第一篇:调试报告(修改稿)..
沙河市长城玻璃有限公司
4×6MW玻璃熔窑烟气余热发电项目
整机启动前验收 调试工作汇报材料
邯郸市科达电力安装有限责任公司 沙河市长城玻璃有限公司余热发电调试项目部
二〇一三年六月
各位领导、各位专家:
沙河市长城玻璃有限公司4×6MW玻璃熔窑烟气余热发电项目分系统调试工作基本结束,整机(或机组整套)启动即将开始。从2013年1月18日进厂,到4月5日,历时75天,项目调试组在调试总指挥的统一领导下,对机组的调试工作进行了周密策划,精心准备,合理地组织和科学地安排,各参建单位团结协作,密切配合,先后完成了锅炉、汽轮机、发电机和热控等各专业分系统调试工作。为了尽快实现整机(或机组整套)启动,针对启动前应具备的条件和具体要求,项目部全体调试人员与各参建单位密切协作,做了大量深入细致、行之有效的工作。下面我代表邯郸市科达电力安装有限责任公司沙河市长城玻璃有限公司余热发电调试项目部,就整机(或机组整套)启动前调试工作简要汇报如下:
一、调试质量目标
1、工程合格率100%;
2、整套启动及满负荷试运前各项条件具备,且文件闭环;
3、保护、仪表、程控投入率100%;动作正确率100%;
4、自动投入率100%,且品质优良;
5、完成满负荷试运的启动次数≦2次;
6、主机轴振≦0.03mm;
7、机组真空严密性≦0.10kp/min;
8、汽水品种整套试运阶段100%合格;
9、实现厂用带电、锅炉酸洗、点火冲管、投电气主保护、汽机冲转、机组并网、满负荷试运等项目一次成功;
10、全部调试项目做到:方案、措施齐全,试运规范,数据真实,结论正确,报告完整。
二、调试工作组织机构和体系建设
成立了项目调试小组,实行调试总指挥负责制,调试小组组长为总指挥,所有参与调试人员按调试总指挥指令进行工作。
调试小组:组长: 安志海(兼调试总指挥)副指挥:高继芳 耿建红 卢寿池 刘清顺
组员:段金平周广太 韩文奇 吴喜增 郭玉珍 刘建强 吴伟晓 韩国珍 宋新民 孔学军 张云山 郝治国 苗华民 耿荣典 赵福田 索志民 刘王平李增方
汽机小组组长:周广太 锅炉小组组长:刘清顺 电气小组组长:郭玉珍 热工小组组长:刘建强 安全小组组长:杜少培
三、调试主要内容
1、整体工程单体调试,包括锅炉煮炉、蒸汽吹管、循环水系统调试、凝结水系统调试、射水泵及真空系统调试等。
2、分部试运,包括锅炉专业调试、汽机专业调试、电气专业调试、化学制水系统调试、热控专业调试等。
3、整体试运转,整体试运进行整体控制系统调试,进行打闸试验、停机惰走试验、调速汽门严密性试验、电气试验等相关试验。
四、调试工作主要节点完成情况
1、#1机组调试
1)、锅炉调试过程
2013年1月20日开始对炉的烟风、汽水系统各阀门、挡板的开、关检查和远方操作进行试验。3月22日完成全部系统检查试验项目。2013年3月23日8:00开始低温煮炉,25日24:00煮炉结束。2013年3月25日14:00开始进行蒸汽吹管工作。吹管采用降、稳压法,共计吹管79次(包括高压吹管、抵押吹管)。2013年3月26日19:00结束吹管。
2013年3月28日14:00,锅炉首次整套启动并炉进行带负荷试运,至4月2日配合汽机和电气完成各种试验,具备发电条件。
2)、汽机调试过程
2013年3月18日开始,分别对润滑油系统、凝结水系统、调节保安系统、循环水系统、505系统、轴封系统进行调试。
3月28日8:00,首次冷态启动汽轮机冲转,3月29日4:00,进行了带负荷试验。调试期间进行的主要试验有505调整、打闸试验、电气试验、停机惰走试验、调速汽门严密性试验、超速试验、功率回路投入试验、主汽门活动试验。机组整体试运行工作主要包括各种辅机设备的使用、汽轮机冲转、发电机动态试验。
机组整体启动后做了以下试验:(1)505调试试验
在机组首次启动后,505系统首次投入动态运行,转数稳定,升数平稳,满足安全运行要求。
(2)打闸试验
在机组3000r/min空转时,检查机组运行正常。就地打闸危急遮断器或控制台手动打停机按钮,迅速关闭自动主汽门、调速汽门,试验良好。
(3)主调门严密性试验
在汽机首次启动时,做主、调门严密性试验。试验时主蒸汽压力为1.6Mpa。先做主汽门严密性试验,汽机3000r/min空转时,缓慢关闭主汽门,同时调速汽门保持全开,观察转数下降至1000r/min以下,再做调门严密性试验,汽机3000r/min空转,缓慢关闭调速汽门,同时主汽门保持全开,观察转数下降至1000r/min以下。主、调门严密性都合格。
(4)汽轮机冲至额定转数,运行约3小时暖机,解列做超速试验。汽机3000r/min空转,用505缓慢提升转数至危急遮断器装臵动作,记录撞击动作转速。动作转速为3202r/min、3214r/min、3203r/min。
(5)汽机额定转数运行时,主汽门活动试验,操作自动汽门开度由全开减至约80%,再恢复全开。试验时机组的正常运行不受影响。
(6)汽机惰走试验
汽机打闸停机,不破坏真空,测定真空状态下汽机惰走时间,测得惰走时间为22min。
3)、电气调试过程
电气专业完成了发电机励磁系统回路检查和静态调试、高压柜的分系统调试及电气主设备的单体试验。配合热工进行了机电大连锁试验。
2013年3月29日,对发电机进行了以下动态试验:
发电机短路试验:检查各项工作准备好以后,励磁调节器手动方式接入,CT三相电流平衡,极性、相序正确。
发电机空载试验:检查各项工作准备好以后,励磁调节器手动方式投入,电压缓慢平稳,PT三相电压平衡、相序正确。励磁调节器自动方式投入,电压三相电压平衡正确。匝间试验13600V正常。
发电机假同期试验:利用发电机出口开关,进行一次核相工作;拉开上隔离刀闸,投入发电机同期开关TK,手动、自动准同期装臵均能使发电机出口开关正常合闸。同期系统正常。
保护装臵试验:进行了发电机保护装臵静态调试,保护装臵动作正确,二次交流回路接线正确。
4)、热控调试
首先进行了仪表、管路、电动执行元件、锅炉与汽机主机联锁保护系统等分系统调试,然后进行整套启动调试。
调试完成了机组DCS的I/O通过检查及精度检查检测确认,完成了汽机监视系统(TST)、主机数字电液控制系统(DEH)、汽机主跳闸系统(ETS)回路及静态调试。整体启动汽机定速3000rpm,电气做动态试验,调试圆满完成。
机组整体试运行与2013年3月29日18时开始,4月1日19时进行了发电机组72小时试运行考核。最大发电功率6600kW,最小发电功率4000kW,平均发电功率5300kW。
2、#2机组调试
1)、锅炉调试过程
2013年3月16日开始对炉的烟风、汽水系统各阀门、挡板的开、关检查和远方操作进行试验。3月22日完成全部系统检查试验项目。
2013年3月17日8:00开始低温煮炉,20日24:00煮炉结束。2013年3月21日14:00开始进行蒸汽吹管工作。吹管采用降、稳压法,共计吹管79次(包括高压吹管、抵押吹管)。2013年3月23日19:00结束吹管。
2013年3月24日14:00,锅炉首次整套启动并炉进行带负荷试运,至3月26日配合汽机和电气完成各种试验,具备发电条件。
2)、汽机调试过程
2013年3月24日开始,分别对润滑油系统、凝结水系统、调节保安系统、循环水系统、505系统、轴封系统进行调试。3月24日22:00,首次冷态启动汽轮机冲转,3月25日1:00,进行了带负荷试验。调试期间进行的主要试验有505调整、打闸试验、电气试验、停机惰走试验、调速汽门严密性试验、超速试验、功率回路投入试验、主汽门活动试验。机组整体试运行工作主要包括各种辅机设备的使用、汽轮机冲转、发电机动态试验。
机组整体启动后做了以下试验:(1)505调试试验
在机组首次启动后,505系统首次投入动态运行,转数稳定,升数平稳,满足安全运行要求。
(2)打闸试验
在机组3000r/min空转时,检查机组运行正常。就地打闸危急遮断器或控制台手动打停机按钮,迅速关闭自动主汽门、调速汽门,试验良好。
(3)主调门严密性试验
在汽机首次启动时,做主、调门严密性试验。试验时主蒸汽压力为1.6Mpa。先做主汽门严密性试验,汽机3000r/min空转时,缓慢关闭主汽门,同时调速汽门保持全开,观察转数下降至1000r/min以下;再做调门严密性试验,汽机3000r/min空转,缓慢关闭调速汽门,同时主汽门保持全开,观察转数下降至1000r/min以下。主、调门严密性都合格。
