第一篇:2009年4月自考线性代数(经管)试题和答案
全国2009年4月高等教育自学考试
线性代数(经管类)试题
课程代码:04184 说明:在本卷中,AT表示矩阵A的转置矩阵,A*表示矩阵A的伴随矩阵,E表示单位矩阵,|A|表示方阵A的行列式,r(A)表示矩阵A的铁。
一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。
010111中元素a21的代数余了式A21=()01.3阶行列式aij=11A.-2 B.-1
C.1
D.2 a112.设矩阵A=a21a12a21a11,B=aa2211a22a120110,P=,P=,则必有()121011a12A.P1P2A=B
B.P2P1A=B
C.AP1P2=B A.A-1C-
1B.C-1A-1
C.AC
D.CA
D.AP2P1=B
3.设n阶可逆矩阵A、B、C满足ABC=E,则B-1=()0104.设3阶矩阵A=001,则A2的秩为()
000A.0
B.1 C.2
D.3 5.设1,2,3,4是一个4维向量组,若已知4可以表为1,2,3的线性组合,且表示法惟一,则向量组1,2,3,4的秩为()
A.1
B.2
C.3
D.4 6.设向量组1,2,3,4线性相关,则向量组中()A.必有一个向量可以表为其余向量的线性组合 B.必有两个向量可以表为其余向量的线性组合 C.必有三个向量可以表为其余向量的线性组合 D.每一个向量都可以表为其余向量的线性组合
7.设1,2,3是齐次线性方程组Ax=0的一个基础解系,则下列解向量组中,可以作为该方程组基础解系的是()A.1,2,12 C.1,2,12
B.12,23,31 D.12,23,31
208.若2阶矩阵A相似于矩阵B=,E为2阶单位矩阵,则与矩阵E-A相似的矩阵是()
2310101010A. B. C. D. 141424240209.设实对称矩阵A=042,则3元二次型f(x1,x2,x3)=xTAx的规范形为()0212222222222A.z1 B.z1C.z1 D.z1 z2z3z2z3z2z210.若3阶实对称矩阵A=(aij)是正定矩阵,则A的正惯性指数为()A.0 B.1 C.2 D.3
二、填空题(本大题共10小题,每小题2分,共20分)
请在每小题的空格中填上正确答案。错填、不填均无分。
a112a123a13a11a12a22a32a13a23=_______________.a3311.已知3阶行列式2a214a223a316a326a23=6,则a219a33a3112.设3阶行列式D3的第2列元素分别为1,-2,3,对应的代数余子式分别为-3,2,1,则D3=__________________.12213.设A=,则A-2A+E=____________________.101214.设A为2阶矩阵,将A的第2列的(-2)倍加到第1列得到矩阵B.若B=,则A=______________.3400115.设3阶矩阵A=022,则A-1=_________________.33316.设向量组1=(a,1,1),2=(1,-2,1), 3=(1,1,-2)线性相关,则数a=________.17.已知x1=(1,0,-1)T, x2=(3,4,5)T是3元非齐次线性方程组Ax=b的两个解向量,则对应齐次线性方程组Ax=0有一个非零解向量=__________________.18.设2阶实对称矩阵A的特征值为1,2,它们对应的特征向量分别为1=(1,1)T, 2=(1,k)T,则数k=_____________________.19.已知3阶矩阵A的特征值为0,-2,3,且矩阵B与A相似,则|B+E|=_________.20.二次型f(x1,x2,x3)=(x1-x2)2+(x2-x3)2的矩阵A=_____________.三、计算题(本大题共6小题,每小题9分,共54分)
1x230中元素a12的代数余子式A12=8,求元素a21的代数余子式A21的值.21.已知3阶行列式aij=x51
4111122.已知矩阵A,B=,矩阵X满足AX+B=X,求X.1002
23.求向量组1=(1,1,1,3)T,2=(-1,-3,5,1)T,3=(3,2,-1,4)T,4=(-2,-6,10,2)T的一个极大无关组,并将向量组中的其余向量用该极大无关组线性表出.ax1x2x3024.设3元齐次线性方程组x1ax2x30,x1x2ax30(1)确定当a为何值时,方程组有非零解;
(2)当方程组有非零解时,求出它的基础解系和全部解.20125.设矩阵B=313,405(1)判定B是否可与对角矩阵相似,说明理由;
(2)若B可与对角矩阵相似,求对角矩阵和可逆矩阵P,使P-1BP=
22226.设3元二次型f(x1,x2,x3)x12x2x32x1x22x2x3,求正交变换x=Py,将二次型化为标准形.四、证明题(本题6分)
27.已知A是n阶矩阵,且满足方程A2+2A=0,证明A的特征值只能是0或-2.
