发动机连杆轻量化设计解析

时间:2019-05-13 23:49:04下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《发动机连杆轻量化设计解析》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《发动机连杆轻量化设计解析》。

第一篇:发动机连杆轻量化设计解析

发动机连杆轻量化设计

0 引 言

连杆是发动机中传递动力的重要零件。它将活塞的往复运动变为区轴的旋转运动并把作用在活塞组上的力传给曲轴。连杆主要承受气体压力和往复惯性力所产生的交变载荷。因此在设计连杆时应首先保证其具有足够的疲劳强度和结构刚度。显然为了增加连杆的强度和刚度不能简单地加大结构尺寸因为连杆重量的增加会使惯性力相应增加所以连杆设计的一个重要要求是在尽可能轻巧的结构下保证足够的强度和刚度即连杆轻量化设计是最终设计目标。

为了优化设计某发动机连杆减轻连杆重量选用朝柴发动机连杆作为评判的参考样品。分析某连杆发动机连杆现生产方案及其3 种改进设计方案以连杆疲劳安全系数为量的指标从3种改进设计方案中选出满足强度和刚度设计要求的重量最轻的方案为最终优化设计方案。1 有限元模型的建立

1.1 网格划分

发动机连杆是由连杆体连杆盖连杆轴瓦和连杆螺栓等零件组成连杆螺栓以巨大的预紧力5104 N 把连杆体和连杆盖连接在一起连杆轴瓦主要起耐磨作用因此进行有限元分析时不考虑连杆轴瓦和连杆螺栓而代之以连接预紧力作用于连杆体和连杆盖上连杆体和连杆盖接触面考虑接触和摩擦力。由于连杆结构和载荷的对称性。在建模型时仅取其一半结构进行有限元模型化。连杆的有限元模型采用四面体单元。

本文CAE分析前后处理软件为Altair/Hyper Mesh V7.0 分析软件为MSC Nastran 2001 各方案有限元模型规模见表1,有限元分析模型见图1。

图 1 有限元模型和连杆边界条件示意图

1.2 连杆有限元模型受力和约束

连杆总成的往复和旋转惯性力:

活塞组的往复惯性力:

拉伸工况下连杆大头载荷:

拉伸工况下连杆小头载荷:

活塞最大爆发压力载荷:

压缩工况下连杆大头受压力:

压缩工况下连杆小头受压力:

拉伸工况下沿连杆小头方向施加连杆总成的往复和旋转惯性力:

压缩工况下沿连杆小头方向施加连杆总成的往复和旋转惯性力:

第二篇:发动机连杆设计说明书

发动机连杆设计说明书

院:

机电工程学院

专业年级:

交通班

名:

号:

指导教师:

2011

年X月

X日

连杆的设计

1.1

连杆的工作情况、设计要求和材料选用

1、工作情况

连杆小头与活塞销相连接,与活塞一起做往复运动,连杆大头与曲柄销相连和曲轴一起做旋转运动。因此,连杆体除有上下运动外,还左右摆动,做复杂的平面运动。

2、设计要求

连杆主要承受气体压力和往复惯性力所产生的交变载荷,因此,在设计时应首先保证连杆具有在足够的疲劳强度和结构钢度。如果强度不足,就会发生连杆螺栓、大头盖或杆身的断裂,造成严重事故。

所以设计连杆的一个主要要求是在尽可能轻巧的结构下保证足够的刚度和强度。为此,必须选用高强度的材料;合理的结构形状和尺寸。

3、材料的选择

为了保证连杆在结构轻巧的条件下有足够的刚度和强度,采用精选含碳量的优质中碳结构钢45模锻,表面喷丸强化处理,提高强度。

1.2

连杆长度的确定

设计连杆时首先要确定连杆大小头孔间的距离,即连杆长度它通常是用连杆比来说明的,通常0.3125,取,则。

1.3

连杆小头的结构设计与强度、刚度计算

1、连杆小头的结构设计

连杆小头主要结构尺寸如图1所示。

为了改善磨损,小头孔中以一定过盈量压入耐磨衬套,衬套大多用耐磨锡青铜铸造,这种衬套的厚度一般为,取,则小头孔直径,小头外径,取。

2、连杆小头的强度校核

以过盈压入连杆小头的衬套,使小头断面承受拉伸压力。若衬套材料的膨胀系数比连杆材料的大,则随工作时温度升高,过盈增大,小头断面中的应力也增大。此外,连杆小头在工作中还承受活塞组惯性力的拉伸和扣除惯性力后气压力的压缩,可见工作载荷具有交变性。上述载荷的联合作用可能使连杆小头及其杆身过渡处产生疲劳破坏,故必须进行疲劳强度计算。