(4)汽轮机冲至额定转数,运行约3小时暖机,解列做超速试验。汽机3000r/min空转,用505缓慢提升转数至危急遮断器装臵动作,记录撞击动作转速。动作转速为3202r/min、3214r/min、3203r/min。(5)汽机额定转数运行时,主汽门活动试验,操作自动汽门开度由全开减至约80%,再恢复全开。试验时机组的正常运行不受影响。
(6)汽机惰走试验
汽机打闸停机,不破坏真空,测定真空状态下汽机惰走时间,测得惰走时间为22min。
3)、电气调试过程
电气专业完成了发电机励磁系统回路检查和静态调试、高压柜的分系统调试及电气主设备的单体试验。配合热工进行了机电大连锁试验。
2013年3月25日,对发电机进行了以下动态试验:
发电机短路试验:检查各项工作准备好以后,励磁调节器手动方式接入,电流缓慢平稳,CT三相电流平衡,极性、相序正确。
发电机空载试验:检查各项工作准备好以后,励磁调节器手动方式投入,电压缓慢平稳,PT三相电压平衡、相序正确。励磁调节器自动方式投入,电压三相电压平衡正确。匝间试验13600V正常。
发电机假同期试验:利用发电机出口开关,进行一次核相工作;拉开上隔离刀闸,投入发电机同期开关TK,手动、自动准同期装臵均能使发电机出口开关正常合闸。同期系统正常。
保护装臵试验:进行了发电机保护装臵静态调试,保护装臵动作正确,二次交流回路接线正确。
4)、热控调试
首先进行了仪表、管路、电动执行元件、锅炉与汽机主机联锁保护系统等分系统调试,然后进行整套启动调试。
调试完成了机组DCS的I/O通过检查及精度检查检测确认,完成了汽机监视系统(TST)、主机数字电液控制系统(DEH)、汽机主跳闸系统(ETS)回路及静态调试。整体启动汽机定速3000rpm,电气做动态试验,调试圆满完成。
机组整体试运与2013年3月26日23时开始,3月29日23时进行了发电机组72小时试运行考核。最大发电功率6600kW,最小发电功率4000kW,平均发电功率5300kW。
3、#3机组调试
1)、锅炉调试过程
2013年3月20日开始对炉的烟风、汽水系统各阀门、挡板开、关检查和远方操作进行试验。3月21日完成全部系统检查试验项目,通过试验确认,各系统能够安全投入运行。
2013年3月21日18:00开始低温煮炉,23日24:00煮炉结束;经检查,煮炉效果良好。
2013年3月24日10:00开始进行蒸汽吹管工作。吹管采用降、稳压法,共计吹管53次(包括高压吹管、抵押吹管)。2013年3月25日19:00结束吹管工作,经检查,系统吹管合格。
2013年3月26日14:00,锅炉首次整套启动并炉进行带负荷试运,至3月29日配合汽机和电气完成各种试验,具备发电条件。
2)、汽机调试过程
2013年3月11日开始,分别对润滑油系统、凝结水系统、调节保安系统、循环水系统、505系统、轴封系统进行调试。3月20日8:00,首次冷态启动汽轮机冲转,3月23日4:00,进行了带负荷试验。调试期间进行的主要试验有505调整、打闸试验、电气试验、停机惰走试验、调速汽门严密性试验、超速试验、功率回路投入试验、主汽门活动试验。机组整体试运行工作主要包括各种辅机设备的使用、汽轮机冲转、发电机动态试验。机组整体启动后做了以下试验:(1)505调试试验
在机组首次启动后,505系统首次投入动态运行,转数稳定,升数平稳,满足安全运行要求。
(2)打闸试验
在机组3000r/min空转时,检查机组运行正常。就地打闸危急遮断器或控制台手动打停机按钮,迅速关闭自动主汽门、调速汽门,试验良好。
(3)主调门严密性试验
在汽机首次启动时,做主、调门严密性试验。试验时主蒸汽压力为1.6Mpa。先做主汽门严密性试验,汽机3000r/min空转时,缓慢关闭主汽门,同时调速汽门保持全开,观察转数下降至1000r/min以下;再做调门严密性试验,汽机3000r/min空转,缓慢关闭调速汽门,同时主汽门保持全开,观察转数下降至1000r/min以下。主、调门严密性都合格。
(4)汽轮机冲至额定转数,运行约3小时暖机,解列做超速试验。汽机3000r/min空转,用505缓慢提升转数至危急遮断器装臵动作,记录撞击动作转速。动作转速为3202r/min、3214r/min、3203r/min。
(5)汽机额定转数运行时,主汽门活动试验,操作自动汽门开度由全开减至约80%,再恢复全开。试验时机组的正常运行不受影响。
(6)汽机惰走试验
汽机打闸停机,不破坏真空,测定真空状态下汽机惰走时间,测得惰走时间为22min。
3)、电气调试过程 电气专业完成了发电机励磁系统回路检查和静态调试、高压柜的分系统调试及电气主设备的单体试验。配合热工进行了机电大连锁试验。
2013年3月29日,对发电机进行了以下动态试验:
发电机短路试验:检查各项工作准备好以后,励磁调节器手动方式接入,电流缓慢平稳,CT三相电流平衡,极性、相序正确。
发电机空载试验:检查各项工作准备好以后,励磁调节器手动方式投入,电压缓慢平稳,PT三相电压平衡、相序正确。励磁调节器自动方式投入,电压三相电压平衡正确。匝间试验13600V正常。
发电机假同期试验:利用发电机出口开关,进行一次核相工作;拉开上隔离刀闸,投入发电机同期开关TK,手动、自动准同期装臵均能使发电机出口开关正常合闸。同期系统正常。
保护装臵试验:进行了发电机保护装臵静态调试,保护装臵动作正确,二次交流回路接线正确。
4)、热控调试
首先进行了仪表、管路、电动执行元件、锅炉与汽机主机联锁保护系统等分系统调试,然后进行整套启动调试。
调试完成了机组DCS的I/O通过检查及精度检查检测确认,完成了汽机监视系统(TST)、主机数字电液控制系统(DEH)、汽机主跳闸系统(ETS)回路及静态调试。整体启动汽机定速3000rpm,电气做动态试验,调试圆满完成。
机组整体试运与2013年3月31日8时开始,4月3日15时进行了发电机组72小时试运行考核。最大发电功率6600kW,最小发电功率4000kW,平均发电功率5300kW。
4、#4机组调试 1)、锅炉调试过程
2013年3月21日开始对炉的烟风、汽水系统各阀门、挡板的开、关检查和远方操作进行试验。3月22日完成全部系统检查试验项目,通过试验确认,各系统能够安全可靠投入运行。
2013年3月23日8:00开始低温煮炉,25日24:00煮炉结束;经检查,煮炉效果良好。
2013年3月25日14:00开始进行蒸汽吹管工作。吹管采用降、稳压法,共计吹管71次(包括高压吹管、抵押吹管)。2013年3月26日19:00结束吹管工作,经检查,系统吹管合格。
2013年4月1日14:00,锅炉首次整套启动并炉进行带负荷试运,至4月1日配合汽机和电气完成各种试验,具备发电条件。
2)、汽机调试过程
2013年3月3日开始,分别对润滑油系统、凝结水系统、调节保安系统、循环水系统、505系统、轴封系统进行调试。3月25日8:00,首次冷态启动汽轮机冲转,4月4日4:00,进行了带负荷试验。调试期间进行的主要试验有505调整、打闸试验、电气试验、停机惰走试验、调速汽门严密性试验、超速试验、功率回路投入试验、主汽门活动试验。机组整体试运行工作主要包括各种辅机设备的使用、汽轮机冲转、发电机动态试验。
机组整体启动后做了以下试验:(1)505调试试验
在机组首次启动后,505系统首次投入动态运行,转数稳定,升数平稳,满足安全运行要求。
(2)打闸试验
在机组3000r/min空转时,检查机组运行正常。就地打闸危急遮断器或控制台手动打停机按钮,迅速关闭自动主汽门、调速汽门,试验良好。
(3)主调门严密性试验
在汽机首次启动时,做主、调门严密性试验。试验时主蒸汽压力为1.6Mpa。先做主汽门严密性试验,汽机3000r/min空转时,缓慢关闭主汽门,同时调速汽门保持全开,观察转数下降至1000r/min以下;再做调门严密性试验,汽机3000r/min空转,缓慢关闭调速汽门,同时主汽门保持全开,观察转数下降至1000r/min以下。主、调门严密性都合格。
(4)汽轮机冲至额定转数,运行约3小时暖机,解列做超速试验。汽机3000r/min空转,用505缓慢提升转数至危急遮断器装臵动作,记录撞击动作转速。动作转速为3202r/min、3214r/min、3203r/min。
(5)汽机额定转数运行时,主汽门活动试验,操作自动汽门开度由全开减至约80%,再恢复全开。试验时机组的正常运行不受影响。
(6)汽机惰走试验
汽机打闸停机,不破坏真空,测定真空状态下汽机惰走时间,测得惰走时间为22min。
3)、电气调试过程
电气专业完成了发电机励磁系统回路检查和静态调试、高压柜的分系统调试及电气主设备的单体试验。配合热工进行了机电大连锁试验。
