第一篇:2018八年级数学下册第一章知识点总结(北师大版)
2018八年级数学下册第一章知识点总结
(北师大版)
第一章三角形的证明
、等腰三角形
(1)三角形全等的性质及判定
全等三角形的对应边相等,对应角也相等判定:SSS、SAS、ASA、AAS、(2)等腰三角形的判定、性质及推论
性质:等腰三角形的两个底角相等(等边对等角)
判定:有两个角相等的三角形是等腰三角形(等角对等边)
推论:等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合(即“三线合一”)
(3)等边三角形的性质及判定定理
性质定理:等边三角形的三个角都相等,并且每个角都等于60度;等边三角形的三条边都满足“三线合一”的性质;等边三角形是轴对称图形,有3条对称轴。
判定定理:有一个角是60度的等腰三角形是等边三角形。或者三个角都相等的三角形是等边三角形。
(4)含30度的直角三角形的边的性质
定理:在直角三角形中,如果一个锐角等于30度,那么它所对的直角边等于斜边的一半。
2、直角三角形
(1)勾股定理及其逆定理
定理:直角三角形的两条直角边的平方和等于斜边的平方。
逆定理:如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形。
(2)直角三角形两个锐角之间的关系
定理:直角三角形两个锐角互余。
逆定理:有两个锐角互余的三角形是直角三角形。
(3)含30度的直角三角形的边的定理
定理:在直角三角形中,如果一个锐角等于30度,那么它所对的直角边等于斜边的一半。
逆定理:在直角三角形中,一条直角边是斜边的一半,那么这条直角边所对的锐角是30度。
(4)命题与逆命题
命题包括已知和结论两部分;逆命题是将倒是的已知和结论交换;正确的逆命题就是逆定理。
(5)直角三角形全等的判定定理
定理:斜边和一条直角边对应相等的两个直角三角形全等(HL)
3、线段的垂直平分线
(1)线段垂直平分线的性质及判定
性质:线段垂直平分线上的点到这条线段两个端点的距离相等。
判定:到一条线段两个端点距离相等的点在这条线段的垂直平分线上。
(2)三角形三边的垂直平分线的性质
三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等。(该点称为三角形的外心)
(3)如何用尺规作图法作线段的垂直平分线
分别以线段的两个端点A、B为圆心,以大于AB的一半长为半径作弧,两弧交于点m、N;作直线mN,则直线mN就是线段AB的垂直平分线。
4、角平分线
(1)角平分线的性质及判定定理
性质:角平分线上的点到这个角的两边的距离相等;
判定:在一个角的内部,且到角的两边的距离相等的点,在这个角的平分线上。
(2)三角形三条角平分线的性质定理
性质:三角形的三条角平分线相交于一点,并且这一点到三条边的距离相等。(该点称为三角形的内心)
第二篇:八年级数学下册知识点总结
八年级数学下册知识点总结
第十六章 分式
1.分式的定义:如果A、B表示两个整式,并且B中含有字母,那么式子 叫做分式。
分式有意义的条件是分母不为零,分式值为零的条件分子为零且分母不为零.2.分式的基本性质:分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变。
3.分式的通分和约分:关键先是分解因式
4.分式的运算:
分式乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为分母。
分式除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
分式乘方法则:分式乘方要把分子、分母分别乘方。
分式的加减法则:同分母的分式相加减,分母不变,把分子相加减。异分母的分式相加减,先通分,变为同分母分式,然后再加减
混合运算:运算顺序和以前一样。能用运算率简算的可用运算率简算。
5.任何一个不等于零的数的零次幂等于1,即 ;当n为正整数时,6.正整数指数幂运算性质也可以推广到整数指数幂.(m,n是整数)
(1)同底数的幂的乘法: ;(2)幂的乘方:;
(3)积的乘方: ;(4)同底数的幂的除法:(a≠0);
(5)商的乘方: ;(b≠0)
7.分式方程:含分式,并且分母中含未知数的方程——分式方程。