第二篇:自考线性代数试题
全国2010年10月高等教育自学考试
线性代数(经管类)试题 课程代码:04184 说明:在本卷中,AT表示矩阵A的转置矩阵,A*表示矩阵A的伴随矩阵,E是单位矩阵,|A|表示方阵A的行列式,r(A)表示矩A的秩.一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。
1.设A为3阶矩阵,|A|=1,则|-2AT|=()A.-8 C.2 12.设矩阵A=1,B=(1,1),则AB=()B.-2 D.8 A.0 1C.1
B.(1,-1)11D.11
3.设A为n阶对称矩阵,B为n阶反对称矩阵,则下列矩阵中为反对称矩阵的是()A.AB-BA C.AB
B.AB+BA D.BA 12-14.设矩阵A的伴随矩阵A*=34,则A=()A.1 24321 1234
B.1 21 21234 4231 C.1 2D.5.下列矩阵中不是初等矩阵的是()..101A.010 000100C.030
001
001
B.010
100100D.010
201═════════════════════════════════════════════════════════════════════
本套试题共分11页,当前页是第2
132516.已知Ax=b为4元线性方程组,r(A)=3, α1, α2, α3为该方程组的3个解,且1,13,则该线性方程
3749组的通解是_________.1117.已知P是3阶正交矩,向量3,0,则内积(P,P)_________.2218.设2是矩阵A的一个特征值,则矩阵3A必有一个特征值为_________.1219.与矩阵A=03相似的对角矩阵为_________.12T20.设矩阵A=2k,若二次型f=xAx正定,则实数k的取值范围是_________.
三、计算题(本大题共6小题,每小题9分,共54分)0121.求行列式D=201012210102的值.1001012022.设矩阵A=100,B210,求满足矩阵方程XA-B=2E的矩阵X.001000112223.若向量组11,21,36,40的秩为2,求k的值.13k2k232224.设矩阵A110,b1.1210(1)求A-1;(2)求解线性方程组Ax=b,并将b用A的列向量组线性表出.25.已知3阶矩阵A的特征值为-1,1,2,设B=A2+2A-E,求(1)矩阵A的行列式及A的秩.(2)矩阵B的特征值及与B相似的对角矩阵.═════════════════════════════════════════════════════════════════════
本套试题共分11页,当前页是第4
C.| A |=| B |
D.A与B有相同特征值
9.若向量α=(1,-2,1)与β=(2,3,t)正交,则t=()A.-2 C.2
B.0 D.4 10.设3阶实对称矩阵A的特征值分别为2,1,0,则()A.A正定 C.A负定
B.A半正定 D.A半负定
二、填空题(本大题共10小题,每小题2分,共20分)3 22 1 111.设A=0 1,B=,则AB=_________________.0 1 02 412.设A为3阶方阵,且| A |=3,则| 3A-1 |=______________.13.三元方程x1+x2+x3=1的通解是_______________.14.设α=(-1,2,2),则与α反方向的单位向量是_________________.15.设A为5阶方阵,且r(A)=3,则线性空间W={x | Ax=0}的维数是______________.116.设A为3阶方阵,特征值分别为-2,1,则| 5A-1 |=______________.217.若A、B为5阶方阵,且Ax=0只有零解,且r(B)=3,则r(AB)=_________________. 2 1 018.实对称矩阵1 0 1 所对应的二次型f(x1, x2, x3)=________________. 0 1 11119.设3元非齐次线性方程组Ax=b有解α1=2,α2= 2且r(A)=2,则Ax=b的通解是_______________.3 3120.设α=2,则A=ααT的非零特征值是_______________.3