2013年4月1日,对发电机进行了以下动态试验:
发电机短路试验:检查各项工作准备好以后,励磁调节器手动方式接入,电流缓慢平稳,CT三相电流平衡,极性、相序正确。发电机空载试验:检查各项工作准备好以后,励磁调节器手动方式投入,电压缓慢平稳,PT三相电压平衡、相序正确。励磁调节器自动方式投入,电压三相电压平衡正确。匝间试验13600V正常。
发电机假同期试验:利用发电机出口开关,进行一次核相工作;拉开上隔离刀闸,投入发电机同期开关TK,手动、自动准同期装臵均能使发电机出口开关正常合闸。同期系统正常。
保护装臵试验:进行了发电机保护装臵静态调试,保护装臵动作正确,二次交流回路接线正确。
4)、热控调试
首先进行了仪表、管路、电动执行元件、锅炉与汽机主机联锁保护系统等分系统调试,然后进行整套启动调试。
调试完成了机组DCS的I/O通过检查及精度检查检测确认,完成了汽机监视系统(TST)、主机数字电液控制系统(DEH)、汽机主跳闸系统(ETS)回路及静态调试。整体启动汽机定速3000rpm,电气做动态试验,调试圆满完成。
机组整体试运与2013年4月2日8时开始,4月5日15时进行了发电机组72小时试运行考核。最大发电功率6600kW,最小发电功率4000kW,平均发电功率5300kW。
五、调试工作完成情况
1、锅炉专业
应完成分系统调试27项,截止目前已完成27项,项目完成率100%;分系统条件检查确认34项,已完成34项,分系统条件检查确认率100%;分系统验评27项,已完成27项,验评率100%;
2、汽机专业
应完成分系统调试48项,截止目前已完成48项,项目完成率100%;分系统条件检查确认53项,已完成53项,分系统条件检查确认率100%;分系统验评48项,已完成48项,验评率100%;
3、电气专业
应完成分系统调试56项,截止目前已完成56项,项目完成率100%;分系统条件检查确认68项,已完成68项,分系统条件检查确认率100%;分系统验评56项,已完成56项,验评率100%;
4、热控专业
应完成分系统调试35项,截止目前已完成35项,项目完成率100%;分系统条件检查确认38项,已完成38项,分系统条件检查确认率100%;分系统验评35项,已完成35项,验评率100%;
5、化学专业
应完成分系统调试7项,截止目前已完成7项,项目完成率100%;分系统条件检查确认8项,已完成8项,分系统条件检查确认率100%;分系统验评7项,已完成7项,验评率100%;
6、综合文件完成情况
调试小组根据机组特点和业主要求,并依据《火力发电基本建设工程启动及竣工验收规程》(1996年版)、《火电工程调整试运质量检验及评定标准》(2006年版)、《火电工程启动调试工作规定》等规程标准和规定,编制了从分系统调试到整套启动调试的《质量检验及评定表》。机组整体启动前应完成的分系统调试项目共173项,截至目前已完成173项,验评率100%。
在机组调试过程中,编写了各专业调试措施、大纲、方案、规划等167份。其中本工程按4大专业细化分解,共组织编写了15个调试方案。15个调试方案分别是:《锅炉煮炉施工技术措施》、《锅炉蒸汽吹管方案》、《循环水系统调试技术措施》、《凝结水系统调试技术措施》、《射水泵及真空系统调试技术措施》、《厂用电受电方案》、《发电机整套启动调试方案》、《发电机保护系统调试方案》、《发电机励磁系统调试方案》、《模拟量控制系统(MCS)调试方案》、《主机监视及保护系统(TST&ETS)调试方案》、《数据采集系统(DAS)调试方案》、《顺序控制系统(SCS)调试方案》、《数字电液调节系统(505)调试方案》。
六、调试期间存在的问题
1、在调试过程中,发现调速汽门杆有卡涩现象。对门杆进行解体、研磨,重新装配后故障排除。
2、在调试过程中,发现汽轮机本体保温有局部潮湿现象。经认真分析,认为可能是汽机本体安装的疏水管道接头垫片蒸汽泄漏所致。为此停机,对疏水管道的进行查漏消缺。
3、在调试过程中,发现机组的真空有明显降低,调试组组织人员进行点蜡烛的办法进行查漏,发现凝结器喉部部位法兰结合面法兰垫片泄漏所致,致使机组真空下降。通过更换垫片消缺堵漏,使机组真空完全合格达标。
七、整套启动试运的有关准备
1、机组已完成单体、单机及分部试运,整体启动前的调试和整改项目已全部完成,并办理签证;
2、整体启动前的分系统调试项目已全部完成,并办理签证;
3、试运指挥部及各专业人员已全部到位,职责分工明确。
4、机组整套启动的计划及措施经各单位专业人员认真讨论及会签后,已经通过总指挥批准。
5、生产准备工作已经做好,运行人员全部到位,岗位职责明确,运行规程和制度已经配齐,设备、管道、阀门已经命名标示齐全。
6、运行现场的消防、安全和治安保卫验收合格。
综上所述,本项目机组经过整套试运行,已具备带负荷生产能力,能够投入运行,调试认为该工程已满足整体启动前的监检条件。
敬请各位领导和专家进行验收,提出宝贵意见。
第二篇:DEH调试报告
双钱集团(重庆)轮胎有限公司热电站
DEH调试报告
批准: 审核: 编写:
陕西盾能电力科技有限公司
2008年12月28日
目 录
1.设备及系统概述 2.调试过程 3.调试质量 4.评价
5.存在问题及处理建议
1.系统概述
本机组电液调节控制系统由杭州和利时自动化有限公司供货。采用MACS Smartpro分布式控制系统。DEH控制汽轮发电机组的转速与功率。DEH系统包括调节部分和液压伺服部分。
液压伺服部分包括高压油动机行程控制、中压油动机行程控制。由电液伺服阀实现连续控制,转速控制部分接受现场汽轮机测速装置发来的信号得到汽轮机转速,还接受油开关跳闸DI接点信号和上位机指令,通过继电器输出信号,实现汽轮机超速限制、保护功能和机械超速试验备用保护功能。
DEH系统的主要实现的功能为:转速控制、同期控制、负荷控制、OPC保护,超速实验,阀门实验,汽门严密性实验等。控制系统通过控制油动机的开度调节汽缸的进汽量,达到控制转速和负荷的目的。
2.调试过程介绍
2.1静态调试过程
2.1.1资料检查
将DEH的设计图纸、厂家资料及变更全部集中在一起,对DEH的逻辑进行了的系统的复查,将组态中不合理的地方及厂家资料与设计院图纸不符的地方进行改正,或要求设计院出变更,确定整个逻辑正确无误。
2.1.2 硬件及接线检查
2.1.2.1按厂家要求检查机柜地、电源地与屏蔽地,检查电源柜到DEH系统之间的电源接线,完成对电源系统的接线检查。检查机柜内部模件,发现模件缺损的及时通知武汽技术人员更换, 检查机架总线的地址跳线和状态开关 ,将不正确的改正过来。2.2.2.2机柜通电后检查系统电源,确保电源正常。模件接通电源检查其工作状态正常,确保模件处于正常工作状态。2.1.2.3.电源冗余检查,轮流断开一路机柜输入电源,进行电源切换试验,系统工作正常。轮流停掉一路电源模件,进行电源切换试验,系统工作正常。
2.1.2.4.检查并确认继电器、电磁阀全部正常。确认画面内容如:操作按钮、指示灯、参数及系统显示正常。
2.1.2.4通讯冗余检查,轮流断开一个通讯回路,另一个工作正常即系统通讯正常。
2.1.2.5进行DPU切换试验,在主DPU与备用DPU之间来回切换,系统工作正常,没有故障与扰动发生。
2.1.2.6对外部电缆接线进行检查, 按施工设计图纸对机柜与一次元件之间的电缆接线进行检查,将部分不正确的改正,确保了接线正确无误。
2.1.2.7 对汽机阀门进行调整,确定机械零点及满度。调整LVDT,使阀门满足控制要求。显示与实际开度对应。2.2动态调试过程 2.2.1冲车实验
由组成速度目标调节器的速度设定部分来设定一个参考速度以设定目标速度,一个速度变化率用来设定速度变化值,并用来完善额定信号直到输出值等于目标值。2.2.2阀门严密性实验 高、中压调门严密性实验:
此项试验要求机前主汽压力大于50%额定压力,要求机组转速降至1000 r/min以下。2.2.3并网实验
当发电机并网后,DEH自动设定初负荷以保证汽轮机的出力,如果操作员没有其它操作,则维持初负荷,经试运检查,此功能正确。负荷回路控制:
操作员由CRT设定目标负荷及变负荷率。由负荷回路控制实际负荷。
此回路是DEH控制负荷的基本回路,试运期间长期使用此回路增减、调节负荷。满足长期投入稳定运行的需要。手动控制:
操作员可在CRT不通过ALR回路手动增减负荷。它是直接改变指令,改变阀门开度,并不能保证负荷稳定在一个值上。此功能只是一个开环调节。经调试确定,此功能动作正确。