解分式方程的过程,实质上是将方程两边同乘以一个整式(最简公分母),把分式方程转化为整式方程。
解分式方程时,方程两边同乘以最简公分母时,最简公分母有可能为0,这样就产生了增根,因此分式方程一定要验根。
第三篇:八年级数学下册章节知识点总结
北师大版初中数学知识点归纳
北师大版八年级数学下册各章知识要点总结
北师大版初中数学知识点归纳
(3)每一个多项式都要分解到不能再分解为止.五、形如a+2ab+b或a-2ab+b的式子称为完全平方式.六、分解因式的方法:
1、提公因式法。
2、运用公式法。北师大版初中数学知识点归纳
acma+b+ma==(b+d++n≠0),那么=。bdnb+d+nbacab4、更比性质:若=,那么=。
bdcdacbd5、反比性质:若=,那么=。
bdac3、等比性质:如果
三、求两条线段的比时要注意的问题:
(1)两条线段的长度必须用同一长度单位表示,如果单位长度不同,应先化成同一单位,再求它们的比;(2)两条线段的比,没有长度单位,它与所采用的长度单位无关;(3)两条线段的长度都是正数,所以两条线段的比值总是正数.四、相似三角形(多边形)的性质:
1、相似三角形对应角相等,对应边成比例,相似三角形对应高的比、对应角平分线的比和对应中线的比都等于相似比。
2、相似多边形的周长比等于相似比,面积比等于相似比的平方.五、全等三角形的判定方法有:ASA,AAS,SAS,SSS,直角三角形除此之外再加HL
六、相似三角形的判定方法:1.三边对应成比例的两个三角形相似;
2.两角对应相等的两个三角形相似; 3.两边对应成比例且夹角相等;
4.定义法: 对应角相等,对应边成比例的两个三角形相似。
5、定理:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构
成的三角形与原三角形相似。
七、在特殊的三角形中,有的相似,有的不相似.1、两个全等三角形一定相似.2、两个等腰直角三角形一定相似.3、两个等边三角形一定相似.4、两个直角三角形和两个等腰三角形不一定相似.八、如果两个图形不仅是相似图形,而且每组对应点所在的直线都经过同一个点,那么这样的两个图形叫做位似图形。这个点叫位似中心,这时的相似比又称为位似比。位似图形上任意一对对应点到位似中心的距离之比等于位似比。
九、常考知识点:
1、比例的基本性质,黄金分割比,位似图形的性质。
2、相似三角形的性质及判定。相似多边形的性质。
北师大版初中数学知识点归纳
(6)当总体中的个体数目较多时,为了节省时间、人力、物力,可采用抽样调查.为了获得较为准确的调查结果,抽样时要注意样本的代表性和广泛性.还要注意关注样本的大小.(7)我们称每个对象出现的次数为频数。而每个对象出现的次数与总次数的比值为频率。
(8)数据波动的统计量:
极差:指一组数据中最大数据与最小数据的差。方差:是各个数据与平均数之差的平方的平均数。
标准差:方差的算术平方根。
要求:识记其计算公式。一组数据的极差,方差或标准差越小,这组数据就越稳定。还要知道平均数,众数,中位数的定义。刻画平均水平用:平均数,众数,中位数。
刻画离散程度用:极差,方差,标准差。
常考知识点:
1、作频数分布表,作频数分布直方图。
2、利用方差比较数据的稳定性。
3、平均数,中位数,众数,极差,方差,标准差的求法。
4、频率,样本的定义
北师大版初中数学知识点归纳
在证明时注意:(1)在一般情况下,分析的过程不要求写出来.(2)证明中的每一步推理都要有根据。如果两直线都和
第四篇:北师大版数学二年级下册知识点总结
二年级下册数学知识点总结
第一章————除法
1、余数一定要比除数小;
2、应用题当中,除数和余数的单位不一样;商的单位是问题的单位,余数的单位和被除数的单位相同;
3、解决生活问题,“进一法(用商加1)”,乘船、坐车、坐板凳等,读懂题目再作答。
第二章————认识路线
1、口诀:上北下南,左西右东;
2、“小猫在小狗的()方”,是以小狗家为中心点,画出方位坐标,确定方向;“小猪在小马的()方”,是以小马家为中心点,画出方位坐标,确定方向。
3、太阳早上从东边升起,西边落下;
4、当吹东南风时,红旗往()飘;吹西北风时,红旗往()飘。
第三章————认识10000以内的数
1、在8536中,8在()位上,表示();5在()位上,表示();3在()位上,表示();6在()位上,表示()。
