第一篇:地铁区间隧道基坑的变形分析[最终版]
地铁区间隧道基坑的变形
分析
摘 要 通过对南京地铁明挖段基坑工程变形情况进行 分析 ,指出狭长条形基坑的变形特征,并分析不均匀超载、降水、地表刚度、开挖范围及开挖时间对基坑变形的 影响 规律 ,提出相应的控制基坑变形的工程措施。关键词 侧移 沉降 不均匀超载 降水 地表刚度
近年来,地铁工程建设在许多城市相继展开,已成为 现代 城市建设的重要部分。地铁区间隧道的施工中,较多地采用了盾构法和明挖法,前者主要 应用 于埋深较深的隧道施工,而对于覆土深度浅于5m的隧道,一般则采用基坑支护下明挖法施工。
明挖法地铁区间隧道基坑一般为狭长条形,周围环境变化较大,因而影响基坑变形的因素较多,其中许多因素具有不确定性,使得精确 计算 基坑的变形十分困难。在工程实践中,更多地依靠“ 理论 导向、量测定量、经验判断、精心监
控”[1]综合技术控制基坑的变形。工程实例
南京地铁为南北走向,全长由高架段、地面段和地下段几部分组成,其中埋深较浅的TA4标过渡段区间隧道采用明挖法施工,基坑长312.542m,宽12.90~14.00m,北部开挖深度为8.75m,南部3.50m。该工程东边为城市一主干道,西边北部为一居民区,住宅楼均为6层砖混结构,筏板基础,南部为城市道路及部分生活设施管线。主要地层情况如下:
①杂填土,层厚1m左右;
②素填土,层厚3m左右,微透水,Es,1~2=4·36MPa;
③粉土,层厚
2m
左右,微透水,稍密,Es,1~2=7.04MPa,C=23kPa,Φ=22.8°;
④淤泥质粉质粘土,层厚12m左右,不透水,软流塑,Es,1~2=3.71MPa,C=14kPa,Φ=9.6°;
⑤粉质粘土,层厚7m左右,不透水,可
塑,Es,1~2=7.06MPa,C=61kPa,Φ=9.4°。
该工程北部围护结构为SMW工法挡土墙,水泥土搅拌桩直径为
850mm,搭
接
250mm,型
钢
为700mm×300mm×12mm×14mm的H型钢,间隔布置(中心距1200mm),水泥土的强度在1.0Mpa以上,设置两道609支撑;中部水泥土搅拌桩直径为650mm,搭接200mm,型钢为500mm×250mm×10mm×12mm的H型钢,间隔布置,设置两道Φ609支撑;南部采用由格栅式水泥土素桩组成的重力式挡土墙。根据工程现场情况及要保护的建筑物情况,在现场布置了两个测斜孔、5个水位观测孔及18个沉降观测点,各测点布置图如图1所示。围护结构施工完成1个月后开始进行坑内降水,20天后,预计坑内水位以降至开挖面以下,此时观测到坑外水位下降了0.38m,稳定水位10天后设置首道支撑(Φ609钢管),并开始进行开挖。由于基坑较长,采取分段开挖施工的 方法 ,首先开挖北面大约80m长的一段。当开挖至地表下4.5m处时,测得1号沉降观测点沉降值达36.1mm并报警,但此时1号测斜孔测得的围护结构最大侧移仅为16.2mm,当时认为沉降较大是由于降水引起,可能基坑未开挖部分某处出现了渗漏,而当时水位已满足施工要求,便停止降水,继续开挖至地表下6m处,设置第2道支撑,然后开挖至基底,此时测得基坑围护结构最大侧移为58.2mm,超出预估侧移
35mm较多,地表沉降最大处(4号点)达43.2mm,地面并出现部分平行于基坑方向的裂缝,此后围护结构侧移在开挖停止后仍在不断增加,但进展较少,浇筑隧道底板后,围护结构侧移也稳定下来。整个施工过程中周围的居民住宅楼未发现任何破坏。变形特征
从基坑变形监测结果可看出该基坑的变形具有以下特征:
(1)总体看来,该基坑工程的变形较正常情况大,但基本达到了对周围建筑物和管线保护的目的。
(2)围护结构的侧移最大处位于开挖面附近稍低于开挖面,总体变化趋势呈抛物线状(见图2)。
(3)基坑周围地面沉降最大值发生在基坑边缘,随着离基坑距离的增大基本上呈线性减小(如图3)。其最大沉降值与围护结构的最大侧移值之比大约等于0.75,地表沉降范围大约为30m,这比 文献 [2]计算结果大了近1倍,基本等于住宅楼所在的范围。变形原因分析
结合工程现场具体情况,对该基坑的变形特点进行深入分析 研究 ,笔者认为该工程产生较大变形的原因主要有以下几个方面:
1)不均匀超载
采用文献[3]的方法对该基坑进行变形估算,如取地面超载q=30kPa,则基坑围护结构最大侧移为31.2mm,如取地面超载q=100kPa,这基本等于6层居民楼基底的压力,则计算所得的最大侧移将达42.3mm。由于本基坑工程西边建筑物较密集,而东边较空旷,两边超载差别较大,同时基坑采用了内支撑,使得基坑产生部分向东的整体位移,势必加剧基坑西边的变形。工程中虽未对东边围护结构的侧移进行量测,但沉降观测结果充分说明了这一现象,当4号点沉降达43.2mm时,16号点的沉降仅为13.8mm,预计东边围护结构的侧移约为20mm。
2)地面刚度
由于本工程周围住宅楼的基础采用了筏板基础,整体性
好且刚度大,这相当于增强了地表的强度与刚度,减小了基坑开挖引起的地表不均匀沉降,但同时增大了基坑开挖影响范围,使地表沉降范围扩大到整个建筑物基础范围内。同时,有效地增强了地表对基坑变形的耐受能力,虽然开挖后期,地表出现了许多平行于基坑方向的裂缝,但房屋内地坪未发现任何新的破坏。3)降水
坑内降水势必造成围护结构侧移,引起坑外地面下沉。同时,地下水位下降后,地基附加应力增加,也将造成地面下沉。本工程在开挖前期,进行坑内降水的同时,引起坑外水位降低了0.38m,所以坑外发生了较大的地面沉降,停止降水后,地面下沉明显减缓。4)时空效应
由于本工程所在的土层透水性很差,根据 文献 [4]受时间效应的 影响 ,开挖后在相当长的一段时间内,基坑的变形都将缓慢增长。同时,由于本基坑平面为狭长条形,受空间效应的影响,其变形应比一般平面尺寸较小的方形或圆形基坑较大。4 控制基坑变形的工程措施
根据当时基坑变形的特点,笔者认为该基坑支护结构的强度已满足要求,其变形也未造成需要保护的建筑物的损伤,基本已达到基坑工程支护的目的,但由于变形较大,并且在缓
慢增长,对附近的建筑物仍存在潜在的危险。因此,会同工程技术人员提出了以下控制措施:
(1)加快施工进度,提高隧道底部垫层混凝土的强度等级至C30,并在垫层内加配直径为16mm,间距为200mm双向钢筋网片,以期求尽早在基底施加一道支撑。
(2)由于工程所处土层透水性很差,在施工可行的情况下尽量减少降水,并对基坑渗漏处及时堵漏。
(3)合理组织施工现场,适当在基坑东边堆载,以缓和基坑两边超载不均匀的矛盾。
(4)采取分段施工,减小一次开挖的范围,每次开挖后,尽快浇筑垫层和底板。