负荷设定的总量可以通过频率偏差的修正以后去控制阀门开度,来达到一次调频的功能。假使电网周波升高,则通过减负
荷来协助电网降低周波。
负荷控制回路的调试确定回路参数无误。调节回路动作正确。阀门动作正确。2.2.4超速实验
汽机的超速试验:
先进行103%超速实验,将汽机实际转速升至3090r/min后,OPC动作,所有调门关闭。
然后进行汽机电超速试验,为与机械超速区别开,先将电超速定值下降至3150r/min,先作电超速。实验过程中,利用DEH系统的电超速试验功能提升转速,DEH系统自动将OPC的超速保护解掉。因为超速保护当时ETS还有一套且定值相同,所以将先将ETS电超速保护解列提高,考验DEH的转速回路。当做ETS回路时,DEH投入机械超速回路,保证系统自动解掉OPC及DEH电超速保护。
3.调试质量
在DEH调试过程中遇到少量问题。后经过调试人员,电建单位和厂家的密切合作,将DEH系统调试工作顺利完成。现在已经可以投入使用,在试运行中,各回路调节品质满足运行需要,顺利的通过了空负荷试运。
4.调试中遇到的问题及处理建议
供电电源DC220没有,安装时没有。与安装厂家联系已解决。
测速探头安装没有安装到位造成400转以下没有转速显示。建议开机检修时校准安装。
第三篇:调试记录报告
Ⅰ基本要求和内容
(1)电气设备调试记录应包括高低压配电装置、电力变压器、发电机组、备用和不间断电源设备、电气动力设备和低压电器等电气设备的试验调整报告、交接试验报告和电气设备(系统)试运行记录等。
(2)高压的电气设备和布线系统及继电保护系统的试验调整和交接试验必须符合现行国家标准《电气装置安装工程电气设备交接试验标准》GB50150〔以下简称GB50150〕的规定,并出具试验调整、交接试验报告。
(3)低压的电气设备和布线系统的试验调整和交接试验应符合现行国家标准GB50303规定,并出具试验调整和交接试验报告。
(4)发电机交接试验包括静态试验和运转试验,其试验部位、试验内容和试验结果应符合设计要求、设备技术文件和现行国家标准GB50303规定,并填写试验调整和交接试验报告,并经有关人员签证齐全。
(5)现场单独安装的低压电器交接试验内容、试验结果应符合现行国家标准GB50303规定,并填写试验调整、交接试验报告,并经有关人员签证齐全。
(6)高低压变配电装置试运行应符合下列规定:
1)试运行应在试运行前有关的电气试验调整、交接试验项目完成,并出具合格试验调整、交接试验报告,以及施工单位编制出书面试运行方案或作业指导书,明确试运行程序后,方可进行;
2)二次回路应在绝缘电阻测试合格后,方可接通控制电源和操作电源,模拟试验二次回路的控制、联锁、保护和信号等动作均必须符合设计要求,且灵敏可靠、正确无误。若有不正常,必须查明原因,排除故障,并做好记录;
3)试运行过程应严格按照设备技术文件和试运行方案中的程序和步骤认真操作,做好各项调试,测量记录各项运行数据,检查各部位有无异常情况;
4)试运行过程若出现质量事故,必须查明事故原因,及时处理,并做好记录; 5)填写试运行记录,并经有关人员签证齐全。(7)发电机组试运行应符合下列规定:
1)发电机组空载试运行应在静态试验、随机配电盘控制柜接线检查合格后进行; 2)负荷试运行应在调试和空载试运行合格后进行;
3)试运行过程应严格按照设备技术文件和试运行方案中的程序和步骤认真操作,做好各项调试,测量记录各项运行数据,检查各部位有无异常情况;
4)按设计的自备电源使用分配预案进行预定负荷试验,机组连续运行12h,无机械、电气等故障和无漏油、漏水、漏气等缺陷,试运行合格,才能投入使用; 5)发电机馈电线路连接后,两端的相序应与原供电系统的相序一致;
6)试运行过程若出现质量事故,必须立即停车,查明事故原因,及时处理,并做好记录; 7)填写试运行记录,并经有关人员签证齐全。(8)低压电气动力设备试运行应符合下列规定:
1)试运行前,相关的电气设备和线路应按现行国家标准GB50303的规定交接试验合格;
2)电气设备的控制回路模拟动作试验合格,盘车和手动操作,电气部分与机械部分的转动或动作协调一致;
3)试运行时,成套配电(控制)柜、台、箱、盘的运行电压、电流应正常,各种仪表指示应正常; 4)交流电动机试运行应符合下列规定: a.电动机试运行应在绝缘电阻测试合格后进行;
b.试运行前,应通过试通电检查电动机的转向和机械转动有无异常现象;
c.可空载试运行的电动机,连续试运行时间一般为2h,其空载电流、电压、机身与轴承的温升和温度等应符合要求;
d.电动机在空载状态下可启动次数及间隔时间应符合产品技术条件的要求;无要求时,连续启动2次的时间间隔不应小于5min,再次启动应在电动机冷却至常温下后进行;
5)做好试运行过程的电流、电压、温度、运行时间等有关数据的测量及运行情况记录,填写电气设备试运行记录,并经有关人员签证齐全。
(9)高压的电气设备和布线系统及继电保护系统、低压的电气设备和布线系统的电气试验调整报告、交接试验报告表格的内容、表式应符合规范和设备(系统)的产品说明书规定的试验调整项目、内容、试验标准及填写试验数据和结论等的要求。
(10)高压配电装置、电力变压器的电气调试、交接试验工作应由有资质的调试单位进行,并出具电气试验调整、交接试验报告。电气调试人员应按有关规定持证上岗。
(11)电气试验调整、交接试验以及电气设备(系统)试运行时,专业监理人员(建设单位专业人员)应在现场进行检查,并签证确认。
(12)电气调试用的各类计量器具应检定合格,并在有效期内使用。
(13)专业施工单位或调试单位调试的有关电气试验调整报告、交接试验报告及试运行记录等质量控制资料,应经专业施工单位或调试单位整理、核实、签章后归档,与建筑电气分部工程的质量控制资料汇总在一起,以保证建筑电气安装工程质量控制资料的完整性。Ⅱ核查办法
(1)核查各项电气试验调整、交接试验的项目、内容、方法和结果是否符合设计要求、现行国家标准的规定。
(2)核查高低压配电装置、电力变压器、发电机组、电气动力设备等试运行记录是否完整,试运行情况是否正常,各项运行数据、文字记载和试运行结果是否符合要求。
(3)核查在电气试验调整、交接试验及试运行过程出现安装质量问题或设备缺陷时,是否有处理,处理结果是否符合要求。
(4)核查各项报告、记录是否真实,签证是否齐全。Ⅲ核定原则
凡出现下列情况之一,本项目核定为“不符合要求”。
(1)未按要求进行电气试验调整、交接试验和试运行,项目不齐全,内容不完整。(2)未进行电气照明系统通电测试。(3)各项报告、记录是否真实,签证不齐全。
第四篇:母线调试报告
报告汇编 Compilation of reports 20XX
报告文档·借鉴学习word 可编辑·实用文档
母
线
试
验
报
告
工程名称:达欣总部办公楼培训中心
试验日期:2016 年 8 月 30 日 安装地点 5-15 层强电井 额定电压(KV)
0.4 设备位号 封闭母线槽 额定电流(A)
800A-630A 设备型号 CMC-800A-5/3
CMC630A-5/3 额定频率(HZ)
出厂编号 20160518 生产厂家 镇江市长虹电器有限公司 主要检测仪器设备 CC2627B 型耐电压测试仪 绝缘电阻测量(MΩ)
500Ω 500Ω
耐压前 绝缘良好 绝缘良好
耐压后 绝缘良好 绝缘良好
工频耐压试验 3750KV 3750KV
试验结论 符合要求 备注
报告文档·借鉴学习word 可编辑·实用文档 母
线
试
验
报
告
工程名称:达欣总部办公楼培训中心
试验日期:2016 年 8 月 30 日 施工单位:南通市达欣工程股份有限公司
现场调试人员:
技术负责人:
日期:
2016.8.30
监理单位:江苏大洲工程项目管理有限公司
现场监理工程师:
日期:2016.8.30 安装地点 15-22 层强电井 额定电压(KV)
0.4 设备位号 封闭母线槽 额定电流(A)
800A-630A 设备型号 CMC-800A-5/3
CMC-630A-5/3 额定频率(HZ)
出厂编号 20160518 生产厂家 镇江市长虹电器有限公司 主要检测仪器设备 CC2627B 型耐电压测试仪 绝缘电阻测量(MΩ)
500Ω 500Ω
耐压前 绝缘良好 绝缘良好
耐压后 绝缘良好 绝缘良好
工频耐压试验 3750KV 3750KV
试验结论 符合要求 备注
报告文档·借鉴学习word 可编辑·实用文档
施工单位:南通市达欣工程股份有限公司
现场调试人员:
技术负责人:
日期:
2016.8.30
监理单位:
现场监理工程师:
日期:2016.8.30