图1

连杆小头主要结果尺寸

(1)衬套过盈配合的预紧力及温度升高引起的应力

计算时把连杆小头和衬套当作两个过盈配合的圆筒,则在两零件的配合表面,由于压入过盈及受热膨胀,小头所受的径向压力为:

(1)

式中:—衬套压入时的过盈,;

一般青铜衬套,取,其中:—工作后小头温升,约;

—连杆材料的线膨胀系数,对于钢;

—衬套材料的线膨胀系数,对于青铜;、—连杆材料与衬套材料的伯桑系数,可取;

—连杆材料的弹性模数,钢[10];

—衬套材料的弹性模数,青铜;

计算小头承受的径向压力为:

由径向均布力引起小头外侧及内侧纤维上的应力,可按厚壁筒公式计算,外表面应力

(2)

内表面应力

(3)的允许值一般为,校核合格。

(2)连杆小头的疲劳安全系数

连杆小头的应力变化为非对称循环,最小安全系数在杆身到连杆小头的过渡处的外表面上为:

(4)

式中:—材料在对称循环下的拉压疲劳极限,(合金钢),取;

—材料对应力循环不对称的敏感系数,取=0.2;

—应力幅,;

—平均应力,;

—工艺系数,取0.5;

连杆小头的疲劳强度的安全系数,一般约在范围之内[4]。

3、连杆小头的刚度计算

当采用浮动式活塞销时,必须计算连杆小头在水平方向由于往复惯性力而引起的直径变形,其经验公式为:

(5)

式中:—连杆小头直径变形量,;

—连杆小头的平均直径,;

—连杆小头断面积的惯性矩,则

对于一般发动机,此变形量的许可值应小于直径方向间隙的一半,标准间隙一般为,则校核合格。

1.4

连杆杆身的结构设计与强度计算

1、连杆杆身结构的设计

连杆杆身从弯曲刚度和锻造工艺性考虑,采用工字形断面,杆身截面宽度约等于(为气缸直径),取,截面高度,取。

为使连杆从小头到大头传力均匀,在杆身到小头和大头的过渡处用足够大的圆角半径。

2、连杆杆身的强度校核

连杆杆身在不对称的交变循环载荷下工作,它受到位于计算断面以上做往复运动的质量的惯性力的拉伸,在爆发行程,则受燃气压力和惯性力差值的压缩,为了计算疲劳强度安全系数,必须现求出计算断面的最大拉伸、压缩应力。

(1)最大拉伸应力

由最大拉伸力引起的拉伸应力为:

(6)

式中:—连杆杆身的断面面积,汽油机,为活塞投影面积,取。

则最大拉伸应力为:

(2)杆身的压缩与纵向弯曲应力

杆身承受的压缩力最大值发生在做功行程中最大燃气作用力时,并可认为是在上止点,最大压缩力为:

(7)

连杆承受最大压缩力时,杆身中间断面产生纵向弯曲。此时连杆在摆动平面内的弯曲,可认为连杆两端为铰支,长度为;在垂直摆动平面内的弯曲可认为杆身两端为固定支点,长度为,因此在摆动平面内的合成应力为:

(8)

式中:—系数,对于常用钢材,取;

—计算断面对垂直于摆动平面的轴线的惯性矩。;

将式(8)改为:

(9)

式中

—连杆系数,;

则摆动平面内的合成应力为:

同理,在垂直于摆动平面内的合成应力为:

(10)

将式(10)改成(11)

式中:—连杆系数。

则在垂直于摆动平面内的合成应力为:

和的许用值为,所以校核合格。

(3)连杆杆身的安全系数

连杆杆身所受的是非对称的交变循环载荷,把或看作循环中的最大应力,看作是循环中的最小应力,即可求得杆身的疲劳安全系数。

循环的应力幅和平均应力,在连杆摆动平面为:

