我们对所有的知识点都有深刻的了解,再通过大量的做题来掌握做题技巧,那考试的时候就会感觉所有的考题平时都见过,做起来当然就得心应手了。

说到做题,数学最忌讳眼高手低。一定要动手做,不过也不能纯粹求量搞题海战术,而是要更重视质的提高,同时数学是一门讲究手感的东西,中断它的复习,要花更多的时间找回手感,得不偿失。所以从你决定考研开始到考研前一天,都不能停止数学的复习。

经过前面试间的复习,到大四开学的时候,建议开始做套题,而且最好是每天的上午,而时间也是按照考试的3小时来控制。首推的当然是《历年考研试题》,基本上要做十年的吧。这十套真真正正的考研题要陪你度过余下的时光。作完第一遍十套真题,开始找权威的《模拟试题》,但是这是要有极好的心理承受能力,因为极有可能模拟试题是在考察你没有复习到的漏洞,这时要端正态度,不必过分担心自己的水平不够。事实是,把这些漏洞补上,你就是个考研数学的高手了。

最后,还有一点要建议:考前买本背公式背概念的小册子,随时忘随时翻,尤其是概率论那一块儿的参数估计、假设检验、线性代数的概念性质,确实要既深刻理解又可以快速写出来。(海天教育)

高等数学:同济五版

线性代数:同济六版

概率论与数理统计:浙大三版

推荐资料:

1、李永乐考研数学3--数学复习全书+习题全解(经济类)

2、李永乐《经典400题》

3、《李永乐考研数学历年试题解析(数学三)真题》

考研数学规划:

课本+复习指导书+习题集+模拟题+真题= KO

复习资料来说:李永乐的不错,注重基础;陈文灯的要难一些。

经济类一般都用李永乐的(经济类数学重基础不重难度),基础好的话可以考虑下陈文灯的书。

李永乐的线性代数很不错 陈文灯的高等数学很不错

第五篇:2016考研数学大纲解析及复习重点--函数、极限、连续

凯程考研辅导班,中国最强的考研辅导机构

2016考研数学大纲解析及复习重点--函

数、极限、连续

9月18日这个在中国历史上成为转折点的一天,同样也为2016年参加考研的同学带来了重磅消息—2016年考研大纲正式发布,下面凯程教育数学教研室老师就按章节来分析大纲的要求以及复习该章节的重点:

一、大纲要求:函数、极限、连续

1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.二、复习重点

本部分重点是极限,前后内容交叉多,综合性强,主要有两个出题点,一个是计算极限,一个是对极限的定义的考查。主要求极限的方法有:

利用极限的四则运算法则、幂指函数运算、连续函数代入法

利用两个重要极限求极限

利用洛必达法则

利用等价无穷小

极限存在准则:夹逼准则,单调有界准则

利用左右极限求分段函数分段点

利用导数定义

利用定积分定义

利用泰勒公式求极限

通过与2015年的数学一大纲比较,今年没有做任何调整,同学们按照原计划复习,夯实基础,把握重点,重视总结、归纳解题思路、方法和技巧,提高解题计算能力必能在2016

凯程考研辅导班,中国最强的考研辅导机构 的考试中创造辉煌。最后祝同学们,金榜题名。

2016考研数学考试大纲对比—高等数学(数二)

大家翘首以待的2016年考研数学大纲终于出炉,凯程教育数学教研室第一时间为各位考生权威、详尽解析大纲变化、预测命题趋势,从而有的放矢地提供备考指导,以帮助同学们快速了解、把握今年的考试方向、复习重点,选择适合的复习方法和策略,以利于同学们在今后复习中,高效学习,取得好成绩。

在逐字逐句的比对后,发现2016年考研数学二大纲与2015年相比,没有发生任何变化,经历了多年统考实践,考研数学的考试内容已趋于完善,因此,相应的考试大纲今年也没有发生变化。考生可以通过研究真题来揣摩命题者的出题规律,从而把握今年命题的思路和趋势,按部就班的进行分析复习,增加复习备考的针对性和有效性。尽管2016年考研数学大纲没有变动,但是仍然需要考生提高横向、纵向梳理考点的能力,只有这样才能拿到高分,所以考生仍然需要扎实备考。