三、计算题(本大题共6小题,每小题9分,共54分)2 0 0 0 1 0 2 0 0 0 21.计算5阶行列式D=
0 0 2 0 0 1 0 0 0 222.设矩阵X满足方程
═════════════════════════════════════════════════════════════════════
本套试题共分11页,当前页是第6
A.PA C.QA
B.AP D.AQ
5.已知A是一个3×4矩阵,下列命题中正确的是()A.若矩阵A中所有3阶子式都为0,则秩(A)=2 B.若A中存在2阶子式不为0,则秩(A)=2 C.若秩(A)=2,则A中所有3阶子式都为0 D.若秩(A)=2,则A中所有2阶子式都不为0 6.下列命题中错误的是()..A.只含有一个零向量的向量组线性相关 B.由3个2维向量组成的向量组线性相关 C.由一个非零向量组成的向量组线性相关 D.两个成比例的向量组成的向量组线性相关
7.已知向量组α1,α2,α3线性无关,α1,α2,α3,β线性相关,则()A.α1必能由α2,α3,β线性表出 C.α3必能由α1,α2,β线性表出
B.α2必能由α1,α3,β线性表出 D.β必能由α1,α2,α3线性表出
8.设A为m×n矩阵,m≠n,则齐次线性方程组Ax=0只有零解的充分必要条件是A的秩()A.小于m C.小于n
B.等于m D.等于n
9.设A为可逆矩阵,则与A必有相同特征值的矩阵为()A.AT C.A-1
B.A2 D.A
*22210.二次型f(x1,x2,x3)=x1x2x32x1x2的正惯性指数为()
A.0 C.2
B.1 D.3
二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。错填、不填均无分。11.行列式***0的值为_________________________.11320,则ATB=____________________________.12.设矩阵A=,B=2010113.设4维向量(3,-1,0,2)T,β=(3,1,-1,4)T,若向量γ满足2γ=3β,则γ=__________.114.设A为n阶可逆矩阵,且|A|=,则|A-1|=___________________________.n15.设A为n阶矩阵,B为n阶非零矩阵,若B的每一个列向量都是齐次线性方程组Ax=0的解,则|A|=__________________.═════════════════════════════════════════════════════════════════════
本套试题共分11页,当前页是第8
226.设矩阵A=0003a01-1a的三个特征值分别为1,2,5,求正的常数a的值及可逆矩阵P,使PAP=03002000。5
四、证明题(本题6分)
27.设A,B,A+B均为n阶正交矩阵,证明(A+B)-1=A-1+B-1。
全国2010年1月高等教育自学考试
说明:本卷中,AT表示矩阵A的转置,αT表示向量α的转置,E表示单位矩阵,|A|表示方阵A的行列式,A-1表示方阵A的逆矩阵,r(A)表示矩阵A的秩.一、单项选择题(本大题共10小题,每小题2分,共30分)
2x2y2z41.设行列式4031,则行列式01()
3111111xyzA.2 3B.1 C.2
8D.32.设A,B,C为同阶可逆方阵,则(ABC)-1=()A.A-1B-1C-1 C.C-1A-1B-1
B.C-1B-1A-1 D.A-1C-1B-1
3.设α1,α2,α3,α4是4维列向量,矩阵A=(α1,α2,α3,α4).如果|A|=2,则|-2A|=()A.-32 C.4
B.-4 D.32 4.设α1,α2,α3,α4 是三维实向量,则()A.α1,α2,α3,α4一定线性无关 C.α1,α2,α3,α4一定线性相关
B.α1一定可由α2,α3,α4线性表出 D.α1,α2,α3一定线性无关
5.向量组α1=(1,0,0),α2=(1,1,0),α3=(1,1,1)的秩为()A.1 C.3
B.2 D.4 6.设A是4×6矩阵,r(A)=2,则齐次线性方程组Ax=0的基础解系中所含向量的个数是()
A.1 C.3