经过采取以上措施,有效地控制了基坑的变形,在后续工段施工的过程中,基坑围护结构的侧移及西边地表的沉降均有不同程度的减轻。实测基坑围护最侧移控制在41mm内,地表沉降最大处控制在30mm以内,保证了基坑施工及周围建筑物的安全。结论
综合以上 分析 可得出如下结论:
(1)基坑周围存在不对称的超载时,将引起超载较大的一边的变形加大,超载较小的一边的变形减小,对这类基坑分析应积极探讨整体分析 方法。
(2)基坑降水应随着基坑开挖分阶段进行,同时应严格控制基坑周围重要建筑物和管线处的水位。
(3)在软土地区,基坑开挖步序及开挖后暴露时间均对基坑变形产生一定的影响,在施工中应充分考虑时空效应对基坑变形的影响。
(4)整体性较好的建筑物对基坑变形的耐受能力较强,同时对基坑变形具有一定的抵抗作用。
参考 文献
[1]刘建航,侯学渊.基坑工程手册[M].北京: 中国 建筑 工业 出版社,1997·
[2]侯学渊,陈永福.深基坑开挖引起周围地基土沉陷的 计算 [J].岩土工程师,1989,1(1)·
[3]孔德志.SMW工法土挡墙的性能分析及在南京地铁工程中的 应用 [D].同济大学硕士学位论文,2001.[4]刘建航,侯学渊,等.基坑时空效应 理论 和实践[R].上海市科委课题报告,1997.9
第二篇:上海地铁盾构隧道纵向变形分析
上海地铁盾构隧道纵向变形分析
【摘 要】隧道若发生纵向变形将严重影响到隧道结构的安全。分析探讨了纵向变形的发生、变化情况以及隧道结构和防水体系所允许的纵向变形控制值。结合工程实践,对隧道发生的典型沉降曲线规律进行了深入的分析,其结论对有效控制隧道纵向变形具有指导意义。【关键词】隧道;通缝拼装;纵向变形;环缝;错台;防水;失效
至2020年,上海将建成轨道交通运营线路达到20条、线路长度超过870 km以及540余座车站的网络规模。这其中,以盾构隧道结构为主的地下线路几乎占到一半。控制隧道纵向变形是确保隧道结构安全的重要因素之一。在研究隧道纵向变形时,我们首先要关注这种变形是以何种方式发生、又是如何发展变化以及隧道变形控制值是多少等问题,本文对这些问题进行了分析探讨。
1、盾构隧道结构和构造设计
盾构法隧道是由预制管片通过压紧装配连接而成的。与采用其它施工方法建成的隧道相比,盾构隧道明显的特点就是存在大量的接缝。1 km长的单圆地铁盾构隧道需要五~六千块管片拼装而成,接缝总长度约是隧道长度的20余倍。因此,盾构隧道的多缝特点已成为隧道发生渗漏水最直接或潜在的因素之一(见图1)。在盾构拼装结构中,接缝有通缝和错缝之分,现以单圆通缝盾构隧道为例进行隧道纵向变形分析。1.1 盾构隧道结构与构造设计 1.1.1 管片厚度、分块及宽度
单圆通缝隧道管片厚度350mm,管片为C55高强混凝土,抗渗等级为1 MPa。一环隧道由6块管片拼装而成(一块封顶块F、两块邻接块L、两块标准块B和一块拱底块D),圆心角分别对应16°、4×65°和84°(见图2a)。封顶块拼装方便,在拱底块上布置了两条对称的三角形纵肋。整个道床位于拱底块内,底部没有纵缝,对底部环缝渗漏水有一定程度的抑制作用,可大大降低处理底部渗漏水的难度。
1.1.2 纵缝和环缝构造
在管片环面中部设有较大的凸榫以承受施工过程中千斤顶的顶力,可有效防止环面压损,既利于装配施工,又易于整个环面凹凸榫槽的平整密贴,提高管片外周平整度;并可提高环间的抗剪能力,控制环与环之间的剪动,同时也可减少对盾尾密封装置的磨损。靠近外弧面处设弹性密封垫槽,内弧面处设嵌缝槽。环与环之间以17根M30的纵向螺栓相连,在管片端肋纵缝内设较小的凹凸榫槽,环向管片块与块之间以2根M30的环向螺栓压密相连,能有效减少纵缝张开及结构变形,环、纵向螺栓均采用热浸锌或其它防腐蚀处理。
这种构造设计使得隧道在拼装完成后形成具有一定刚度的柔性结构,环向面之间以及纵向面之间可以达到平整密贴装配,既能适应一定的纵向变形能力,又能将隧道纵向变形控制在满足列车运行及防水要求的范围内;同时,满足结构受力、防水及耐久性要求。
错缝拼装与通缝拼装略有不同,其拼装方式是隔环相同,拱底块不设三角肋,在道床底部有一条纵缝, 6块管片所对应圆心角分别为20°、2×68.75°、3×67.5°(见图2b)。不论是通缝还是错缝拼装,隧道总体上呈“环刚纵柔”的特点。
1.2 装配隧道对纵向变形的适应性分析
错台是指两环隧道之间发生的径向相对位移,隧道纵向变形的适应性是指在保障隧道结构安全前提下各组成构件所允许的最大环间错台量。从以下几方面分析各自对环间错台量的适应情况。1.2.1 环面构造对错台量的适应性
如图3a示,在管片环面中部设了较大的凹凸榫槽。因环面装配部位的凹槽比凸榫稍大,存在约8mm的极限装配余量,可允许凸榫在凹槽内沿着径向作微量移动或滑动。这种环面间的相对移动表现在隧道壁上就是错台现象(见图3)。无论环面凹凸榫槽的初始装配关系如何,当环间错台达到4~8mm时,凸榫的顶部边缘将与凹槽的底部边缘相接触,若继续发生错台,凹凸榫槽将发生剪切。应当说环面上设置的凹凸榫槽对提高环间的抗剪切能力是有益的。从环面构造可知,当环间错台量超过4~8mm时,环面缝隙将按线性张开。所以, 4~8 mm错台量应是环面装配和错台的控制值。1.2.2 密封垫对错台量的适应性
在环面上靠近外壁约30 mm处设有密封垫(现多为三元乙丙橡胶材料),按照设计构想,理想装配条件下密封垫径向宽度的重叠达23 mm,并可抵御环面间张开4~6 mm而不会发生渗漏水。通过对密封垫试验和数值计算分析发现,当环面之间发生错台时,密封垫表现出复杂的形状,不同部位呈拉压剪等十分复杂的受力状态。从理论上讲,当环间错台量为4~8 mm(甚至更大一些)时两块压紧状态的密封垫是不会产生渗漏水的。由于环面上的密封垫不是完整的(分别粘贴在12块不同管片上),装配后单侧整环密封垫长达19.415 m,且存在许多棱角组合,加之防水材料质量及施工技术条件等制约因素,多数渗漏水发生在错台量<8 mm(甚至更小)的情况下(见图4)。
1.2.3 螺栓孔和螺栓对错台量的适应性
为便于管片拼装紧固,一般螺栓孔设计的要比螺栓稍大,螺栓孔径为35mm,螺栓直径为30 mm,在管片拼装或产生错台时可允许螺栓适当调整。当环间错台量较小时,螺栓会随管片发生移动,螺栓拉伸量相当有限。不论螺栓与螺栓孔的初始装配关系如何,在错台量达到6~12 mm后,螺栓孔与螺栓的对应位置关系都趋于极限,螺栓将发生拉弯,同时对手孔部位的混凝土产生压剪作用。因手孔部位增强了配筋,螺栓会在手孔部位的混凝土压坏之前先于拉坏。