(12)

(13)

在垂直摆动平面内为:

(14)

连杆杆身的安全系数为:

(15)

式中:—材料在对称循环下的拉压疲劳极限,(合金钢),取;

—材料对应力循环不对称的敏感系数,取=0.2;

—工艺系数,取0.45。

则在连杆摆动平面内连杆杆身的安全系数为:

在垂直摆动平面内连杆杆身的安全系数为:

杆身安全系数许用值在的范围内,则校核合格。

1.5

连杆大头的结构设计与强度、刚度计算

1、连杆大头的结构设计与主要尺寸

连杆大头的结构与尺寸基本上决定于曲柄销直径、长度、连杆轴瓦厚度和连杆螺栓直径。其中大头宽度,轴瓦厚度,取,大头孔直径。

连杆大头与连杆盖的分开面采用平切口,大头凸台高度,取,取,为了提高连杆大头结构刚度和紧凑性,连杆螺栓孔间距离,取,一般螺栓孔外侧壁厚不小于2毫米,取3毫米,螺栓头支承面到杆身或大头盖的过渡采用尽可能大的圆角。

2、连杆大头的强度校核

假设通过螺栓的紧固连接,把大头与大头盖近似视为一个整体,弹性的大头盖支承在刚性的连杆体上,固定角为,通常取,作用力通过曲柄销作用在大头盖上按余弦规律分布,大头盖的断面假定是不变的,且其大小与中间断面一致,大头的曲率半径为。

连杆盖的最大载荷是在进气冲程开始的,计算得:

作用在危险断面上的弯矩和法向力由经验公式求得:

(16)

由此求得作用于大头盖中间断面的弯矩为:

(17)

作用于大头盖中间断面的法向力为:

(18)

式中:,—大头盖及轴瓦的惯性矩,,—大头盖及轴瓦的断面面积,,在中间断面的应力为:

式中:—大头盖断面的抗弯断面系数,计算连杆大头盖的应力为:

一般发动机连杆大头盖的应力许用值为,则校核合格。

连杆螺栓的设计

2.1

连杆螺栓的工作负荷与预紧力

根据气缸直径初选连杆螺纹直径,根据统计,取。

发动机工作时连杆螺栓受到两种力的作用:预紧力和最大拉伸载荷,预紧力由两部分组成:一是保证连杆轴瓦过盈度所必须具有的预紧力;二是保证发动机工作时,连杆大头与大头盖之间的结合面不致因惯性力而分开所必须具有的预紧力[15]。

连杆上的螺栓数目为2,则每个螺栓承受的最大拉伸载荷为往复惯性力和旋转惯性力在气缸中心线上的分力之和,即

(19)

轴瓦过盈量所必须具有的预紧力由轴瓦最小应力,由实测统计可得一般为,取30,由于发动机可能超速,也可能发生活塞拉缸,应较理论计算值大些,一般取,取。

2.2

连杆螺栓的屈服强度校核和疲劳计算

连杆螺栓预紧力不足不能保证连接的可靠性,但预紧力过大则可能引起材料超出屈服极限,则应校核屈服强度,满足

(20)

式中:—螺栓最小截面积,;

—螺栓的总预紧力,;

—安全系数,取1.7;

—材料的屈服极限,一般在800以上[16]。

那么连杆螺栓的屈服强度为:

则校核合格。

小结

本文在设计连杆的过程中,首先分析了连杆的工作情况,设计要求,并选择了适当的材料,然后分别确定了连杆小头、连杆杆身、连杆大头的主要结构参数,并进行了强度了刚度的校核,使其满足实际加工的要求,最后根据工作负荷和预紧力选择了连杆螺栓,并行检验校核。

第三篇:有关发动机曲轴连杆实习报告(共)

有关发动机曲轴连杆实习报告

在当下这个社会中,报告对我们来说并不陌生,我们在写报告的时候要注意逻辑的合理性。我们应当如何写报告呢?下面是小编为大家收集的有关发动机曲轴连杆实习报告,仅供参考,欢迎大家阅读。

一、实训项目:

曲轴飞轮组的拆装

二、主要内容及目的

(1)熟练曲轴飞轮组的装配关系和运动情况

(2)掌握曲轴飞轮组的拆装方法、步骤。

四、实训与考核器材

(1)5A发动机1台。

(2)常用工量具1套,专用工具1套,机油少许。

五、操作步骤及工作要点

1、曲轴飞轮组的拆卸

(1)将汽缸体倒置在工作台上,旋松飞轮紧固螺钉,拆卸飞轮(飞轮较重,拆卸时注意安全)。

(2)拆卸正时链轮,首先松开张紧轮,取下链轮时注意链轮上的正时标志和传动方向。

(3)拆卸曲轴前端及后端密封凸缘及油封。

(4)拆下曲轴主轴承盖紧固螺栓,不能一次全部拧松,必须分次从两端到中间逐步拧松,取下主轴承盖。注意:各缸主轴承盖有装配标记,不同缸的主轴承盖及轴瓦不能互相调换。

(5)抬下曲轴,再将主轴承盖及垫片按原位装回,并将固定螺钉拧入少许。注意曲轴推力轴承的定位及开口的安装方向。

2、曲轴飞轮组的装配

①安装前应全面清洗发动机零部件,尤其是相互配合的运动件表面应保持清洁,并涂抹润滑油。

②安装顺序一般与拆卸顺序相反,由内向外进行。

③各配对的.零部件不能互相调换,安装方向也应该正确。各零部件相对装配关系应保持正确。

④各紧固螺钉应按规定力矩和方法拧紧。

(5)检验曲轴的轴向间隙。检验时,先用撬棍将曲轴撬挤向一端,再用厚薄规在止推轴承处测量曲柄与止推垫片之间的间隙。新装配时间隙值为0.07~0.17mm,磨损极限为0.25mm。如曲轴轴向间隙过大,应更换止推轴承。

六、注意事项

(1)拆卸曲轴主轴承盖时,注意拆卸顺序两端向中间,装时中间向两端。分两两到三次拧紧,力矩为65N/M。

(2)各缸主轴承盖有装配标记,不同缸的主轴承盖及轴瓦不能互相调换。

(3)安装飞轮时,齿圈上的标记与l缸连杆轴颈在同一个方向上。

(4)注意曲轴与飞轮的相对位置。

第四篇:连杆设计说明书

连杆设计说明书

课程设计要求:

1.了解活塞、连杆、曲轴的设计基准、工艺基准、和加工基准。2.正确的表达零件的形状,合理布置试图。3.正确理解和标注尺寸公差和形位公差。4.能读懂图样上的技术要求。5.正确编写课程设计说明书。

6.熟练掌握AutoCAD绘制工程图纸。连杆的作用

连杆的作用是将活塞承受的力传给曲轴,并使活塞的往复运动转变为曲轴的旋转运动。连杆由连杆体、连杆盖、连杆螺栓和连杆轴瓦等零件组成,连杆体与连杆盖分为连杆小头、杆身和连杆大头。连杆小头用来安装活塞销,以连接活塞。连杆大头与曲轴的连杆轴颈相连。一般做成分开式,与杆身切开的一半称为连杆盖,二者靠连杆螺栓连接为一体。连杆轴瓦安装在连杆大头孔座中,与曲轴上的连杆轴颈装和在一起,是发动机中最重要的配合副之一。常用的减磨合金主要有白合金、铜铅合金和铝基合金。

连杆机构中两端分别与主动和从动构件铰接以传递运动和力的杆件。例如在往复活塞式动力机械和压缩机中,用连杆来连接活塞与曲柄。连杆多为钢件,其主体部分的截面多为圆形或工字形,两端有孔,孔内装有青铜衬套或滚针轴承,供装入轴销而构成铰接。连杆是汽车发动机中的重要零件,它连接着活塞和曲轴,其作用是将活塞的往复运动转变为曲轴的旋转运动,并把作用在活塞上的力传给曲轴以输出功率。连杆在工作中,除承受燃烧室燃气产生的压力外,还要承受纵向和横向的惯性力。因此,连杆在一个复杂的应力状态下工作。它既受交变的拉压应力、又受弯曲应力。连杆的主要损坏形式是疲劳断裂和过量变形。通常疲劳断裂的部位是在连杆上的三个高应力区域。连杆的工作条件要求连杆具有较高的强度和抗疲劳性能;又要求具有足够的钢性和韧性。传统连杆加工工艺中其材料一般采用45钢、40Cr或40MnB等调质钢。