B.2 D.4 7.设A是m×n矩阵,已知Ax=0只有零解,则以下结论正确的是()A.m≥n
B.Ax=b(其中b是m维实向量)必有唯一解
═════════════════════════════════════════════════════════════════════
本套试题共分11页,当前页是第10
a11x11x11a117.设线性方程组2有无穷多个解,则a=_________.11ax3218.设n阶矩阵A有一个特征值3,则|-3E+A|=_________.19.设向量α=(1,2,-2),β=(2,a,3),且α与β正交,则a=_________.2220.二次型f(x1,x2,x3)4x23x34x1x24x1x38x2x3的秩为_________.三、计算题(本大题共6小题,每小题9分,共54分)2321.计算4阶行列式D=453456456756.78231-145222.设A=,判断A是否可逆,若可逆,求其逆矩阵A.57323.设向量α=(3,2),求(αTα)101.24.设向量组α1=(1,2,3,6),α2=(1,-1,2,4),α3=(-1,1,-2,-8),α4=(1,2,3,2).(1)求该向量组的一个极大线性无关组;
(2)将其余向量表示为该极大线性无关组的线性组合.x1x22x4025.求齐次线性方程组4x1x2x3x40的基础解系及其通解.3xxx012332226.设矩阵A=010,求可逆方阵P,使P-1AP为对角矩阵.423
四、证明题(本大题6分)
27.已知向量组α1,α2,α3,α4线性无关,证明:α1+α2,α2+α3,α3+α4,α4-α1线性无关.═════════════════════════════════════════════════════════════════════
-本套试题共分11页,当前页是第11
第三篇:全国自考历年线性代数试题及答案.2012
全国自考历年线性代数试题及答案.2012
课程代码:02198
说明:在本卷中,A表示矩阵A的转置矩阵,A表示矩阵A的伴随矩阵,E表示单位矩阵,A表示方阵A的行列式,r(A)表示矩阵A的秩。
一、单项选择题(本大题共10小题,每小题2分,共20分)
在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。
010111中元素a21的代数余子式A21=()0T
*1.3阶行列式aij11A.-2 B.-1 C.-1 D.2 2.设n阶可逆矩阵A、B、C满足ABC=E,则B-1=()A.A-1C-1 C.AC
03.设3阶矩阵A=00100B.C-1A-1 D.CA
021,则A的秩为()0A.0 C.2 4.设矩阵A=A.P1P2A=B a11a21a12a21a11,B=a22a11B.1 D.3
a22a120,P1=1a1211,P=2100,则必有()1B.P2P1A=B C.AP1P2=B D.AP2P1=B
5.设向量组α1, α2, α3, α4线性相关,则向量组中()A.必有一个向量可以表为其余向量的线性组合 B.必有两个向量可以表为其余向量的线性组合
C.必有三个向量可以表为其余向量的线性组合 D.每一个向量都可以表为其余向量的线性组合
6.设α1, α2, α3, α4是一个4维向量组,若已知α4可以表为α1, α2, α3,的线性组合,且表示法惟一,则向量组α1, α2, α3, α4的秩为()A.1
B.2 C.3 D.4 7.设α1, α2, α3是齐次线性方程组Ax=0的一个基础解系,则下列解向量组中,可以作为该方程组基础解系的是()
A.α1, α2, α1+α2 B.α1, α2, α1-α2 C.α1+α2, α2+α3, α3+α1
D.α1-α2,α2-α3,α3-α1
8.设A为3阶矩阵,且2A3E=0,则A必有一个特征值为()
A.-C.2332 B.-D.0422332
29.设实对称矩阵A=0022A.z12+z2+z3 0T2,则3元二次型f(x1,x2,x3)=xAx的规范形为()122B.z12+z2-z3
2C.z12+z2 2D.z12-z2
10.设2元二次型f(x1,x2)=xTAx正定,则矩阵A可取为()A.211 22 1B.21121 22 1C.12D.