通过以上分析可知,隧道环面构造、防水体系及螺栓等在隧道发生变形过程中所起的作用不尽相同,对错台量的适应性也并不完全一样。但将它们装配成一条完整的隧道后就必须要求管片间的变形要协调,即只有当错台量同时满足结构抗剪、螺栓受拉及防水有效等要求时,隧道安全才有保障。受管片制作、拼装施工、密封垫质量等因素的影响,通常在隧道投入运营之初,环缝、十字缝或管片接缝处就已发生了渗漏水,隧道在施工过程中已经用掉了大部分结构变形和防水预留量,而留给运营期间允许发生的变形余量非常少。因此,综合多方面因素,将环面间的错台量控制在4~8mm即可保障隧道的安全。
2、隧道纵向变形分析
在隧道防水设计中,一般取纵缝和环缝张开量来确定密封垫的性能,弹性密封垫在隧道张开量达到4~6 mm时还具有防水能力。但隧道纵向变形究竟是以隧道顶底部刚性张开方式还是以环面错台方式进行的?或是两者兼之?下面分别对两种情形进行讨论分析。
2.1 假定隧道纵向变形是以刚体转动的方式进行的
将单环隧道假定为一个理想的刚体,允许环与环之间发生小角度θ的刚体转动,隧道顶(底)部张开量Δ,形成隧道纵向沉降变形(见图5)。当隧道发生沉降时,隧道顶部压紧,底部张开(或闭合)量Δ;反之,隧道顶部张开Δ,底部压紧。根据刚体转动几何条件,隧道环宽w、直径D、环间张开(或闭合)量Δ及隧道纵向沉降曲线半径R之间有如下几何关系:
当取环宽为1.0 m、隧道外径为6.2 m,隧道纵向沉降(或隆起)与环缝张开关系见表1。若依此计算,当环缝张开量为6 mm时,隧道防水已经失效。但在隧道实际变形中,如此小沉降半径(甚至更小)是存在的,但防水体系并没有发生失效现象。这说明将隧道纵向变形视作整环隧道刚体转动的假定与隧道实际发生的纵向变形有着较大出入。在已建隧道中,隧道长度与直径之比L/D>150,隧道纵向端点与车站锚固联结,车站刚度较大,而且隧道与周围土层之间存在一定的抗剪力,对隧道沿纵向移动有较大约束,加之管片之间螺栓紧固作用等,对隧道整环发生刚体转动或沿纵向产生较大的水平位移(缝隙)起到极大约束作用。一般情况下,沿隧道纵向难以产生较大的环间缝隙或刚体转动。
2.2 假定隧道纵向变形是以环间错台方式进行的
从上述分析得知,隧道环与环之间可以发生小量级的错台而不破坏隧道的安全性,假定隧道纵向变形曲线视作是由环与环之间发生不同错台而形成的,现分析沉降曲线为等圆的错台情况。将最下部的一环定为第1环,称之为基准点,第1环隧道底部与沉降曲线最低点之间沉降差定义为初始错台变形δ1,第2环与第1环之间的错台变形量δ2,第i环隧道与i-1环之间的错台变形量δi。根据图6a示,第一环的初始错台量为δ1,则有:
根据表2和图6分析可知:①沉降曲线半径越大,沉降影响范围越大,环间错台发展速度越缓慢;反之,沉降曲线半径越小,沉降影响范围越小,环间错台发展就越快(即错台很快就超出安全控制值)。②沉降曲线半径越大,沉降范围内的累积沉降量越大。由式(3)可以看出,即使环间的错台量是一个较小的数据,但在一个较大范围的隧道累计变形量来说仍然很可观。③即使在等半径沉降曲线上,不同距离的环间错台量是不同的。由式(2)可知,距离基准点越远,环与环之间的错台变形量就越大。
隧道安全取决于隧道结构和防水体系的安全,通过对隧道的长期现场监护监测发现,隧道结构沉降变形和防水之间又是相互影响和相互促进的,隧道渗漏水会引起隧道变形加大,隧道变形加大又会加剧隧道渗漏水,形成恶性循环。
在隧道发生渗漏水的许多部位,沉降曲线半径超过15 000m,满足隧道纵缝张开的设计要求;在发生较大沉降变形区段,沉降曲线半径远小于15 000m,隧道没有发生渗漏水,也未发现隧道顶底部的转动张开;在几处发生过险情的隧道区间,隧道沉降半径远小于500 m,发生漏水的整环隧道多位于沉降曲线的直线段,个别环间错台量达数厘米,在隧道内壁上表现为明显错台形式。理论分析和隧道发生渗漏水的实际情况都证明了隧道纵向变形方式是以环间错台方式进行的,将隧道纵向沉降曲线视作是由一系列环间错台构成的这一假定是合理的。
2.3 隧道纵向变形过程分析 在隧道发生沉降(隆起)后,隧道总长度增加,沉降变化越多,变化量越大,隧道总长度增加量就越大。当错台量较小时,隧道纵向增加量较小,可用下式来表达:
当错台量超过4~8 mm时,隧道纵向长度计算还应考虑纵向环面缝隙的增加量w0。下面根据不同程度的错台量对隧道结构安全和防水影响进行分析:(1)当环间错台量为1~4 mm时,这个量级的错台可以通过隧道环面构造设计本身加以调整,但会对密封垫产生一定的拉压作用。从几何意义上讲,变形前密封垫径向重叠厚度至少可达约23 mm,发生错台后密封垫仍可保持约19 mm的重叠厚度。根据式(4)计算,若错台为1 mm,单环隧道增加长度0.005 mm;若环间错台4 mm,单环隧道增加长度0.008 mm。这个量级的小错台量引起隧道纵向长度的增加非常小,环间缝隙宽度不增加。
随着环间错台量的增大,密封垫不同部位表现为十分复杂的拉压剪等受力状态,密封垫一般不会发生渗漏水现象,但环面间的防水能力在一定程度上被大大削弱,隧道发生渗漏水的概率大为增加。纵向连接螺栓或将进一步发挥抗拉作用,对手孔部位的混凝土施加低水平的压剪作用。
(2)当环间错台量达4~8 mm时,即在前一阶段变形基础上继续发生错台4 mm(见图3b)。不论环面凹凸榫槽最初装配位置如何,此刻凹凸榫槽处在极端配合状态,凸榫顶边缘与凹槽底边缘相接触,凹凸榫槽直接发生剪切,螺栓也处在进一步拉紧状态,密封垫的变形和受力状态也随错台量的加大而加剧,但密封垫径向重叠厚度仍可达15 mm。根据式(4)计算,若错台达到4~8 mm,单环隧道长度增加将达0.032 mm。这个级别的错台引起隧道总长度的增加量依然很小,环间缝隙宽度不增加,但密封垫之间、密封垫与管片之间都可能会直接发生渗漏水现象,环间防水能力被极大削弱,隧道发生渗漏水的几率成倍增加,必须引起警惕,采取措施控制错台的进一步发展。
(3)当环间错台量达8~13 mm时(见图3c),环面凹凸榫槽已发生直接剪切,凹凸榫槽局部会出现裂缝,而导致防水失效,这个错台量会引起环面凹凸榫槽出现“艰难爬坡”现象,环间缝隙呈线性扩大,螺栓被拉流。尽管密封垫径向重叠厚度仍有10~15 mm,但因管片局部发生破坏、环面间缝隙超过防水标准而失去防水作用。根据式(4)计算,若环间错台量达到13mm,隧道长度增加迅速,单环隧道增加量也达13.083mm,环缝张开量将迅速增加超过6 mm,环间防水体系基本失效,将会有大量水土流入隧道,环缝漏水严重。图7是整环隧道发生竖向错台示意图,当环间发生竖向错台时,依附于管片上的密封垫将随同管片一起发生错台。在隧道顶底部位错台最为显著,其它部位并不明显,但此时环面上凹凸榫槽还处在咬合状态,错台将呈直线方式发展。隧道处于此种状态十分危险,若变形继续发展,后果不堪设想。