2、由3个千,5个一组成的数是();
3、“0”在中间要读出,连续两个“0”只读1个,“0”在末尾不读; 4、10个10是(),10个100是(),100个100是(),10000里面有()个100,1000里面有()个10;
5、比较大小,从最高位开始比较,从大到小用“>”,从小到大用“<”;
6、最大的三位数是(),最大的四位数是(),最小的三位数是()。
第四章————测量
1、毫米、厘米、分米、米,相邻单位之间的进率是“10”; 2、1000米=1 千米;
3、大单位——小单位,变大,乘以进率;
小单位——大单位,变小,除以进率;
4、长度单位比较大小,首先要观察单位,统一单位之后才能比较;
5、长度单位加减法,首先观察,找出单位不同的,先统一单位,再进行加减;
第五章————加与减
1、在加法中,哪一位相加大于10,要往前一位“进一”;在减法中,哪一位不够减时,要向前一位“借1”,但是不要忘记退位;
2、在估算中,如果估算到百位,就看十位数是多少,如果十位上的数大于5,则百位进1,十位和个位舍去,变为0,如估算678,就变为700;如果十位上的数小于5,则百位不变,十位和个位舍去,变为0,如估算607,就变为600;
3、加数+加数=和
和-加数=加数
4、被减数—减数=差
差=减数=被减数
被减数-减数=差
第六章————认识角
1、每个角都是由2条边,1个顶点组成;
2、按角的大小,将角分为锐角、直角、钝角,锐角最小,钝角最大,所有的直角都相等;
3、角的大小与边的长短无关,与角的开口大小有关;
4、在正方形中,有四个直角,所有的边长都相等;在长方形中,也有四个直角,长方形的对边相等;
5、平行四边形中有2个锐角,两个钝角。
第七章————时、分、秒
1、钟面上有12个大格,60个小格,每个小格是1,每个大格是5;
2、秒针走一小格是1秒,走一大格是5秒,走一圈是60秒,合1分钟;
3、分针走一小格是1分,走一大格是5分,走一圈是60分,和1小时;
4、时针走一大格是1小时,走一圈是12小时;
5、时、分、秒相邻单位进率是60;
6、大单位——小单位,变大,乘以进率
小单位——大单位,变小,除以进率
7、比较时间,首先要观察,统一单位之后再比较大小
8、时间的加减:分减分,时减时,当分不够减时,要向前一位借1,化成60,再相加减;
第八章————统计
1、记录并学会计算,谁多,谁少。
第五篇:北师大版数学四年级下册知识点总结
【北师大版数学四年级下册知识点总结】
一小数的认识和加减法
小数的意义
1、小数的意义: 用来表示十分之几、百分之几、千分之几„„的数,叫小数。
2、体会十进分数与小数的关系,并能互相转。
3、表示十分之几的小数是一位小数,百分之几的小数是两位小数,千分之几的小数是三位小数„„
4、小数的读写法。
5、借助计数器,介绍小数部分的数位以及数位之间的进率
6、掌握小数的数位和计数单位。
7、了解小数的组成:整数部分和小数部分
测量活动(小数的单位换算)1、1分米=0.1米
1厘米=0.01米
1克=0.001千克„„学会低级单位与高级单位之间的互化(长度单位,面积单位,重量单位„„)。低级单位转化为高级单位时,先将这个低级单位的数改写成分数的形式,再写成小数的形式。
2、会进行单名数与复名数之间的互化。比大小(比较小数的大小)
1、会比较两个小数的大小以及将几个小数按大小顺序排列。
2、比较小数大小的方法:先看整数部分,整数部分大的小数就大。整数部分相同,再看小数部分的十分位,十分位上数字大的小数就大„„ 购物小票-----小数的加减法(不进位,不退位)
1、不进位加法,不退位减法的计算方法:小数点对齐,也就是相同数位对齐,再按照整数加减法的法则进行计算。
2、能解决简单的小数加减法的实际问题。
量
体
重----小数的加减法(进位加、退位减)
1、小数进位加法和退位减法的计算法则(同整数加、减法的法则相同)。
2、小数的性质:小数末尾加上“0”或去掉“0”小数的大小不变。
3、整数减去小数,可以在整数小数点的后面添上“0”,帮助计算。歌手大赛---小数加、减法的混合运算
1、掌握小数混合运算的顺序与整数四则混合运算一样。
2、整数加、减法的运算定律同样适用于小数加减法。
3、掌握小数加、减法的估算。
二认识图形