二、填空题(本大题共10小题,每小题2分,共20分)
请在每小题的空格中填上正确答案。错填、不填均无分。
11.设3阶行列式D3的第2列元素分别为1,-2,3,对应的代数余子式分别为-3,2,1,则D3=___________。
a112a124a226a323a139a33a11a31a12a22a32a13a23=___________。a3312.已知3阶行列式2a213a316a23=6,则a2113.设A=1122,则A-2A+E=___________。01
32
,则A=___________。414.设A为2阶矩阵,将A的第2列的(-2)倍加到第1列得到矩阵B.若B=015.设3阶矩阵A=030231-12,则A=___________。316.设向量组a1=(a,1,1),a2=(1,-2,1),a3=(1,1,-2),线性相关,则数a=___________。17.3元齐次线性方程组x1x20x2x30的基础解系中所含解向量的个数为___________。
18.已知3阶矩阵A的特征值为0,-2,3,且矩阵B与A相似,则BE=___________。
19.设2阶实对称矩阵A的特征值为1,2,它们对应的特征向量分别为α1=(1,1)T,α2=(1,k)T,则数k=___________。
20.二次型f(x1,x2,x3)=(x1-x2)2+(x2-x3)2的矩阵A=___________。
三、计算题(本大题共6小题,每小题9分,共54分)
1111a111a111a11121.计算4阶行列式111a.22.设2阶矩阵A=3220,P=111*,矩阵B满足关系式PB=AP,计算行列式B.123.求向量组α1=(1,1,1,3)T,α2=(-1,-3,5,1)T,α3=(3,2,-1,4)T,α4=(-2,-6,10,2)T的一个极大无关组,并将向量组中的其余向量用该极大无关组线性表示.ax1x2x3024.设3元齐次线性方程组x1ax2x30,xxax0231(1)确定当a为何值时,方程组有非零解;
(2)当方程组有非零解时,求出它的基础解系和全部解.225.设矩阵B=3401013,5(1)判定B是否可与对角矩阵相似,说明理由;
(2)若B可与对角矩阵相似,求对角矩阵∧和可逆矩阵P,使P-1BP=∧.226.设3元二次型f(x1,x2,x3)=x12+2x2+x32-2x1x2-2x2x3,求正交变换x=Py,将二次型化为标准形.四、证明题(本大题6分)
a127.设矩阵A=000a2000,其中a1,a2,a3互不相同,证明:与A可交换的矩阵只能为对角矩阵.a3
第四篇:2012年4月自考线性代数真题及答案
全国2012年4月高等教育自学考试线性代数(经管类)试题课程代码:04184
一、单项选择题(本大题共10小题,每小题2分,共20分)
a111.设行列式a21a12a22a32a13a112a122a222a323a133a23=()3a33D.12 a31A.-12 a23=2,则a21a33a31B.-6
C.6 1202.设矩阵A=120,则A*中位于第1行第2列的元素是()003A.-6 B.-3
C.3
D.6
3.设A为3阶矩阵,且|A|=3,则(A)1=()A.3 B.1 3C.1 3D.3 4.已知43矩阵A的列向量组线性无关,则AT的秩等于()A.1 B.2
C.3
D.4 1005.设A为3阶矩阵,P =210,则用P左乘A,相当于将A()001A.第1行的2倍加到第2行
B.第1列的2倍加到第2列 C.第2行的2倍加到第1行
D.第2列的2倍加到第1列 6.齐次线性方程组A.1
0x12x23x3的基础解系所含解向量的个数为()x2+x3x4= 0B.2
C.3
D.4 7.设4阶矩阵A的秩为3,1,2为非齐次线性方程组Ax =b的两个不同的解,c为任意常数,则该方程组的通解为()A.1c122 B.1223 5c1 C.1c122 D.1225 3c1
8.设A是n阶方阵,且|5A+3E|=0,则A必有一个特征值为()A.5 3B.C.5D.1009.若矩阵A与对角矩阵D=010相似,则A3=()001A.E B.D
C.A
D.-E
22210.二次型f(x1,x2,x3)=3x1是()2x2x3A.正定的 B.负定的 C.半正定的 D.不定的
二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。错填、不填均无分。