(4)当环间错台量为13~23 mm时(见图3d),环面间持续剪切导致凹凸榫槽结构进一步破坏,防水体系完全失效,凹凸榫槽还处在咬合状态,错台将呈线性发展直至结构失稳,尤其当隧道下卧土层是砂性土层的状况时风险性更大。
分析表明:①若错台量在几毫米以内,隧道总长度增加量很少,环间缝隙宽度并不增加,隧道结构安全尚处在可控状态,但会大大削弱密封垫的防水效果;②若错台量超过环面凹凸榫槽配合极限之后,环间缝隙按线性发展,管片会发生破损、防水失效等现象,给隧道安全带来灾难性威胁。因此,径向错台的增加不仅会引起隧道环面发生剪切,还将导致隧道纵向水平位移(环面缝隙)的增加。
以上仅是对隧道竖向发生径向错台进行分析,实际上隧道发生纵向变形远比此复杂。隧道在装配完成受力后其环面并不是一个真圆,环面凹凸榫槽的装配关系随之发生变化,这些变形会沿着隧道纵向进行传递,隧道纵向和横向变形在一定范围内相互影响。
3、隧道纵向变形典型曲线及工程实例 3.1 隧道纵向沉降典型曲线
图8是典型纵向沉降曲线,沉降曲线呈对称漏斗型。一半曲线是一条反S沉降曲线,曲线的上部向下弯曲,下部向上弯曲,中间呈直线段变化。可将曲线划分成三段,现逐一分析如下: 第一段为向下弯曲段(沉降加速段)。该段隧道受扰动影响较小,环间错台较小,纵向变形量小,环与环之间的错台迅速变大,环间缝隙基本上没有张开,也不发生渗漏水,此阶段的纵向变形累计量较小。
第二段为直线变形段(沉降均速段)。该阶段隧道受扰动影响较大,该段环与环之间的错台量较大,凹凸榫槽相扣处在剪切状态,错台基本上呈直线型发展,没有明显弯曲,纵向沉降累积量迅速变大,环间缝隙防水失效,有大量水土涌入隧道。
第三段为向上弯曲段(沉降减速段),也是最后一个阶段。该段环与环之间的错台变形由大变小,曲线呈向上弯曲状,此阶段的纵向累计沉降量达到最大。
近年来发生的几起隧道险情大沉降与上述隧道纵向变形曲线非常吻合。3.2 工程实例
(1)图9是上海轨道交通2号线某停车场出入库线下行线隧道泵站发生事故后形成的沉降曲线。因泵站施工引起隧道大量漏水漏砂,隧道发生了较大错台变形,个别环间错台量达到数厘米,最大累计沉降量达26 cm,后经及时抢险才得以控制隧道危情。
(2)4号线大连路区间隧道因结构存在固有缺陷导致隧道漏水漏砂,环间发生了较大错台沉降,纵向累计和差异沉降变形都很大,环间发生错台量达到3~5 mm,累计沉降达9 cm,影响范围超过100m,后经及时发现抢险并最终得到根治。环间过大的错台变形势必会引起隧道结构开裂,导致隧道受损或破坏,防水体系失效,给隧道结构安全带来直接威胁,多处隧道发生的纵向大变形验证了这一变形过程。
4、结语
本文通过对地铁盾构隧道纵向变形进行分析,得到如下结论:(1)地铁盾构隧道纵向变形基本上是以径向错台方式进行的。
(2)径向错台的增加不仅会引起隧道环面发生剪切,同时会引起环缝间隙按线性发展,导致隧道结构损坏、防水失效。必须严格控制各类因素引起的环间错台量。
(3)研究了不同沉降曲线半径的环间错台变化规律,等半径沉降曲线上不同位置的错台量是不同的。结合工程险情研究了典型的隧道沉降曲线。
(4)隧道安全与隧道结构变形和防水密切相关,防水的成败关系到其长久安全,“见水就堵”是十分重要的。这些分析结论进一步加深了对隧道发生沉降方式和变形控制值的认识,对指导地铁盾构隧道安全监控具有重要的意义。
第三篇:某市地铁暗挖区间隧道工程施工组织
目录
第一章 引言....................................................................2
第二章 工程概况................................................................2
第1节 工程地质及水文地质条件..............................................2
第2节 周围环境状况........................................................3
第三章 区间隧道施工及其对楼群的影响............................................3
第四章 主要技术对策及施工方案..................................................4
第1节 采用导洞、隔离桩方法确保楼房基础安全................................4
第2节 隧道开挖采取洞内水平井点降水........................................5
第3节 修正支护参数、改进隧道施工工艺......................................6
第五章 技术措施的应用效果及分析................................................7
第1节 地表下沉监测结果及分析..............................................7
第2节 楼房基础沉降观测结果及分析..........................................8
第六章 结论....................................................................8
第一章引言
北京西直门至东直门的城市铁路是北京市规划的第13 号快速轨道交通线,全长约40 km ,其中和平里至东直门为地下段,采用暗挖施工。该区段是13 号线的控制工程,能否顺利修通将直接影响到全线是否能够如期通车。中铁隧道集团承担的第14 标段周围条件极为复杂,尤其是要近距离穿越两栋高层居民楼,在复杂地质环境下隧道施工必须确保居民楼的绝对安全,而且必须做到施工期间不扰民,因此,安全保障措施必须要绝对可靠,这对施工技术也提出了更高的要求。
第二章工程概况
第1节工程地质及水文地质条件
第14 标段主要由人工杂填土、第四纪沉积层和圆砾层组成。杂填土厚度为0.15~1.00 m ,最大厚度为4.2 m;第四纪沉积层厚度为0.5~18.7 m ,圆砾层最大厚度为3 m;粉细砂层稍密~中密,饱和,厚度为2.9 m;以下为粘土层。
该标段范围内,上层滞水水位埋深4.0 m左右;潜水水位埋深在地面下7.5 m ,高出隧道开挖拱顶;承压水水位埋深18.8 m ,位于隧道铺底以下0.5 m ,对隧道施工无影响。