第五篇:出租车计价器调试报告
出租车计价器调试报告
本设计可分为单片机主控模块、键盘、显示器、温度检测、状态指示、时钟日历、语音收录播报、分频器电路、脉冲信号发生器等9部分。仔细分析系统的工作原理,分别按照模块在系统中的作用,对各个模块分别单独调试,最后形成该系统的用户程序,实现功能要求。
一、接通电源
调试要求:1.首先仔细检查该系统板的电源和地是否有短路问题,在未接入电源轻快下,使用万用表检验电源和地检查是否短路,如果没有短路,再仔细核查电源极性后予以通电,观察电源指示灯D1是否点亮。如果电源指示的灯不亮应立即关闭电源,并用手触摸各个芯片,检查是否用某芯片发热。如果没有发热的器件,很可能是电源指示二极管极性安装错误,或者是该发光二极管的串联电阻阻值偏大。
2.黑板上调试要求:(1)焊接好电路板加电前,用万用表测量板上Vcc 和
GND之间的电阻,应大于1KΩ
(2)加电后测量电路板上各电压,应大于4.2V 调试结果:1.经万用表检验,电路板无短路问题。
2.通电后,D1指示灯点亮。
3.测量Vcc 与 地之间的电阻,1.14KΩ > 1KΩ
4.测量Vcc与 地之间的电压:4.28V > 4.20V
二、测试状态指示
本系统中状态指示二极管共有3个,它们分别是D1、D2、D3。D1是指示电源的,可以在电源接通时直接看到,D2用于指示语音芯片的工作状态,留作语音模块调试时观察。D3是可以由单片机的引脚控制的。
编写测试D3的程序: #include
sbit a_c=P1^0;extern serial_initial();
main(){ serial_initial();a_c=0;while(1);}
测试结果: 1.2.三、脉冲信号发生器测试
测试要求:该模块由5G555芯片构成一个多谐振荡器,使用示波器观察该芯片的第3引脚的波形,并调节电位器W1,观察输出波形及频率变化。
测试结果:
调整W1前,f=147.1Hz
调整W1后,f=130.5Hz
四、分频电路测试
测试要求:该模块由一个4位二进制计数器74HC161和一个多路选择器74HC153构成。调试时可以利用由5G555芯片构成一个多谐振荡器的输出,或信号发生器作为计数器74HC161的计数输入信号。值得注意的是控制多路选择器74HC153的S0、S1与单片机调试时所使用的引脚复用,要采取特殊措施才能正确试验检测。
测试结果:利用函数信号发生器生成一个方波,周期/频率如图:
其在输出端输出的波形为:
f1=3.881kHz
f2 =1.235kHz 分频功能无误。
五、键盘测试
测试要求:本系统相对比较简单,仅有5个按键,其中4个为系统功能键,它们分别是S1、S2、S3、S4,另一个是系统复位按键S6。对于系统复位按键S6可以在上电之后,使用万用表予以检查,按下该按键,单片机的第9脚应该为高电平,释放后应该为点电平。
对于系统功能键,编写如下程序予以测试检查:
#include
#define BIT_LED XBYTE[0x0a000] void display();sbit k1=P1^0;sbit k2=P1^1;sbit k3=P1^2;sbit k4=P1^3;unsigned char a;unsigned
char table[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x67,0x40,0x00,0x63,0x39,};void delay(unsigned int i);main(){ while(1){ if(k1==0)a=0x06;if(k2==0)a=0x5b;if(k3==0)a=0x4f;if(k4==0)a=0x66;display();} } 测试结果:对于复位键S6,按下前应为低电平,按下后应为高电平
按下前
按下后
对于S1—S4,按下前为高电平,按下后为低电平。其测试结果均符合预期。
六、动态数码管测试
测试要求:本系统中的数码管的原理采用的是动态扫描方式,即某一时刻只用一个数码管在显示,利用人的视觉暂留特性,让数码管高速轮流显示,达到完整显示的目的。
编写如下程序进行测试: #include
#define BIT_LED XBYTE[0x0a000] void displayhello();sbit k1=P1^0;sbit k2=P1^1;sbit k3=P1^2;sbit k4=P1^3;unsigned char a;unsigned char table[]={0x06,0x06,0x3f,0x3e,0x79,0x6e,0x3f,0x3e,0x7f,0x67,0x40,0x00,0x63,0x39,};void delayms(unsigned int i);main(){ while(1){ displayhello();} }
void displayhello(){
unsigned char BIT=1;
unsigned int i;
BIT_LED=1;
for(i=0;i<=7;i++)
{
SEGMENT=table[i];
BIT_LED=BIT;
BIT=BIT<<1;
delayms(1);
}
} void delayms(unsigned int i){ unsigned int n;while(i--){
for(n=0;n<125;n++);
} }
测试结果:显示“I love you”
由于是动态显示,所以按下复位键后,只有一个数码管点亮
七、温度传感器测试
测试要求:本系统使用的是一款单线温度传感器(DS18B20),可将温度穿换成12的数字量,以表示温度。
编写如下程序予以测试检查: #include
//段码寄存器地址 #define BIT_LED XBYTE[0x0a000]
//位码寄存器地址 #define fosc 11.0592
unsigned char table[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x67,0x40,0x00,0x63,0x39,};//分别显示0 1 2 3 4 5 6 7 8 9-o C
unsigned char table1[]={0xbf,0x86,0xdb,0xcf,0xe6,0xed,0xfd,0x87,0xff,0xef};//分别显示0.1.2.3.4.5.6.7.8.9.unsigned char table2[]={0x76,0x79,0x38,0x38,0x3f};sbit k1=P1^0;sbit k2=P1^1;sbit k3=P1^2;unsigned char data display_buffer[13];unsigned char bdata data_ds1302;
unsigned char disbuf[]={0,0,0,0};sbit k4=P1^3;
sbit TMDAT=P3^4;
//温度入口
void dmsec(unsigned int count);void tmreset(void);
//ds18b20 reset void tmstart(void);
// void tmrtemp(void);void Disbuf(unsigned int temper);void displaytemper();void delay(unsigned int);main(){ display_buffer[0]=0x01;
display_buffer[1]=0x00;
display_buffer[2]=0x00;display_buffer[3]=0x08;
display_buffer[4]=0x05;
display_buffer[5]=0x00;display_buffer[6]=0x01;
display_buffer[7]=0x04;
display_buffer[8]=0x00;display_buffer[9]=0x05;
display_buffer[10]=0x00;
display_buffer[11]=0x01;
display_buffer[12]=0x04;while(1){ tmstart();
tmrtemp();
displaytemper();} }
void tmreset(void){
unsigned int i;
TMDAT = 0;
i = 103;while(i>0)i--;
TMDAT = 1;
i = 4;while(i>0)i--;}