111.行列式21146=____________.4163600110012.设3阶矩阵A的秩为2,矩阵P =010,Q =010,若矩阵B=QAP,则r(B)=_____________.10010113.设矩阵A=1448,B=,则AB=_______________.141214.向量组1=(1,1,1,1),2=(1,2,3,4),3=(0,1,2,3)的秩为______________.15.设1,2是5元齐次线性方程组Ax =0的基础解系,则r(A)=______________.1000216.非齐次线性方程组Ax =b的增广矩阵经初等行变换化为01002,则方程组的通解是______.0012-217.设A为3阶矩阵,若A的三个特征值分别为1,2,3,则|A|=___________.18.设A为3阶矩阵,且|A|=6,若A的一个特征值为2,则A*必有一个特征值为_________.22219.二次型f(x1,x2,x3)=x1的正惯性指数为_________.x23x322220.二次型f(x1,x2,x3)=x12x22x34x2x3经正交变换可化为标准形______________.三、计算题(本大题共6小题,每小题9分,共54分)
3512453321.计算行列式D =
1201203413022.设A=210,矩阵X满足关系式A+X=XA,求X.00223.设,,2,3,4均为4维列向量,A=(,2,3,4)和B=(,2,3,4)为4阶方阵.若行列式|A|=4,|B|=1,求行列式|A+B|的值.24.已知向量组1=(1,2,1,1)T,2=(2,0,t,0)T,3=(0,4,5,2)T,4=(3,2,t+4,-1)T(其中t为参数),求向量组的秩和一个极大无关组.x1x22x3x4325.求线性方程组x12x2x3x42的通解..(要求用它的一个特解和导出组的基础解系表示)
2xx5x4x7341226.已知向量1=(1,1,1)T,求向量2,3,使1,2,3两两正交.四、证明题(本题6分)
27.设A为mn实矩阵,ATA为正定矩阵.证明:线性方程组Ax=0只有零解.全国2012年4月高等教育自学考试线性代数(经管类)试题答案课程代码:04184
一、单项选择题(本大题共10小题,每小题2分,共20分)
1.D 2.A 3.B 4.C 5.B 6.B 7.A 8.B 9.D 10.D
二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。错填、不填均无分。
2 0 2 00011.16 12.213.14.2 15.3 16.k,k为任意常数 17.6 2200
0 12218.3 19.220.y14y2
三、计算题(本大题共6小题,每小题9分,共54分)
3421.解:D =1251215334201303422011201533013315120111034043212010111
01331043212010111101248 00101216001622.解:由AXXA,可知X(AE)A,则XA(AE)1,00301且AE200,(AE)130010000 011200111300122110010故XA(AE)210133
00200100223.解: AB(,22,23,24)8[(,2,3,4)(,2,3,4)]8AB40
1224.解:(1,2,3,4)=111000203120312042044801t5t40t25t70t20210224002031112003t3t00000021112
03t3t0000312
5t700t3时,秩为2,一个极大无关组为1,2 t3时,秩为3,一个极大无关组为1,2,3.25.解:对增广矩阵作初等行变换
112131121311213A(A,b)121120112101121
21547011210000010334
01121
00000x13x33x44同解方程组为.x3,x4是自由未知量,特解*(4,1,0,0)T
x2x32x41x13x33x4导出组同解方程组为.x3,x4是自由未知量,xx2x342基础解系1(3,1,1,0)T,2(3,2,0,1)T,通解为*k11k22,k1,k2R.26.解:设2=(x1,x2,x3)T,2与1正交,则有x1x2x30,故可取2==(1,0,-1)T, 设3=(y1,y2,y3)T,3与1,2两两正交,则故可取3=(1,2,1).四、证明题(本题6分)
27.证明:由于ATA为正定矩阵,则秩(ATA)= n,又秩(A)= 秩(ATA)= n,则线性方程组Ax=0只有零解.Ty1y2y30.y1y3 = 0
第五篇:2011年4月自考线性代数(经管类)试题和参考答案
全国2011年4月高等教育自学考试线性代数(经管类)试题
课程代码:04184 说明:AT表示矩阵A的转置矩阵,A*表示矩阵A的伴随矩阵,E是单位矩阵,|A|表示方阵A的行列式.一、单项选择题(本大题共10小题,每小题2分,共20分)
在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。
1.下列等式中,正确的是()A.