区间隧道在粘质粉土和粉细砂地层中穿过,上层滞水和潜水已进入隧道断面。
第2节周围环境状况
北京城市铁路东直门地下区间为双跨连拱隧道,采用浅埋暗挖中洞法施工。典型断面开挖宽度为12.05 m ,开挖高度为7.397 m ,支护形式为复合式衬砌。区间隧道在里程K39 + 505~K39 + 585 之间,从两栋Y形高层居民楼中间下穿。两座高层楼房地面以上22 层、66 m高,地下两层,楼房基础为现浇钢筋混凝土箱型基础(无桩基),箱型基础持力层为2.7 m厚的换填级配砂石,暗挖隧道外轮廓线距楼房基础水平距离最小为1.6 m。隧道与高层楼群地平面及剖面关系
分别如图1、图2 所示。
图1 楼房与区间隧道的平面位置关系
图2 楼房与区间隧道的剖面位置关系
第三章区间隧道施工及其对楼群的影响
由于暗挖隧道开挖跨度达12 m ,覆土仅为1 倍洞径左右(7~12 m),上覆地层难以形成承载拱,上覆土柱荷载较大。设计采用中洞法施工,工况要求中隔墙形成承载能力后,方可进行侧洞开挖,最后施作侧洞衬砌形成双连拱结构。由于区间隧道两侧为不对称布置,基础持力层位于隧道拱腰部位,楼房静载和静载偏压可能对隧道施工安全和结构安全构成威胁。
区间隧道采用双连拱隧道施工对高层居民楼安全是不利的,主要表现在:(1)区间隧道为双连拱结构,采用中洞法施工,施工步序多加之需降水,造成对楼房基础地层的多次扰动,如没有稳妥可靠的技术措施保证,叠加后可能产生超量的不均匀沉降,给楼房的安全带来致命的危害。
(2)区间双连拱隧道中洞、侧洞为瘦高型结构,在初支施工过程中随着开挖在楼房静载作用下土层应力释放,引起的土体水平位移,使楼房基础产生不均匀沉降。
(3)相邻地段的监测表明,仅中洞通过后最大累计沉降量即为73.2 mm ,距中洞6.0 m范围内地表沉降量均在40 mm以上,沉降曲线拐点距中洞中线79.7 m。类比可知高层居民楼区域中洞施工引起地表沉降量可达23 mm ,沉降曲率为3.8 %。可见,若不采取可靠的措施,将对楼房造成较大危害。
第四章主要技术对策及施工方案
第1节采用导洞、隔离桩方法确保楼房基础安全
为确保楼房的绝对安全,用两排钢筋混凝土桩墙将楼房基础与隧道隔离,以此对楼房进行防护。在高层居民楼南侧已建成的1 # 竖井内开挖两个小导洞,在楼房之间隧道上方通过。导洞开挖完成后,在两个导洞内施作灌注桩,桩长14.0 m ,锚入隧道底板深度为6.0 m ,导洞与隔离桩连成整体高出隧道4.2 m ,形成桩墙、帽梁将楼房基础与隧洞隔离,如图3、图4 所示。
图3 导洞及隔离桩法平面布置图
图4 导洞及隔离桩法剖面布置图
导坑净空高3.0 m ,宽2.5 m ,初期支护厚度300 mm ,采用上下台阶法施工。灌注桩直径0.8 m ,间距1.0 m ,桩长14.0 m ,现浇C20混凝土。为在狭小的导洞内同时完成钻机成孔、钢筋笼搬运吊装、混凝土灌注、泥浆外运等工作,分别采取了异型反循环钻机成孔、挤压钢套筒连接以及卷扬机吊装等措施。同时将防塌孔贯穿于每根灌注桩的施工过程中,控制泥浆护壁质量,以最快速度完成钻孔,把隔离桩施工对楼房的影响减至最小。
第2节隧道开挖采取洞内水平井点降水
过高层楼群段无水施工是控制沉降保证楼房安全的前提。从前期施工采取地表深井降水来看,在此段地层特殊分层情况下降水效果不理想,特别是隧道仰拱位于两层粘土中间的夹层粉细砂
层中,由于夹层粉细砂厚度较小,此处深井降水不能形成降水漏斗,仰拱处于含水粉细砂层中,开挖过程中形成流砂,引起大量周边土层流失,造成地表超量下沉,近楼段地表最大下沉量达到73.2 mm。
经认真分析研究之后,决定根据此段特殊地质情况采取水平降水方法,利用已施工中洞底板向下和向左右侧洞方向开挖水平降水基坑,在水平降水基坑内用水平钻机成孔,埋设水平降水管,将中洞和侧洞范围内地下水降至仰拱以下1.0 m左右,确保无水施工。
第3节修正支护参数、改进隧道施工工艺
4.3.1 增设临时仰拱及时封闭步步成环双连拱隧道中洞、侧洞形状为瘦高狭长结构,分Ⅳ部台阶开挖,设计中部施作I22横撑,横撑间距1 m ,从Ⅰ部开挖至Ⅳ部才能完成断面封闭(5~7 天)的客观现实不利于掌子面的稳定,为控制拱顶及地表沉降,遵循浅埋暗挖及时封闭步步成环的原则, 增设临时仰拱, 技术参数为: C20 喷射砼(厚22 cm),布纵向拉结筋规格Ф22 @500、双层钢筋网片规格Ф6 @150 ×150。
4.3.2 仰拱基底换填碎石和注浆
根据已施工地段仰拱情况来看,由于地质特殊分层情况,受降水时间限制仰拱部位有滞留地下
水,基底粉细砂层浸泡和人工扰动后,造成基底液化软弱,减小了地基承载力,使仰拱封闭后沉降仍不收敛。为控制沉降,在仰拱基底换填30 cm厚的碎石,喷砼封闭后及时回填注水泥-水玻璃双液浆。从量测资料反馈情况来看,基底换填有效控制了沉降,仰拱喷砼封闭后沉降很快收敛,确保了过楼段的施工安全。
4.3.3 加密拱部超前管棚、增设边墙超前管棚
加密拱部超前管棚,由原设计3.0 m长、环向间距0.3 m、纵向每两米排设一次变更为2.0 m长、环向间距0.2 m、纵向每0.5 m(每榀)排设一次,增设边墙超前管棚,原设计无边墙超前管棚,为控制中洞、侧洞每部开挖施工产生的沉降,在中洞、侧洞边墙排设2.0 m长、环向间距0.5 m、纵向间距0.5 m的超前管棚。
4.3.4 加强超前注浆和背后回填注浆
拱部开挖前超前管棚间隔一个作为注浆管加强超前注水泥-水玻璃双液浆,喷砼封闭后滞后掌子面3~5 m进行拱部、边墙、底部背后回填注浆,控制开挖面土层流失,使隧道结构与周边土体密实,挤密隔离桩间土层和楼房基础下土层。
第五章技术措施的应用效果及分析 第1节地表下沉监测结果及分析
地表沉降监测结果可以看出, 地表最大沉降量为-45.20 mm ,导洞施工引起沉降量平均为6.45 mm ,中洞施工引起沉降量平均为18.00 mm ,侧洞施工引起沉降量平均为14.58 mm ,地表最大沉降量发生在隧道中线位置,中洞施工引起沉降占总沉降量的46 % ,较侧洞稍大。从沉降槽曲线来看,断面沉降槽比较狭窄,宽20 m左右,沉降曲线变曲点(拐点)至隧道中线距离大约6 m ,基本位于隔离桩之内,说明隔离桩隔离作用明显。通过主断面量测结果比较可以看出,改进的暗挖双连拱隧道施工工艺有效控制了沉降。
第2节楼房基础沉降观测结果及分析
楼房基础最大沉降值为18.90 mm ,发生在东楼JN6 点,平均沉降为12.70 mm ,初期降水和导洞施工引起沉降平均为3.38 mm ,中洞施工引起沉降平均为6.35 mm ,侧洞施工引起沉降平均为2.98 mm ,从以上数均分析,中洞施工引起楼房基础沉降最大,占总沉降量的50 %。