连杆组

连杆组包括连杆体、连杆盖、小头衬套、连杆瓦、连杆螺栓、连杆螺母等。在三维造型时,可以将连杆体、盖、螺栓等作为一体,因小头衬套材料为铜铅合金,可以分开造型,然后组装成一体进行分析。

一般认为连杆小头随活塞组作往复运动,连杆大头作随曲拐作旋转运动,连杆杆身作复杂的平面运动。

将连杆组件的质量转换成集中于活塞销中心的往复质量m1和集中于曲柄销的旋转质量m2。根据力学原理:质量转换必须满足下列3个条件: ① 质量不变:简化前后的质量不变; ② 质心位置不变:系统质心与连杆组质心重合。

③ 系统对质心的转动惯量不变:简化的质量对质心的转动惯量之和应等于原来的转动惯量; 连杆的受力

连杆是汽车发动机中的重要零件,它连接着活塞和曲轴,其作用是将活塞的往复运动转变为曲轴的旋转运动,并把作用在活塞上的力传给曲轴以输出功率。连杆在工作中,除承受燃烧室燃气产生的压力外,还要承受纵向和横向的惯性力。因此,连杆在一个复杂的应力状态下工作。它既受交变的拉压应力、又受弯曲应力。

连杆螺栓

连杆螺栓是连接连杆大端与轴承座的至关重要的连接螺栓。连杆螺栓的受力:

二冲程柴油机的连杆螺栓:预紧力。

四冲程柴油机的连杆螺栓:预紧力,惯性力拉伸,大端变形产生附加弯矩; 材料:选用韧性好,强度高的优质碳钢或合金钢;

结构:耐疲劳的柔性结构(增加螺栓长度,减小螺栓杆部直径以增加螺栓柔 度);精细加工螺栓螺纹;断面变化处及螺纹处采用大圆角过渡;保证螺 栓 头与螺母支承平面与螺纹中心线垂直。

连杆螺栓的类型:用螺帽连接与不用螺帽连接两类。

连杆螺栓的安装:必须严格按照说明书规定(安装预紧力的大小、预紧方法、预紧次序等)。

连杆损坏形式

连杆的主要损坏形式是疲劳断裂和过量变形。通常疲劳断裂的部位是在连杆上的三个高应力区域。连杆的工作条件要求连杆具有较高的强度和抗疲劳性能;又要求具有足够的钢性和韧性。传统连杆加工工艺中其材料一般采用45钢、40Cr或40MnB等调质钢,但现在国外所广泛采用的先进连杆裂解(conrod fracture splitting)的加工技术要求其脆性较大,硬度更高,因此,德国汽车企业生产的新型连杆材料多为C70S6高碳微合金非调质钢、SPLITASCO系列锻钢、frACTIM锻钢和S53CV-FS锻钢等(以上均为德国din标准)。合金钢虽具有很高强度,但对应力集中很敏感。所以,在连杆外形、过渡圆角等方面需严格要求,还应注意表面加工质量以提高疲劳强度,否则高强度合金钢的应用并不能达到预期果。

对连杆的要求:

①连杆应耐疲劳、抗冲击,具有足够的强度和刚度。②连杆长度应尽量短,以降低发动机的高度和总重量。

③要求连杆轴承工可靠寿命长重量加工容易拆装维修方便。

连杆的工艺特点

(1)连杆体和盖厚度不一样,改善了加工工艺性。连杆盖厚度为31mm,比连杆杆厚度单边小3.8mm,盖两端面精度产品要求不高,可一次加工而成。由于加工面小,冷却条件好,使加工振动和磨削烧伤不易产生。连杆杆和盖装配后不存在端面不一致的问题,故连杆两端面的精磨不需要在装配后进行,可在螺栓孔加工之前。螺栓孔、轴瓦对端面的位置精度可由加工精度直接保证,而不会受精磨加工精度的影响。

(2)连杆小头两端面由斜面和一段窄平面组成。这种楔形结构的设计可增大其承压面积,以提高活塞的强度和刚性。在加工方面,与一般连杆相比,增加了斜面加工和小头孔两斜面上倒角工序;用提高零件定位及压头导向精度来避免衬套压偏现象的发生,但却增加了压衬套工序加工的难度。