下面我们就看看今年数学二高等数学部分的大纲要求:

一、函数、极限、连续

1.理解函数的概念,掌握函数的表示法,并会建立应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.二、一元函数微分学

1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念,会求简单函数的高阶导数.4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理.6.掌握用洛必达法则求未定式极限的方法.7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数的最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性(注:在区间 内,设函数 具有二阶导数.当 时,的图形是凹的;当 时,的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会

凯程考研辅导班,中国最强的考研辅导机构

描绘函数的图形.9.了解曲率、曲率圆和曲率半径的概念,会计算曲率和曲率半径.三、一元函数积分学

1.理解原函数的概念,理解不定积分和定积分的概念.2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.3.会求有理函数、三角函数有理式和简单无理函数的积分.4.理解积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式.5.了解反常积分的概念,会计算反常积分.6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数平均值.四、多元函数微积分学

1.了解多元函数的概念,了解二元函数的几何意义.2.了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质.3.了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,了解隐函数存在定理,会求多元隐函数的偏导数.4.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题.5.了解二重积分的概念与基本性质,掌握二重积分的计算方法(直角坐标、极坐标).五、常微分方程

1.了解微分方程及其阶、解、通解、初始条件和特解等概念.2.掌握变量可分离的微分方程及一阶线性微分方程的解法,会解齐次微分方程.3.会用降阶法解下列形式的微分方程: 和.4.理解二阶线性微分方程解的性质及解的结构定理.5.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.6.会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程.7.会用微分方程解决一些简单的应用问题.所以同学们继续按照原计划复习,夯实基础,把握重点,重视总结、归纳解题思路、方法和技巧,提高解题计算能力必能在2016的考试中创造辉煌。最后祝同学们,金榜题名。

下载2018考研数学重点题型:极限存在性的判定word格式文档
下载2018考研数学重点题型:极限存在性的判定.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    2011年考研数学线性代数重点内容和典型题型分析

    2011年考研数学线性代数重点内容和典型题型分析 2010年9月3日教育部考试中心发布了2011年全国硕士研究生入学统一考试数学考试大纲,试卷题型结构为:单项选择题 8小题,每小题4分......

    2018考研数学:几个基本极限的特殊情况

    为学生引路,为学员服务 2018考研数学:几个基本极限的特殊情况 高等数学中,求函数的极限是贯穿始终的,而有一类型的求极限的题目,需要从左极限和右极限入手,即无法直接求极限,只能......

    2018考研数学:数列极限方法总结归纳

    为学生引路,为学员服务 2018考研数学:数列极限方法总结归纳 极限是考研数学每年必考的内容,在客观题和主观题中都有可能会涉及到平均每年直接考查所占的分值在10分左右,而事......

    考研数学重点2012新(本站推荐)

    极限的性质(重点是极限的保号性)及其求法,函数的连续性判定和间断点的类型;函数(主要是分段函数)可导性的判定及导数定义的用法,常用的求导(微分)法则;三大中值定理的内容及其用途(主要......

    2012年考研数学线性代数重点内容和典型题型总结(最终五篇)

    2012年考研数学线性代数重点内容和典型题型总结 2011年10月12日 14:09来源:万学海文 线性代数在考研数学中占有重要地位,必须予以高度重视.线性代数试题的特点比较突出,以计算......

    2018考研数学:微积分与极限微分复习重点(样例5)

    2018考研数学:微积分与极限微分复习重点 黑龙江中公考研 微积分与极限微分主要考什么,出题形式是怎样的。下面是中公考研对微积分与极限微分复习重点进行的归纳总结,希望对各位......

    2018考研数学:关于“极限”问题的整理_毙考题

    毙考题APP 获取更多考试资料,还有资料商城等你入驻 2018考研数学:关于“极限”问题的整理 下面就高等数学重要知识点-极限在考研中的命题规律,题型,例题等方面给大家进行总结,希......

    2014年考研数学大纲,题型,复习计划

    2014年考研数学大纲,题型,复习计划 了让广大考生们取得优异的成绩,精品学习网考研频道,为您收集有关考研数学的辅导,以下是频道小编为您搜集整理的"2014年考研数学“四段”复习......