由上可见,在采用了既定的技术对策及施工措施后,成功实现了暗挖区间穿越楼群区的施工。
第六章结论
(1)北京城市铁路东直门暗挖区间在地面条件受限制、地层构造复杂、富水的情况下,采取稳
妥可靠的技术对策,安全通过浅基础高层居民楼区,确保了居民的正常生活和高层建筑的安全,表明该工程施工是成功的,同时也拓宽了浅埋暗挖技术在复杂环境下的应用前景,为今后类似工程提供了有益的经验。
(2)既有建筑物的基础遮断防护采用隔离桩,技术上是可行的。利用地下导洞施作灌注桩,是一种新的尝试,有助于解决修建地铁日益突出的施工与环境的干扰问题。
(3)加强超前管棚、超前预注浆和初支背后回填注浆是控制沉降重要有效的措施,是防塌、改善地层、防止地面建筑物破坏的关键环节。
(4)全过程监控量测并确定适宜的监测内容,是指导施工和控制地表下沉、监视土体及结构的稳定、保证施工安全的重要手段,为修正设计和变更施工方法提供了科学依据。(收稿:2003 年6 月;作者地址:北京市西外上园村;北京交通大学隧道及地下工程试验研究中心;邮编:100044)参考文献 王暖堂,陈瑞阳,谢箐.城市地铁复杂洞群浅埋暗挖施工技术.岩土力学,2002(2)2 范国文,王先堂.暗挖双联拱隧道穿越浅基础高层楼群区施工技术.现代隧道技术,2002(增刊)吴昭永.复杂环境条件下城市暗挖隧道施工技术研究.隧道建设,2003(1
第四篇:运行中的地铁隧道变形动态监测
运行中的地铁隧道变形动态监测
摘 要 文章结合广州市“仓边复建综合楼项目”工程施工监测方案,对受紧邻基坑施工扰动影响的运行中地铁隧道变形的动态监测方法进行了分析,采用TCA2003全站仪的全自动动态监测系统,可以24 h无人值守、连续监测运行中的地铁隧道变形,且每次监测可在地铁运行间隔内迅速完成。监测到的数据可以实时提供给施工方,以指导当前及下一步的施工,在工程应用中取得了良好的效果。
关键词 地铁隧道 连续运行 基坑开挖 变形动态监测 概述
在我国已有地铁的城市中,地铁沿线(非常靠近地铁隧道)的深基坑越来越多,如何在基坑开挖中保护正在运行中的地铁隧道,是一个十分现实的问题。采用信息化施工及监测方法,可以有效地指导基坑施工过程,施工中采用的时空效应法、逆作法、注浆法和基坑加固方法等均可达到保护邻近隧道、控制变形的目的。而常规的地铁变形监测如连通管法、巴塞特法等,在运行的地铁隧道中进行监测相当困难,主要是因为地铁运行间隔很短,运行期间绝对不允许测量人员进入,为此,须有一种简便的、无人值守、自动的动态监测方法,可在很短的时间间隔内,迅速完成隧道的变形监测,并为邻近基坑的施工提交监测数据。
广州市 “仓边复建综合楼项目”与广州地铁1号线平行,西侧基坑距区间隧道(公园前站~农讲所站)北线最近处约4 m,东侧基坑距北线隧道最近处约8 m,基坑开挖深度约为10.5 m,采用地下连续墙围护,兼做承重结构。基坑开挖将对地铁1号线构成威胁,为保证地铁的安全运行,必须在基坑开挖过程中对运行中的隧道变形进行不间断监测。自动化动态监测系统 2.1 监测要求
由于地铁隧道在一天中的三分之二以上的时间是处于全封闭的运营状态,绝对不允许监测人员进入隧道内工作,所以要求必须在隧道内设置自动化监测系统代替人工操作,实现对隧道水平、垂直位移的连续、精确监测。考虑到地铁运行的间隔很短,所采用的监测系统应能在3~5 min内完成隧道(受影响的区间段)的变形监测,以掌握基坑开挖施工引起地铁1号线隧道变形规律及特性。2.2 监测范围
地铁1号线下行线“农讲所站~公园前站”区间隧道沿基坑的60 m及两端各向外延伸45 m(约150 m)的范围。监测内容为隧道的水平和垂直位移。2.3 自动化动态监测系统的构成
一个完整的自动化动态监测系统是指在无需操作人员干预的条件下,实现自动观测、记录、处理、存储、报表编制、预警预报等功能,它由一系列的软件和硬件构成,整个系统配置包括:TCA自动化全站仪、棱镜、通讯电缆及供电电缆、计算机与专用软件。
2.3.1 TCA自动化全站仪
TCA自动化全站仪能够自动整平、自动调焦、自动正倒镜观测、自动进行误差改正、自动记录观测数据,其独有的ATR(Automatic Target Recognition,自动目标识别)模式,使全站仪能进行自动目标识别,操作人员一旦粗略瞄准棱镜后,全站仪就可搜寻到目标,并自动瞄准,不再需要精确瞄准和调焦,大大提高工作效率。
TCA2003是Leica TCA自动化全站仪中的一种(见图1),该仪器测角精度为0.5〞,测距精度为1 mm±1 ppm。可通过专用的控制软件来控制观测目标、设定观测周期。
2.3.2 Leica标准精密测距棱镜
棱镜作为观测标志,利用膨胀螺丝固定在隧道内侧(见图2),其数目可按实际需要设定,该标志能被TCA2003全站仪自动跟踪锁定,以实施精密测角和测距。
2.3.3 计算机
计算机利用电缆和全站仪连接,并装有专用软件以实现整个监测过程的全自动化,既能控制全站仪按特定测量程序采集监测点数据,并将测量成果实时进行处理,以便及时发现错误,杜绝返工,也可以对各个观测周期的监测数据进行存储并生成监测报告。2.3.4 其它设备
其它设备包括温度计﹑气压计﹑湿度计、连接电缆、外接电源等;温度计﹑气压计﹑湿度计用于测定空气的温度、压力和湿度,将测定结果输入到计算机中,对观测结果进行修正,以提高观测精度。2.3.5 实时控制软件
GeoMos Monitor是专门用于监测的、与TCA2003全站仪配套的变形测量软件,其在Windows环境下运行,并将数据存储在SQL Server数据库中,它既可按操作者设定的测量过程和选定的基准点、观测点进行相应的测量处理,也可快速建立三维坐标、位移量以及其它相关数据库,实现数据的快速存储、检索、编辑,可实时显示量测数据,并进行实时处理或后处理,能实时显示图形或事后显示。2.3.6 后处理软件
采用自己编制的软件,利用和GeoMos的软件接口,对测量数据进行后处理,按施工方要求的格式将监测点的位移变化转化为标准图表的形式直观地表达出来,绘制出监测报表和位移曲线,自动实现数据分析、报警以及报表生成的功能,可以根据用户的要求提供报表的形式。3 施工监测 3.1 测点布设
测点分为测站点、基准点以及观测点3类,测点布设在区间隧道K9+920~K10+070约150 m的范围之内。基准点用来检验测站是否产生位移,位于基坑影响区域外的东、西2点;观测点沿隧道每隔约10 m布设1个,如图3所示。