(3)带止口斜结合面。连杆结合面结构种类较多,有平切口和斜切口,还有键槽形、锯齿形和带止口的。该连杆为带止口斜结合面。

精加工基准采用了无间隙定位方法,在产品设计出定位基准面。在连杆杆和总成的加工中,采用杆端面、小头顶面和侧面、大头侧面的加工定位方式;在螺栓孔至止口斜结合面加工工序的连杆盖加工中,采用了以其端面、螺栓两座面、一螺栓座面的侧面的加工定位方法。这种重复定位精度高且稳定可靠的定位、夹紧方法,可使零件变形小,操作方便,能通用于从粗加工到精加工中的各道工序。由于定位基准统一,使各工序中定位点的大小及位置也保持相同。这些都为稳定工艺、保证加工精度提供了良好的条件。

连杆加工的工艺流程

连杆加工的工艺流程是:拉大小头两端面——粗磨大小头两端面→拉连杆大小头侧定位面→拉连杆盖两端面及杆两端面倒角→拉小头两斜面→粗拉螺栓座面,拉配对打字面、去重凸台面及盖定位侧面→粗镗杆身下半圆、倒角及小头孔→粗镗杆身上半圆、小头孔及大小头孔倒角→清洗零件→零件探伤、退磁→精铣螺栓座面及R5圆弧→铣断杆、盖→小头孔两斜端面上倒角→精磨连杆杆身两端面→加工螺栓孔→拉杆、盖结合面及倒角→去配对杆盖毛刺→清洗配对杆盖→检测配对杆盖结合面精度→人工装配→扭紧螺栓→打印杆盖配对标记号→粗镗大头孔及两侧倒角→半精镗大头孔及精镗小头衬套底孔→检查大头孔及精镗小头衬套底孔精度→压入小头孔衬套→称重去重→精镗大头孔、小头衬套孔→清洗→最终检查→成品防锈。

设计小结

本次设计是我们学完了大学的全部基础课、技术基础课以及大部分专业课之后进行的。这是我们在进行毕业设计之前对所学各课程的一次深入的综合性的总复习,也是一次理论联系实际的训练。它在我们大学四年的大学生活中占有重要的地位,因此,我对本次课程设计非常重视。

我们这次的设计、学习是分阶段进行的,还不能做到全局把握,面面俱到,因而不可避免地会出现一些问题和缺点。通过对本次课程设计过程及老师指点的回顾和总结,可以系统地分析一下整个设计、学习过程中所存在的问题。通过总结,还可以把平时听课时还没有弄懂、弄透的问题加以学习巩固,以获得更多的收获,更好的达到课程设计的预期目的和意义。

此次课程设计对给定的零件图分析并进行CAD绘图,考查了我们对零件图的读图能力以及CAD的使用能力,利用近两个星期的课程设计,加深了对所学知识的理解,有助于今后工作。本次课程设计使我更加熟练的掌握了AUTOCAD的使用方法,并获得了很多以前没有学到的使用技巧。

第五篇:轻量化设计

受到能源和环境保护的压力,世界汽车工业很早就开始了轻量化的研究虽然应用轻金属。现代复合材料是现代车辆轻量化研究的热点之一 但是这些新材料应用在主要承载部件上的成本较高。因此在短时间内很难普及另一方面,车辆的传统材料钢材,由于其强度高 成本低、工艺成熟,并且是最适于回收循环利用的材料。因此利用钢材实现轻量化的可能性备受关注。

1994年,国际钢铁协会成立了由来自全世界18个国家的35个钢铁生产企业组成的ULSAB项目组。其目的是在保持性能和不提高成本的同时,有效降低钢制车身的质量。ULSAB项目于1998年5月完成,其成果是显著的 ULSAB试制的车身总质量比对比车的平均值降低25%,同时扭转刚度提高80%,弯曲刚度提高52%,一阶模态频率提高58%,满足碰撞安全性要求,同时成本比对比车身造价降低15%。