void tmpre(void){
unsigned int i;
while(TMDAT);
while(~TMDAT);
i = 4;while(i>0)i--;}
bit tmrbit(void){
// ds1820
// Reset TX
unsigned int i;
bit dat;
TMDAT = 0;i++;
TMDAT = 1;i++;i++;
dat = TMDAT;
i = 8;while(i>0)i--;
return(dat);}
unsigned char tmrbyte(void){
unsigned char i,j,dat;
dat = 0;
for(i=1;i<=8;i++){
j = tmrbit();
dat =(j << 7)|(dat >> 1);
}
return(dat);}
void tmwbyte(unsigned char dat){
unsigned int i;
unsigned char j;
bit testb;
for(j=1;j<=8;j++){
testb = dat & 0x01;
dat = dat >> 1;
if(testb){
TMDAT = 0;
i++;i++;
TMDAT = 1;
i = 8;while(i>0)i--;
}
else {
TMDAT = 0;
i = 8;while(i>0)i--;
TMDAT = 1;
i++;i++;
}
} }
void tmstart(void){
tmreset();
tmpre();
// ds1820
displaytemper();//delay(100);
tmwbyte(0xcc);
tmwbyte(0x44);
}
void tmrtemp(void){
unsigned char a,xiao,b,y1,y2,y3;
tmreset();
tmpre();
delay(1);
tmwbyte(0xcc);
tmwbyte(0xbe);
a = tmrbyte();
b = tmrbyte();
xiao=a&0x0f;//小数部分
y1=a>>4;
y2=b<<4;
y3=y1|y2;if((b&0x0f8)==0x0f8)
{y3=~y3+1;
disbuf[0]=10;//显示符号
disbuf[1]=y3/10;
disbuf[2]=y3%10;
disbuf[3]=xiao*10*0.0625;} else
disbuf[0]=11;//不显示
disbuf[1]=y3/10;
disbuf[2]=y3%10;
disbuf[3]=xiao*10*0.0625;}
void displaytemper()
//温度显示函数
{ unsigned int i;unsigned char e=0x01;//<<1;for(i=1;i<6;i++)
{ switch(i)
{
case 1:{SEGMENT=table[disbuf[1]];BIT_LED=e;break;}
case 2:{SEGMENT=table1[disbuf[2]];BIT_LED=e;break;}
case 3:{SEGMENT=table[disbuf[3]];BIT_LED=e;break;}
case 4:{SEGMENT=table[12];BIT_LED=e;break;}
case 5:{SEGMENT=table[13];BIT_LED=e;break;}
}
e=e<<1;
delay(80);
}
BIT_LED=0;
}
void delay(unsigned int i)
//delay函数 {
while(i--);}
测试结果:
经传感器及数码管延时,温度重新显示
八、时钟日历测试
测试要求:本系统使用了时钟日历专用芯片,该芯片是以串行方式实现控制和数据传输的。
编写如下程序进行测试: #include
//段码寄存器地址 #define BIT_LED XBYTE[0x0a000]
//位码寄存器地址 #define fosc 11.0592
unsigned char table[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x67,0x40,0x00,0x63,0x39,};unsigned char table1[]={0xbf,0x86,0xdb,0xcf,0xe6,0xed,0xfd,0x87,0xff,0xef};unsigned char table2[]={0x76,0x79,0x38,0x38,0x3f};sbit k1=P1^0;sbit k2=P1^1;sbit k3=P1^2;sbit k4=P1^3;//利用开关量实现切换
//频率变量及子函数预定义 void displayfreq();void read_freq();unsigned char tcount=0,timecount=0;unsigned long freq=0.0;bit freqflag=0;unsigned char fr[6];unsigned int i=0,x=0;
//日期变量及子函数预定义 sbit SCL_ds1302=P2^0;sbit IO_ds1302=P2^1;sbit RST_ds1302=P2^2;
unsigned char data display_buffer[13];unsigned char bdata data_ds1302;
//传输符
unsigned char disbuf[]={0,0,0,0};void open_write_bit();void initial_ds1302();unsigned char read_ds1302(char command);void close_write_bit();void read_time();void set_time();void delay(unsigned int i);void delayms(unsigned int i);void displaytime();void displaydate();main(){ initial_ds1302();
//上电走时
read_time();
//读取当前时间,放到数组中
display_buffer[0]=0x01;
display_buffer[1]=0x05;
display_buffer[2]=0x01;display_buffer[3]=0x07;
display_buffer[4]=0x04;
display_buffer[5]=0x00;display_buffer[6]=0x01;
display_buffer[7]=0x06;
display_buffer[8]=0x00;display_buffer[9]=0x05;
display_buffer[10]=0x00;
display_buffer[11]=0x01;
display_buffer[12]=0x04;
set_time();
//设置时间
while(1){
if(k1==0)
{
while(1){
read_time();
displaytime();
if(k2==0)break;
}
}
read_time();
displaydate();} }
void close_write_bit()//close write { unsigned int i;
SCL_ds1302=0;
_nop_();
RST_ds1302=1;_nop_();_nop_();data_ds1302=0x8e;
for(i=1;i<=8;i++){
SCL_ds1302=0;
IO_ds1302=(data_ds1302&0x01);
_nop_();
SCL_ds1302=1;
data_ds1302=data_ds1302>>1;} data_ds1302=0x80;
IO_ds1302=0;for(i=1;i<=8;i++){
SCL_ds1302=0;
IO_ds1302=(data_ds1302&0x01);
_nop_();
SCL_ds1302=1;
data_ds1302=data_ds1302>>1;} }
void open_write_bit()//open write { unsigned int i;SCL_ds1302=0;_nop_();
//打开写保护//关闭写保护