观测点和基准点都采用棱镜作为观测标志(可实现在水平方向上和垂直方向上的旋转),固定在支座上,支座采用膨胀螺丝固定在隧道管片上,安装高度低于2 m(以确保安装时不需要停电作业,并不对行车造成影响)。仪器设置在施工影响区域的中央(隧道的南侧),固定在观测台上(避免对中误差),并在旁边放置稳压电源。
为了更好地掌握地铁运行状况和控制隧道受基坑施工的影响,在不同位置设置典型观测断面(断面具体数目结合基坑开挖深度及影响范围设定)。坐标系设置为自定义坐标系。3.2 观测方法
通过控制软件,在每个观测周期开始前,利用东、西2个基准点,4测回推算出测站点的坐标,然后,四测回对所有的点进行自动观测,得到观测点的坐标。基坑开挖深度较浅时,可以减少观测频率。随着基坑开挖深度的不断增加,24 h实时观测,并加大重点部位的观测频率。3.3 测量数据
表1为不同测点的监测报表,图4是D12点的累计位移—时间的曲线图。
3.4 测量误差分析 3.4.1 误差来源
测量的误差来源于仪器的系统误差、测站和目标的对中误差、外界环境的影响、测量仪器的影响。
⑴ 仪器的系统误差主要是由仪器本身构造引起的,为保证精度,需在测量前对仪器进行检校,仪器即使在检校后还有残余的系统误差。但由于监测需要得到的是2次测量之间的位移值,因此系统误差可以基本消除。
⑵ 由于测站点、观测点均采用强制对中措施,而且标志埋设后在整个观测过程中不再重新安置,因此,测站、目标的对中误差可忽略不计。
⑶ 由于本次监测需要实时监测,而地铁隧道的湿度较大,对测距的精度会有影响,但地铁隧道内的温度﹑气压﹑湿度均比较稳定,因此,可不考虑这些外界环境因素对观测结果的影响,可在观测过程中利用数学模型进行修正。而列车运行带来的震动却对观测结果的影响较大,故应尽量避免在这一时段进行观测。
⑷ 本次测量采用TCA2003全站仪观测,其测角精度0.5″,测距精度1 mm±1 ppm,因此,其是影响测量的主要误差源。3.4.2 误差分析
此次监测主要的误差来源是仪器的测角误差和测距误差,仪器的测角精度为0.5″,100 m的监测范围内由测角所引起的最大误差为±0.12 mm;仪器的测距精度为1 mm±1 ppm,其中1 mm为固定误差,±1 ppm为比例误差(1 mm/km),即100 m的距离由测距所引起的误差为±0.1 mm,距离测量采用四测回观测仪器引起的误差为±0.5 mm;根据各点给定的初始坐标估算,点位的平面精度约±0.5 mm,Z方向的精度与竖直角的大小有关,精度略低,但仍可以保证±1 mm的精度,能够满足施工及甲方对地铁保护的要求。结论
广州市“仓边复建综合楼项目”基坑开挖对地铁1号线构成威胁,施工中采用的监测系统对运行中的隧道变形进行不间断监测,监测结果为基坑开挖施工提供了准确、及时的指导数据,保证地铁的安全运行。这是一种简便、灵活、无人值守、实时、动态的监测系统。工程应用表明,该监测系统能满足工程的要求,且监测速度快、精度高、受人为影响少、自动化程度高,可在地铁运行间隔内迅速完成隧道的变形监测。
参考文献
1.刘立臣.广州地铁二号线新-磨区间土建工程施工监测.西部探矿工程.2004 年第8 期
2.白素珍.浅谈广州地铁二号线鹭中区间隧道施工监测.西部探矿工程.2004 年第3 期
3.梁禹.广州地铁一号线隧道结构变形监测及成果分析.施工技术.2002年6月第31卷第6 期.4.曹宇宁.广州地铁二号线琶洲站基坑工程的监测及信息化施工.广东水利水电.2001年12月第6期.5.北京城建勘测设计研究院.地下铁道、轻轨交通工程测量规范.北京: 中国计划出版社.1999
第五篇:地铁隧道变形监测信息管理系统的开发
地铁隧道变形监测信息管理系统的开发
摘要:地铁隧道结构变形监测的特殊性、周期性和长期性,使其信息量非常庞大。信息管理是地铁隧道结构变形监测中一项重要的工作,现有的管理方式效率很低。为了高效、准确地管理监测信息,及时分析预报地铁隧道结构的稳定状况,本文结合南京地铁运营期隧道结构变形监测实例,开发了一套具有变形监测资料存储、预处理、管理分析、可视化分析、预测预报及限值预警等功能的信息管理系统,保证了准确及时快速的数据处理和信息反馈,具有良好的运用和推广前景。
关键词 地铁隧道 变形监测 信息管理系统 引 言
随着经济的发展,越来越多的城市开始兴建地铁工程。地铁隧道建造在地质复杂、道路狭窄、地下管线密集、交通繁忙的闹市中心,其安全问题不容忽视。无论在施工期还是在运营期都要对其结构进行变形监测,以确保主体结构和周边环境安全。
地铁隧道是一狭长的线状地下建构筑物,监测点数量比较大,其周期性和长期性,使数据量非常庞大。面对这些繁杂而又庞大的数据能否管理利用好,关系到监测隧道结构变形和预测预报结构变形工作能否实现和实现的质量。为此,如何有效地管理原始信息,并进行相应的处理显得尤为重要。目前多数监测信息的管理和应用存在不直观、不及时、自动化程度较低等缺点,根据地铁隧道结构自身特点研制一套高效率的、使用方便的监测信息管理系统是必要的,它与变形监测一样具有重要的实用意义和科学意义。系统设计思想
以地铁隧道结构变形监测信息为管理对象,根据地铁隧道结构变形监测的实际情况,综合运用监测数据处理分析技术、数据库技术和信息管理技术,实现对地铁隧道结构变形信息的存储、预处理、管理分析、可视化分析监测信息、预测预报及限值预警,为结构分析提供数据资源,以及时反馈地铁隧道结构安全状况,使安全监测管理人员更为方便和高效的管理监测信息,为确保地铁隧道结构的安全运行提供有效的决策支持。地铁隧道结构变形监测数据管理系统主要应满足如下要求: 1.1 提高地铁隧道结构变形监测数据处理分析与
管理的科学化和自动化水平,满足辅助决策需求 1.2 构建地铁隧道结构变形监测信息管理基础平台
1.3 为后期自动化监测的开展及安全监测专家系统的建立提供基础。3 系统功能
地铁隧道结构变形监测信息管理系统包括文档管理、数据预处理、数据库管理、监测数据分析、信息预警预报和系统管理六大模块,内容不仅涵盖了相关技术规范的所有要求,而且具有地铁隧道自身的特点,全面、标准、专业,有良好的应用前景。
3.1 文档管理模块 3.1.1 变形监测资料 地铁隧道结构变形监测根据地铁隧道结构设计、国家相关规范和类似工程的变形监测以及当前地铁所处阶段来确定,主要内容包括[3]:垂直位移监测(区间隧道沉降监测和隧道与地下车站沉降差异监测);水平位移监测(区间隧道水平位移监测和隧道相对地下车站水平位移监测);隧道断面收敛变形监测等。