图形分类
1、按照不同的标准给已知图形进行分类:(1)按平面图形和立体图形分;
(2)按平面图形时否由线段围成来分的;
(3)按图形的边数来分。通过自己动手分类,对图形进行再认识,了解图形的特征。
2、了解平行四边形易变形和三角形的稳定性在生活中的应用。三角形分类
1、把三角形按照不同的标准分类,并说明分类依据。
(1)按角分,分为:直角三角形、锐角三角形、钝角三角形,并了解其本质特征:三个角都是锐角的三角形是锐角三角形,有一个角是直角的三角形是直角三角形,有一个角是钝角的三角形是钝角三角形。
(2)按边分,分为:等腰三角形、等边三角形、任意三角形。有两条边相等的三角形是等腰三角形,三条边都相等的三角形是等边三角形。
2、通过分类,使学生弄清等腰三角形和等边三角形的关系:等边三角形是特殊的等腰三角形。三角形内角和
1、任意一个三角形内角和等于180度。
2、能应用三角形内角和的性质解决一些简单的问题。三角形边的关系
1、三角形任意两边之和大于第三边。
2、根据上述知识点判断所给的已知长度的三条线段能否围成三角形。如果能围成三角形,能围成一个什么样的三角形。四边形的分类
1、通过观察、比较、分类等活动,了解由四条线段围成的图形是四边形,四边形中有两组对边分别平行的四边形是平行四边形,只由一组对边平行的四边形是梯形。
2、知道长方形、正方形是特殊的平行四边形。
3、了解正方形、长方形、等腰梯形、菱形、等腰三角形、等边三角形、圆形是轴对称图形。图案欣赏
1、通过欣赏图案,体会图形排列的规律,感受图案的美。
2、利用对称、平移和旋转,设计简单的图案。
三小数乘法
文具店(小数乘法的意义)
通过具体情境教学使学生了解小数与整数相乘就是表示几个相同加数的和的简便运算。
1、小数乘法的意义
小数乘法的意义比整数乘法的意义,有了进一步的扩展.小数乘法的意义包括两种情况:一是同整数乘法的意义相同,即求相同加数的和的简便运算.二是求一个数的十分之几,百分之几……是多少.2、小数的计算法则
计算小数乘法,先按照整数乘示的法则算出积,再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点.小数计算乘法,用的是转化的思想方法.先把小数转化为整数算出积,再确定小数点的位置,还原成小数乘法的积.如6.2×0.3看作62×3相乘的积是186,因数中一共有两位小数,就从186的右边起数出两位,点上小数点还原成小数乘法的积1.86.因此,小数乘法的关键是处理好小数点.在点小数点时注意,乘得的积的小数位数不够时,要在前面用0补足,如0.04×0.2=0.008,在8的前面补两个0,点上小数点后,整数部分也写一个0.
小数点搬家(掌握小数点移动引起小数大小变化的规律)
明白小数点向左移动一位,小数就缩小到原来的十分之一;小数点向左移动两位,小数就缩小到原来的百分之一……以此类推。小数点向右移动一位,这个数就扩大到原来的10倍;小数点向右移动两位,这个数就扩大到原来100倍……以此类推。
街心广场(积的小数位数与乘数的小数位数的关系)
积的小数位数与乘法的小数位数的关系:小数乘法中各个因数中小数的位数和就是这道题中积的小数的位数。包装(小数乘法2)
小数乘小数计算方法,即将小数乘法转化为整数乘法进行计算。根据乘数扩大的倍数,将积缩小相同倍数,进一步体会到两个乘数共有几位小数,积就有几位小数。
爬行最慢的哺乳动物(小数乘法3)
进一步理解小数乘小数的计算方法即两个因数里共有几位小数,积就有几位小数;当其中的一个因数是整十数时,积中如果有一位小数,就在末尾画掉一个零……
手拉手(小数的混合运算)
小数四则混合运算的运算顺序与整数四则混合运算的顺序相同。整数的运算定律在小数运算中仍然适用。例如乘法的结合律,交换律,分配律。等等。
四观察物体
不同位置观察物体的范围不同
不同位置观察物体的形状不同
节日礼物(不同位置观察物体的范围不同)
1、随着观察位置的高低与远近变化,能判断出观察对象的画面所发生的相应变化。
2、根据观察到的画面,判断出观察者所在的位置。天安门广场(不同位置观察物体的形状不同)
1、通过观察、比较一些照片,能够识别和判断拍摄地点与照片的对应关系。
2、通过观察连续拍摄到的一组照片,能够判断照片拍摄的前后顺序。
第五单元 小数除法
《精打细算》―――除数是整数的小数除法