从1997年5月启动的ULSAC、ULSAS和1999年1月启动的ULSAB_AVC为ULSAB的后续项目也在轻量化研究上取得很大成绩。

除了以上提到的国际上著名的四个轻量化项目外,全世界范围内对基于结构优化的轻量化技术也进行了大量的研究。韩国汉阳大学J.K.Shin、K.H.Lee、S.I.Song和G.J.Park应用ULSAB的设计理念和组合钢板的工艺,对轿车前车门内板进行了结构优化,成功地使前车门内板的质量减重8.72%。此技术己在韩国一家汽车企业中得到应用。

通用汽车公司的R.R.MAYER 密西根大学的N.KIKUCHI和R.A.SCOTT应用拓扑优化技术以碰撞过程中最大吸收能量为目标对零件进行优化设计,此技术已应用到一款轿车的后围结构上。

瑞典Linkoping University的P.O.Marklund和L.Nilsson从碰撞安全性角度对轿车B柱进行了减重研究,研究以B柱变形过程中的最大速度为约束变量。以B柱各段的厚度为优化变量,以质量为优化目标,实现在不降低安全性能的条件下减重25%。

美国航天航空局兰利研究中心的J.Sobieszczanski Sobieski和SGI公司的S.Kodiyalam以及福特汽车公司车辆安全部门的R.Y.Yang共同进行了轿车的BIP(Body In Prime)基于NVH(噪声、振动、稳定性)和碰撞安全性要求下的轻量化研究,实现了在不降低性能的条件下减重15Kg。

近年来,交通运输、公路管理等国家部门在全国范围内对超载车辆的查处日益严格,《道路机动车辆生产企业及产品公告》管理制度13益规范和完善,政府出台了一系列政策、法规,大力倡导节能减排。这些因素促使道路运输车辆,特别是重型汽车,出现了轻量化的趋势。同时,迫于激烈的市场竞争、原材料价格上涨的压力,为降低整车成本、降低整车质量以提高载质量利用系数进,而降低车辆使用油耗,产品轻量化也是汽车企业自身发展的需要和应尽的社会责任。

减轻车架质量的方法不外乎2种:一是采用高强度材料替代强度相对较低的材料;二是对车架总成结构进行优化设计,提高材料利用率。经过初步工艺分析、成本核算,决定同时采用这2种方法对车架总成进行轻量化设计。

车架作为汽车的承载基体,支撑着发动机、离合器、变速器、转向器、非承载式车身和货厢等所有簧上质量的有关机件,承受着传给它的所有力和力矩。因此,轻量化车架应能保证足够的刚度和强度,以使装在其上的有关机体之间的相对位置在汽车行驶过程中保持不变并使车身的变形最小;同时保证其有足够的可靠性和寿命,纵梁等主要零件在使用期内不应有严重变形和开裂[1]。

为缩短计算时间、降低计算难度,用于有限元分析的车架数学模型、各零部件的约束以及负荷,都已经过数学简化。这就注定了有限元分析与实际情况或多或少存在差异。为采集真实试验数据以验证有限元分析的准确性,有必要进行车架台架试验。而且,车架作为重型汽车的基础构件,与大量其他部件有装配关系,一旦车架结构改动,很可能牵一发而动全身。所以,稳妥起见,也有必要进行车架台架试验。

为减轻节能车车架质量,获得良好的燃油经济性

既然车架台架试验是为了验证有限元分析,那么台架试验就应该按照有限元分析的方法(即弯曲、扭转2种工况)进行。

台架试验的主要内容包括各工况的应力测量、弯曲工况疲劳试验、扭转工况疲劳试验,试验严格按欧洲标准进行。

为了得到尽可能符合实际需要的设计,必须选择足够多的状态变量。但是为了加快优化进程,必须消除不必要或冗余的状态变量。太多的设计变量增大了收敛到局部最小而非全局最小的概率,必须尽量减少设计变量。采用变量关联的方法,将车架结构上互相有联系的非独立尺寸按照比例关系确定。将设计参数分为4类:梁的厚度、梁的截面宽度、梁的截面高度和布置尺寸。

随着汽车轻量化技术日益受到重视,对高强钢、铝合金等轻量化材料的应用、液压成型等先进制造工艺的工程化、新型轻量化结构等方面的探讨,将成为汽车行业研究人员关注的热点。而本文给出的概念模型拓扑优化分析实例,进一步说明拓扑优化技术在寻找新型轻量化结构方面,将起到举足轻重的作用。