对于不同的地铁隧道结构变形监测项目内容,所用监测方法和仪器也不相同。通常,对于隧道垂直位移和水平位移监测,可通过大地测量或者自动化测量的方法利用精密水准仪、精密全站仪或智能全站仪进行;而对于隧道断面收敛变形监测,则要通过物理量测的方法利用收敛仪(计)进行。
变形监测资料包括历次变形监测的原始数据,监测报告及鉴定报告等。3.1.2 工程概况资料
工程概况资料主要有工程概况、工程特性参数、重要技术资料和安全监测系统档案等。
(1)工程概况:包括地铁地理位置,车站布置,沿线主要建筑物概况,工程地质与水文地质条件,结构特性、施工情况等。(2)重要技术资料:主要结构设计文件、图纸,运行设计报告,竣工验收报告,隧道加固改建或观测更新改造专题报告,重要工程图形和图像。(3)变形监测系统档案:主要包括监测仪器运行、维护和历次检查、鉴定记录及报告。
(4)其他资料:主要包括水文、气象和地震资料等。3.1.3 巡检资料
包括对隧道结构的各个部位和断面的渗漏、变形和裂缝等的日常巡查记录表,隧道安全情况和隧道重大事故报告等。3.2 数据预处理模块
通过不同的方式导入原始监测资料,并对其进行粗差检验,若有粗差则提示警告,以便查找原因返工重测,然后再进行初步处理分析。对基准点和工作基点的稳定性进行检验,不同的稳定性检验结果决定平差方法的选取。最后对所得监测结果进行整理,存储至相关数据库。3.2.1 数据导入
目前嵌入式操作系统发展特别迅速,根据监测手段和方式不同,用户可以通过系统的接口程序实现系统和观测电子手簿直接相连,自动导入或手工导入。3.2.2 粗差检验
依据相关规范规程应用相应检验粗差的方法对其进行检验,若有粗差则给出提示警告和可能原因,以便查找原因返工重测;若没有粗差则提示检验通过,可进行下一步处理计算。3.2.3 稳定性检验
通过对监测资料的计算分析,应用统计方法(F检验和t检验)对基准点和工作基点的稳定性状况进行分析,为平差计算采用何种平差方法提供依据。3.2.4平差计算
根据基准点及工作基点稳定性检验结果,对变形监测网相应的选用经典平差、拟稳平差或自由网平差;如果监测资料(如隧道收敛变形监测资料等)无需平差计算的则直接进行相关成果计算。
3.2.5 资料整理入库
根据前述各部分处理计算所得结果,对所得监测成果以及检验结果进行整理和存储入库。此外,可根据需要对相关监测属性信息进行相关编辑、修改,然后再整理入库。3.3 数据库管理模块
对数据库相关数据进行查询、添加录入、修改和删除,同时可根据需要进行数据报表生成输出。3.3.1 数据查询
根据不同监测项目特点,采用不同的查询方式对测点的属性信息和监测成果进行条件查询和遍历查询,并可根据需要将查询结果以不同的方式输出。3.3.2 数据录入添加
根据实际需要对测点属性数据和监测单位所提供的直接成果数据进行录入添加,同时可对属性数据信息进行编辑、修改添加。3.3.3 数据修改
考虑到操作的规范性,系统只允许对监测点属性进行修改。通过查询所要修改的监测点,对其属性信息进行修改,同时可以动态显示数据库中的监测点属性信息,方便用户及时看到修改结果。3.3.4 数据删除
与数据修改功能相似,通过对数据信息查询后再进行删除,删除前须经确认,然后才能操作,确保准确无误。
3.3.5 报表生成
可根据用户需要,查询相关监测信息,然后以相关的报表形式输出监测信息。3.4 监测数据分析模块
通过应用不同的数据分析方法和方式对各种监测数据进行处理分析,分析过程和方式采用表格和曲线图形方式进行。
3.4.1 监测点稳定性分析
应用相关稳定性分析方法及指标,结合监测现场实际,对不同类型监测点稳定性进行分析评判。3.4.2 可视化分析
针对监测信息反馈分析的需要,提供可视化的变形监测图形报表,辅助测点稳定性分析评判,以便使用者更直观具体地了解隧道结构整体变形趋势。
以南京地铁西延线垂直位移监测为例,除提供每期沉降量曲线图、沉降速率曲线图、挠度曲线图、相对挠度曲线图外,还可提供任意两期累积沉降量、累积沉降速率、挠度及相对挠度的对比曲线图。3.5 信息预警预报模块
仅仅将监测的信息录入系统中是不够的,还要根据稳定性分析以及前n期的监测成果模拟监测点的变形曲线,并结合相关资料预报今后的变化趋势。由于影响变形体的因素错综复杂,考虑到系统的通用性,模块提供了回归分析、灰色系统、kalman滤波等传统的模型供选择。
根据系统给出的限值进行预警,提供相关区间段的工程图纸及地质、水文气象资料,便于隧道结构变形情况的进一步分析。3.6 系统管理模块
为保证系统的安全,系统运行和数据操作过程中都不能出现任何差错,必须对系统进行有效的管理,这主要是指对系统用户的管理及日常使用日志的管理。3.6.1 系统用户管理
为保证监测信息的完整性、正确性和安全性,必须对系统的用户进行有效的管理。用户登录系统的过程必须在系统日志中进行登记,包括用户名、登录时间、对系统的操作过程以及在系统中滞留的时间等。系统管理员定期将系统的用户使用情况向主管领导汇报。在征得主管领导的同意后,系统管理员可以根据实际情况添加用户或提升、降低某些用户的用户使用级别,必要时可以禁止某些用户的使用权力。系统用户管理包括系统用户登录管理和用户权限管理两个部分。3.6.2 系统日志及安全管理
本系统为系统管理员提供系统日志的检查和备份功能,使系统管理员通过对系统日志的查看了解系统的使用情况以及存在的不足和问题,及时地处理系统存在的隐患,保证系统的高效运行。3.6.3 数据库备份与恢复
为了保证管理系统或计算机系统经灾难性毁坏后,能正常恢复运行,必须进行数据库的备份与恢复。系统采用自动备份与人工备份结合的方式,确保系统的安全稳定运行。4 结 语
地铁隧道结构变形监测信息管理系统采用C/S结构设计,各功能模块间具有相对地独立性,便于进行功能扩充,为后期自动化监测的开展及安全监测专家系统的建立提供支持和铺垫[4,5]。该系统已在南京地铁中应用,不仅准确及时快速的数据处理和信息反馈,提高了地铁运营的管理水平,而且为地铁的安全运营提供了保证,具有显著的社会经济效益和良好的应用前景。
参考文献
[1]王浩,葛修润,邓建辉,丰定祥.隧道施工期监测信息管理系统的研制[J].岩石力学与工程学报,2001,10:1684—1686 [2]李元海.地铁施工监测数据处理系统的分析设计及应用[J].隧道建设,1996,4:22—26 [3]黄腾,李桂华,孙景领,岳荣花.地铁隧道结构变形监测数据管理系统的设计与实现[J].测绘工程,2006,6:1—3
[4]赵显富.变形监测成果数据库管理系统的研制[J].测绘通报,2001,4:28—32 [5]张其云,郑宜枫.运营中地铁隧道变形的动态监测方法[J].城市道桥与防洪,2005,7:87—89