(1)、小数除法的意义:小数除法的意义与整数除法的意义相同,是已知两个因数的积与其中的一个因数,求另一个因数的运算。
(2)、小数除以整数的计算方法:除数为整数的小数除法和整数除法的计算类似,只要商的小数点和被除数的小数点对齐就可以了。
2、《参观博物馆》―――整数除以整数商是小数的小数除法
整数除以整数,商是小数的小数除法的计算方法:先按照整数除法的法则去做,如果除到被除数的末尾仍有余数,就在后面填上0继续除。
3、《谁打电话的时间长》―――除数是小数的除法
(1)、商不变的规律:被除数和除数同时扩大或缩小相同的倍数(0除外),商不变。
(2)、除数是小数的小数除法的计算方法:要把被除数和除数扩大相同的倍数,使除数变成整数,再按照小数除以整数的方法进行计算。
4、《人民币兑换》―――积、商的近似值
求近似值方法:积取近似值是先精确计算,再根据题目要求取近似值;商取近似值是直接根据要求多除一位,然后根据题目要求取近似值。注意:有时会出现四不舍、五不入的情况,应根据题目的特点去求出近似数。
5、《谁爬得快》―――循环小数
(1)、循环现象:生活中很多时候有依次不断重复出现的现象。如:日出日落、时间……
(2)、循环小数:从小数部分的某一位起,一个数字或几个数字依次不断地重复出现,这样的小数就叫做循环小数。
(3)、会用四舍五入法对循环小数取近似值,方法与小数取近似值的方法相同,保留几位小数就看这个小数的下一位。
6、《电视广告》――小数的四则混合运算
(1)、小数连除和乘除混合运算,运算顺序和整数是一样的。(2)、计算小数四则混合运算和整数四则混合运算的顺序完全相同。**奥运
(1)通过“奥运”提供的各种信息,综合应用所学的知识和方法,解决有关的问题。(2)通过解决奥运赛场上的有关问题,体会到数学和体育这间的联系,进一步体会数学的价值。
六游戏公平
通过游戏活动,体验事件发生的等可能性。通过游戏活动分析,判断游戏规则的公平能制定公平的游戏规则。
能通过实验感受实际生活中的随机性。
游戏公平能通过游戏活动,体验事件发生可能性不相等。能辨别游戏可能性是否相等。
能通过自己的分析思考修改游戏规则使之公平,且方法多样。谁先走(判断规则的公平性,设计公平的规则)【知识要点】
1、体会事件发生的等可能性。体会可能性相同游戏公平,可能性不同游戏不公平。
2、感受规则在游戏中的作用,建立规则意识。并会制定公平的游戏规则。3、进一步体验游戏中存在的随机性的特点。
七方程
用字母表示数.
方程 1.方程的意义 2.解简易方程3.列方程解应用题 用字母表示数
1、用字母表示运算定律和有关图形的面积公式。例如:加法交换律:a+b=b+a 加法结合律:a+b+c=a+(b+c)减法的特性:a-b-c=a-(b+c)乘法交换律:a×b=b×a 乘法结合律:a×b×c=a×(b×c)乘法分配律:a×(b+c)=a×b×a×c 正方形周长:c=4a
正方形面积:s=a×a 长方形的周长:C=(a+b)×
2长方形面积:s=a×b 此外,还可以拓展到以前曾经学过的 路程=速度×时间
总价=单价×数量……
2、字母表示数的时候,字母与数字相乘,字母与字母相乘,中间的乘号可以用小圆点代替或者省略。例如:a×5=5·a=5a 数字一般都写在字母的前面。
3、区别a的平方和2乘a的区别。方程(方程的意义)
1、了解方程的意义:含有未知数的等式叫做方程。
2、掌握方程与等式的关系:方程是等式但等式不一定是方程.或者说方程属于等式,等式包含方程.并能用图形表示. 3、根据情境图找出等量关系,会列方程。天平游戏一(解简易方程未知数是加数或被减数)
1、等式两边都加上或减去同一个数,等式仍然成立。
2、能根据等式的这个性质求出方程中的未知数。
方程的解:使方程左右两边相等的未知数的值叫做方程的解。解方程:求方程的解的过程叫做解方程。
3、学会检验方程的解是否正确。
天平游戏二(解简易方程未知数是因数或被除数)
1、等式两边都乘或除以同一个数(零除外),等式仍然成立。
2、能根据一定的情境,列方程解决问题。猜数游戏(解简易方程)
1、会利用等式的性质解ax±b=c类型的方程。并能够把方程的解带回方程中进行检验。
2、会用方程解答简单的应用题。邮票的张数(列方程解应用题)
1、学会解形如cx±ax=b这样的方程,能够运用方程解应用题。2、使学生掌握应将一倍数设为未知数.