B.
3=
C.5 D.
2.下列矩阵中,是初等矩阵的为()A. B. C.
D.
3.设A、B均为n阶可逆矩阵,且C=,则C-1是()
A. B.
C. D.
4.设A为3阶矩阵,A的秩r(A)=3,则矩阵A*的秩r(A*)=()A.0 B.1 C.2 D.3 5.设向量,若有常数a,b使,则(A.a=-1, b=-2 B.a=-1, b=2 C.a=1, b=-2 D.a=1, b=2 6.向量组的极大线性无关组为()A.
B.
C.
D.
7.设矩阵A=,那么矩阵A的列向量组的秩为()
A.3 B.2 C.1 D.0 8.设是可逆矩阵A的一个特征值,则矩阵
有一个特征值等于()
A.
B.
C.
D.)
9.设矩阵A=,则A的对应于特征值的特征向量为()
A.(0,0,0)T
B.(0,2,-1)T
C.(1,0,-1)T
D.(0,1,1)T 10.二次型f(x1,x2,x3)2x12x1x2x22的矩阵为()A.
B.
C. D.
二、填空题(本大题共10小题,每小题2分,共20分)
请在每小题的空格中填上正确答案。错填、不填均无分。11.行列式__________.301134102010212.行列式105中第4行各元素的代数余子式之和为__________.13.设矩阵A=,B=(1,2,3),则BA=__________.12314.设3阶方阵A的行列式|A|=,则|A|=__________.-
1-1
2215.设A,B为n阶方阵,且AB=E,AB=BA=E,则A+B=__________.16.已知3维向量=(1,-3,3),(1,0,-1)则+3=__________.17.设向量=(1,2,3,4),则的单位化向量为__________.18.设n阶矩阵A的各行元素之和均为0,且A的秩为n-1,则齐次线性方程组Ax=0的通解为__________.19.设3阶矩阵A与B相似,若A的特征值为,111234,则行列式|B-1|=__________.20.设A=是正定矩阵,则a的取值范围为__________.三、计算题(本大题共6小题,每小题9分,共54分)21.已知矩阵A=
,B=,求:(1)ATB;(2)|ATB|.22.设A=
23.求向量组组.x1x23x3x4124.判断线性方程组2x1x2x34x42是否有解,有解时求出它的解.x4x5x1341,B=,C=,且满足AXB=C,求矩阵X.=(1, 2, 1, 0)T,=(1, 1, 1, 2)T,=(3, 4, 3, 4)T,=(4, 5, 6, 4)T的秩与一个极大线性无关
25.已知2阶矩阵A的特征值为=1,=9,对应的特征向量依次为
26.已知矩阵A相似于对角矩阵Λ=
四、证明题(本大题共6分)
27.设A为n阶对称矩阵,B为n阶反对称矩阵.证明:(1)AB-BA为对称矩阵;(2)AB+BA为反对称矩阵.,求行列式|A-E|的值.=(-1,1)T,=(7,1)T,求矩阵A.