RST_ds1302=1;_nop_();_nop_();data_ds1302=0x8e;for(i=1;i<=8;i++){
SCL_ds1302=0;
IO_ds1302=data_ds1302&0x01;
_nop_();SCL_ds1302=1;
data_ds1302=data_ds1302>>1;} data_ds1302=0x00;
//0x00,书上为0x80 IO_ds1302=0;for(i=1;i<=8;i++){
SCL_ds1302=0;
IO_ds1302=data_ds1302&0x01;
_nop_();SCL_ds1302=1;
data_ds1302=data_ds1302>>1;} }
void initial_ds1302()
//初始化函数 { unsigned int i;SCL_ds1302=0;_nop_();RST_ds1302=1;_nop_();_nop_();data_ds1302=0x8e;
for(i=1;i<=8;i++){
SCL_ds1302=0;
IO_ds1302=data_ds1302&0x01;
_nop_();SCL_ds1302=1;
data_ds1302=data_ds1302>>1;} IO_ds1302=0;data_ds1302=0x00;
for(i=1;i<=8;i++){
SCL_ds1302=0;
IO_ds1302=data_ds1302&0x01;
_nop_();SCL_ds1302=1;
data_ds1302=data_ds1302>>1;} RST_ds1302=0;SCL_ds1302=0;_nop_();RST_ds1302=1;_nop_();_nop_();data_ds1302=0x90;
for(i=1;i<=8;i++){ SCL_ds1302=0;IO_ds1302=data_ds1302&0x01;_nop_();SCL_ds1302=1;data_ds1302=data_ds1302>>1;}
data_ds1302=0x0a4;
for(i=1;i<=8;i++){ SCL_ds1302=0;IO_ds1302=data_ds1302&0x01;_nop_();SCL_ds1302=1;data_ds1302=data_ds1302>>1;} RST_ds1302=0;_nop_();SCL_ds1302=0;_nop_();RST_ds1302=1;
data_ds1302=0x8e;
for(i=1;i<=8;i++){ SCL_ds1302=0;IO_ds1302=data_ds1302&0x01;_nop_();SCL_ds1302=1;data_ds1302=data_ds1302>>1;}
data_ds1302=0x80;
for(i=1;i<=8;i++){ SCL_ds1302=0;IO_ds1302=data_ds1302&0x01;_nop_();SCL_ds1302=1;data_ds1302=data_ds1302>>1;} RST_ds1302=0;_nop_();SCL_ds1302=0;}
unsigned char read_ds1302(char command)
//read函数 { unsigned int i;data_ds1302=command;SCL_ds1302=0;_nop_();RST_ds1302=1;for(i=1;i<=8;i++){
SCL_ds1302=0;IO_ds1302=data_ds1302&0x01;_nop_();SCL_ds1302=1;data_ds1302=data_ds1302>>1;}
SCL_ds1302=1;for(i=1;i<=8;i++){
SCL_ds1302=0;
if(IO_ds1302)data_ds1302=(data_ds1302>>1)|0x80;
//送入到data_ds1302中,准备送出
else data_ds1302>>=1;SCL_ds1302=1;} RST_ds1302=0;_nop_();SCL_ds1302=0;return(data_ds1302);}
void write_ds1302(unsigned char address,unsigned char numb){
unsigned int i;
SCL_ds1302=0;
RST_ds1302=0;
RST_ds1302=1;
data_ds1302=address;for(i=1;i<=8;i++){
SCL_ds1302=0;
IO_ds1302=data_ds1302&0x01;
//送入写地址
_nop_();SCL_ds1302=1;
data_ds1302=data_ds1302>>1;} data_ds1302=numb;for(i=1;i<=8;i++){
SCL_ds1302=0;
IO_ds1302=data_ds1302&0x01;
_nop_();SCL_ds1302=1;
data_ds1302=data_ds1302>>1;} } void read_time(){ unsigned char second,minte,hour,d,date,month,year,zhou;second=0x81;
//读秒
d=read_ds1302(second);display_buffer[5]=d&0x0f;display_buffer[4]=d>>4;minte=0x83;
//读分
d=read_ds1302(minte);display_buffer[3]=d&0x0f;display_buffer[2]=d>>4;hour=0x85;
//读时
d=read_ds1302(hour);display_buffer[1]=d&0x0f;display_buffer[0]=d>>4;year=0x8d;
//读年
d=read_ds1302(year);display_buffer[7]=d&0x0f;display_buffer[6]=d>>4;month=0x89;
//读月
d=read_ds1302(month);display_buffer[9]=d&0x0f;display_buffer[8]=d>>4;
//送入写的内容
zhou=0x8b;
//读周d=read_ds1302(zhou);display_buffer[12]=d;date=0x87;
//读日期
d=read_ds1302(date);display_buffer[11]=d&0x0f;display_buffer[10]=d>>4;}
void set_time(){ unsigned char data temp;unsigned char data hour_address=0x84,minte_address=0x82,second_address=0x80,date_address=0x86,month_address=0x88,zhou_address=0x8a,year_address=0x8c;//各个时间量的地址
open_write_bit();
temp=(display_buffer[0]<<4)|display_buffer[1];write_ds1302(hour_address,temp);
//写小时
temp=(display_buffer[2]<<4)|display_buffer[3];write_ds1302(minte_address,temp);
//写分钟
temp=(display_buffer[4]<<4)|display_buffer[5];write_ds1302(second_address,temp);
//写秒
temp=(display_buffer[6]<<4)|display_buffer[7];write_ds1302(year_address,temp);
//写年
temp=(display_buffer[8]<<4)|display_buffer[9];write_ds1302(month_address,temp);
//写月
temp=display_buffer[12];write_ds1302(zhou_address,temp);
//写周temp=(display_buffer[10]<<4)|display_buffer[11];write_ds1302(date_address,temp);
//写日期