车辆轻量化是减少原材料的消耗、降低车辆的生产成本、减少排放的最有效措施之一。对于特种重型专用车,车架自重和其所占整车重量比例均较大,因此减轻车架自重对车辆轻量化研究具有重要的意义。减轻车架自重一般有两种途径:一是从新材料人手,采用轻金属或现代复合材料”3等低密度材料制作车架,以减轻结构重量;二是从优化设计人手,对现有钢结构车架进行结构优化设计,在保证承载能力和可靠性的前提下减轻其质量。前者轻量化效果明显,减重幅度比较大,但具有研发成本高,工艺复杂等困难;后者成本低容易实现,如果方案得当也能得到良好的轻量化效果 专用车通常采用边梁式车架结构,影响车架重量的主要因素为结构参数,如车架的几何尺寸和板壳厚度。如果以结构参数

为设计变量,以车架结构重量为优化目标,则车架轻量化结构优化设计数学模型一般可表示为:

中,gi(X)为不等式约束函数,hj(x)为等式约束函数,m为不等式约束个数,l为等式约束个数。约束条件可以是强度约束、刚度约束、动态特性约束以及几何约束等。

考虑到纵粱在车架质量中占有较大的比例,因此选择纵梁作为优化的具体对象。等截面纵粱的腹板和上下翼板厚度沿长度方向不变。优化方案jiang纵梁土翼板和腹板分别划分为前、中、后三段;将下翼板分为有加强板和无加强板两段;加强腹板整体作为一部分。取各段各板的厚度为变量,一共可得到9个优化设计变量。优化设计变量初始值以及优

虽然优化结果使得纵粱各段钢板厚度不相等,会增加制造困难,但采取工艺改进实际上是可以实现的,因此本文的方法和结果对重型车架从理论上和实际上均有良好的参考价值。

如果将纵横粱所有构件的厚度均作为优化设计变量,优化效果可能会更好。但大量试算表明,设计变量太多,计算规模太大,所需计算机资源要求较高,导致在有效的时间内难以完成实际计算。

下载发动机连杆轻量化设计解析word格式文档
下载发动机连杆轻量化设计解析.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    连杆加工夹具设计说明书

    目录 1、前言···································································· 2 2、设计任......

    06 连杆组设计[五篇范文]

    重庆工学院毕业论文连杆组设计 6 连杆组设计 内燃机的连杆有整体式连杆和剖分式连杆两种。由于连杆体的型式与曲轴的型式相匹配,而摩托车发动机上普遍采用组合式曲轴。因此,本......

    发动机原理网络课程的教学设计及特色解析

    * 发动机原理网络课程的教学设计及特色 山东交通学院现代教育中心济南 250023 摘要:本文从"发动机原理"网络课程的开发实践中,对网络课程的教学设计、多媒体技术应用等方面......

    普桑发动机活塞连杆组拆装作业标准及相关数据五篇范文

    普桑发动机活塞连杆组拆装作业标准及相关数据1、活塞直径﹕标准值80.98㎜,最大偏差0.04㎜于活塞下缘离裙部底边约15㎜处测量。测量前需校准千分尺并计算误差。超过误差应更换合......

    105高速柴油机连杆设计文献综述

    贵州大学本科毕业论文(设计) 第 1 页 本科毕业论文(设计) 文献综述 论文(设计)题目:105系列高速柴油机连杆工艺总体方案及指定工装设计 学 院:机械工程学院 专 业:机械设计制造及其自......

    发动机常用术语教学设计

    《发动机基本术语》教学设计 教材教学简析 《汽车构造与拆装》这部教材准确体现了职业教育特点(以工作岗位所需的知识和技能为出发点);理论内容“必须、够用” ;实训内容贴合工......

    【行业关注】轻量化产业发展现状与技术解析

    【行业关注】轻量化产业发展现状与技术解析 汽车轻量化是未来汽车行业发展方向之一,特别是对于时下发展迅速的新能源汽车而言,重量的减轻直接意味着续航里程的增加。研究表发......

    第三章_EA888发动机连杆胀断工艺存在的问题和改进措施

    第三章 EA888发动机连杆胀断工艺存在的问题 3.1 锻造前存在的问题 3.1.1 锻造加热温度的确定 锻造温度范围是指合理的始锻温度与合理的终锻温度之间的一段温度区间,确定锻......