close_write_bit();
}
void delay(unsigned int i)
//delay函数 {
while(i--);}
void delayms(unsigned int i){ unsigned int n;while(i--){
for(n=0;n<125;n++);
} }
void displaytime(){ unsigned char e=0x01;unsigned int i;BIT_LED=0;
for(i=0;i<=5;i++){
if(i==5||i%2==0||i==11)
SEGMENT=table[display_buffer[i]];
else
SEGMENT=table1[display_buffer[i]];
BIT_LED=e;
e<<=1;
delayms(1);
}
}
void displaydate(){ unsigned char e=0x01;unsigned int i;BIT_LED=0;
for(i=6;i<=13;i++){
if(i==7||i==9)
SEGMENT=table1[display_buffer[i]];
else if(i==12)
SEGMENT=table[10];
else if(i==13)
SEGMENT=table[display_buffer[i-1]];
else
SEGMENT=table[display_buffer[i]];
BIT_LED=e;
e<<=1;delayms(1);
}
}
测试结果:
S1,S2实现年月日周与时分秒的切换
九、语音收录播报测试:
测试要求:本系统中使用的是语音专用芯片IDS1760芯片,该芯片是以串行方式实现控制和数据传输的。
编写如下程序进行测试: #include
unsigned char bdata SR0_L;unsigned char bdata SR0_H;unsigned char bdata SR1;unsigned char APCL=0,APCH=0;unsigned char PlayAddL=0,PlayAddH=0;unsigned char RecAddL=0,RecAddH=0;
sbit CMD=SR0_L^0;sbit FULL=SR0_L^1;sbit PU=SR0_L^2;sbit EOM=SR0_L^3;sbit INTT=SR0_L^4;sbit RDY=SR1^0;sbit ERASE=SR1^1;sbit PLAY=SR1^2;sbit REC=SR1^3;
unsigned char ISD_SendData(unsigned char dat);void ISD_PU(void);void ISD_Rd_Status(void);void ISD_WR_APC2(unsigned char apcdatl,apcdath);void ISD_SET_PLAY(unsigned char Saddl,Saddh,Eaddl,Eaddh);void ISD_SET_Rec(unsigned char Saddl,Saddh,Eaddl,Eaddh);void ISD_SET_Erase(unsigned char Saddl,Saddh,Eaddl,Eaddh);
sbit SS=P1^4;sbit SCK=P1^7;sbit MOSI=P1^5;sbit MISO=P1^6;
void Cpu_Init(void);void ISD_Init(void);void delay(unsigned int t);
void main(){ Cpu_Init();ISD_Init();
while(1){ ISD_SET_Erase(0,0,9,0);ISD_SET_Rec(0,0,9,0);ISD_SET_PLAY(0,0,9,0);} }
void Cpu_init(void){ P0=P1=P2=P3=0xff;TMOD=0x01;EA=0;} void ISD_Init(void){ uchar i=2;SS=1;SCK=1;MOSI=0;do { ISD_PU();//上电 delay(50);ISD_Rd_Status();//读取状态
}while(CMD||(!PU));
//if(CMD_Err==1||(PU!+1))则再次发送上电指令 ISD_WR_APC2(0x40,0x04);//将0x0440写入APC寄存器
do { ISD_Rd_Status();}while(RDY==0);do { delay(300);delay(300);i--;}while(i>0);}
//向cpu读回或发送数据
unsigned char ISD_SendData(unsigned char dat){ unsigned char i,j,BUF_ISD=dat;SCK=1;SS=0;for(j=4;j>0;j--){;}
for(i=0;i<8;i++){ SCK=0;for(j=2;j>0;j--){;} if(BUF_ISD&0x01)
{MOSI=1;} else
{MOSI=0;} BUF_ISD>>=1;if(MISO)
{BUF_ISD|=0x80;} SCK=1;for(j=6;j>0;j--){;} } MOSI=0;return(BUF_ISD);} void ISD_PU(void){
ISD_SendData(0x01);
ISD_SendData(0x00);
SS=1;} void ISD_Rd_Status(void){ unsigned char i;ISD_SendData(0x05);ISD_SendData(0x00);ISD_SendData(0x00);SS=1;for(i=2;i>0;i--){;} SR0_L=ISD_SendData(0x05);SR0_H=ISD_SendData(0x00);SR1=ISD_SendData(0x00);SS=1;}
void ISD_WR_APC2(unsigned char apcdatl,apcdath){ ISD_SendData(0x65);ISD_SendData(apcdatl);ISD_SendData(apcdath);SS=1;}
void ISD_SET_PLAY(unsigned char Saddl,Saddh,Eaddl,Eaddh){ ISD_SendData(0x80);ISD_SendData(0x00);ISD_SendData(Saddl);ISD_SendData(Saddh);ISD_SendData(Eaddl);ISD_SendData(Eaddh);ISD_SendData(0x00);SS=1;}
void ISD_SET_Rec(unsigned char Saddl,Saddh,Eaddl,Eaddh){
ISD_SendData(0x81);ISD_SendData(0x00);ISD_SendData(Saddl);ISD_SendData(Saddh);ISD_SendData(Eaddl);ISD_SendData(Eaddh);ISD_SendData(0x00);SS=1;}
void ISD_SET_Erase(unsigned char Saddl,Saddh,Eaddl,Eaddh){ ISD_SendData(0x82);ISD_SendData(0x00);ISD_SendData(Saddl);ISD_SendData(Saddh);ISD_SendData(Eaddl);ISD_SendData(Eaddh);ISD_SendData(0x00);SS=1;} void delay(unsigned int t){ for(;t>0;t--){ TH0=0xfc;TL0=0x18;TR0=1;while(TF0!=1){;} TF0=0;TR0=0;} }
测试结果:需要在程序中设置断点,完成录音,放音再录音放音的循环操作。
测试功能正常。
十、单片机模块调试
测试要求:该模块的调试很复杂,牵扯面也很多。其实通过前面各个模块的调试,已经大部分得到了间接地验证。例如在“动态数码管测试”和“串行通讯测试”中就是用到了定时器。
如有必要可以再编写一些测试程序。例如检测单片机的某一口线的功能是否正常、测试某段程序运行时间,等等。
测试结论:因单片机大部分功能在前调试方案中大部分已使用过,此处不再进行其余调试。