第一篇:2011年4月自考线性代数(经管类)试题和参考答案1
全国2011年4月高等教育自学考试
线性代数(经管类)试题
课程代码:04184 说明:AT表示矩阵A的转置矩阵,A*表示矩阵A的伴随矩阵,E是单位矩阵,|A|表示方阵A的行列式.一、单项选择题(本大题共10小题,每小题2分,共20分)
在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。
1.下列等式中,正确的是()A.错误!未找到引用源。C.5错误!未找到引用源。
2.下列矩阵中,是初等矩阵的为()A.错误!未找到引用源。C.错误!未找到引用源。
B.错误!未找到引用源。D.错误!未找到引用源。
1B.3错误!未找到引用源。=错误!未找到引用源。D.错误!未找到引用源。
3.设A、B均为n阶可逆矩阵,且C=错误!未找到引用源。,则C是()A.错误!未找到引用源。C.错误!未找到引用源。
B.错误!未找到引用源。D.错误!未找到引用源。
4.设A为3阶矩阵,A的秩r(A)=3,则矩阵A*的秩r(A*)=()A.0 C.2
B.1 D.3 5.设向量错误!未找到引用源。,若有常数a,b使错误!未找到引用源。,则()A.a=-1, b=-2 C.a=1, b=-2
B.a=-1, b=2 D.a=1, b=2 6.向量组错误!未找到引用源。的极大线性无关组为()A.错误!未找到引用源。C.错误!未找到引用源。
B.错误!未找到引用源。D.错误!未找到引用源。
7.设矩阵A=错误!未找到引用源。,那么矩阵A的列向量组的秩为()A.3 C.1
B.2 D.0 8.设错误!未找到引用源。是可逆矩阵A的一个特征值,则矩阵错误!未找到引用源。有一个特征值等于()A.错误!未找到引用源。C.错误!未找到引用源。
B.错误!未找到引用源。D.错误!未找到引用源。
9.设矩阵A=错误!未找到引用源。,则A的对应于特征值错误!未找到引用源。的特征向量为()A.(0,0,0)T
B.(0,2,-1)
T═══════════════════════════════════════════════════════════════════════════════ 自考365(-www.xiexiebang.com-)领先的专注于自学考试的网络媒体与服务平台
本套试题共分6页,当前页是第2页-T
错误!未找到引用源。=(7,1),求矩阵A.26.已知矩阵A相似于对角矩阵Λ=错误!未找到引用源。,求行列式|A-E|的值.四、证明题(本大题共6分)
27.设A为n阶对称矩阵,B为n阶反对称矩阵.证明:(1)AB-BA为对称矩阵;(2)AB+BA为反对称矩阵.T═══════════════════════════════════════════════════════════════════════════════ 自考365(-www.xiexiebang.com-)领先的专注于自学考试的网络媒体与服务平台
本套试题共分6页,当前页是第 4页-
═══════════════════════════════════════════════════════════════════════════════ 自考365(-www.xiexiebang.com-)领先的专注于自学考试的网络媒体与服务平台
-本套试题共分6页,当前页是第5页-
第二篇:2013.10自考线性代数经管类试题
线性代数(经管类)试题课程代码:04184 请考生按规定用笔将所有试题的答案涂、写在答题纸上。说明:在本卷中,AT表示矩阵A的转置矩阵,A*表示矩阵A的伴随矩阵,E表示单位矩阵,|A|表示方阵A的行列式,r(A)表示矩阵A的秩。
选择题部分
注意事项:1.答题前,考生务必将自己的考试课程名称、姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题纸规定的位置上。2.每小题选出答案后,用2B铅笔把答题纸上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。不能答在试题卷上。
一、单项选择题(本大题共5小题,每小题2分,共10分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其选出并将“答题纸”的相应代码涂黑。错涂、多涂或未涂均无分。1.设行列式a11a12a21a22=3,删行列式
a112a125a11a212a225a21B.-6 D.15
= A.-15 C.6 2.设A,B为4阶非零矩阵,且AB=0,若r(A)=3,则r(B)= A.1 C.3
B.2 D.4 3.设向量组1=(1,0,0)T,2=(0,1,0)T,则下列向量中可由1,2线性表出的是 A.(0,-1,2)T C.(-1,0,2)T
B.(-1,2,0)T D.(1,2,-1)T
4.设A为3阶矩阵,且r(A)=2,若1,2为齐次线性方程组Ax=0的两个不同的解。k为任意常数,则方程组Ax=0的通解为A.k
1B.kC.k122
D.k1 225.二次型f(x1,x2,x3)=x12+2x22+x32-2x1x2+4x1x3-2x2x3的矩阵是
非选择题部分
注意事项:用黑色字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上。
二、填空题(本大题共10小题,每小题2分,共20分)
2346.3阶行列式152第2行元素的代数余子式之和A21+A22+A23=________.
1117.设A为3阶矩阵,且|A|=2,则|A*|=________. 102301T8.设矩阵A=,B=,则AB=________.
01001019.设A为2阶矩阵,且|A|=,则|(-3A)-l|=________.
310.若向量组1 =(1,-2,2)T,2=(2,0,1)T,3=(3,k,3)T线性相关,则数k=________. 11.与向量(3,-4)正交的一个单位向量为________.
2x1x23x3012.齐次线性方程组的基础解系所含解向量个数为________.
2xx3x023113.设3阶矩阵A的秩为2,1,2为非齐次线性方程组Ax=b的两个不同解,则方程组Ax=b的通解为________. 14.设A为n阶矩阵,且满足|E+2A|=0,则A必有一个特征值为________. 15.二次型f(x1,x2,x3)=x12+2x1x2+x22+x32的正惯性指数为________.
三、计算题(本大题共7小题,每小题9分,其63分)1416.计算行列式D=233142231442的值.31a21a22a23a11a12a1317.设矩阵A=a21a22a23,B=a113a31a123a32a133a33,求可逆矩阵P,使得PA=B.aa31a32a3331a32a3311210018.设矩阵A=223,B=211,矩阵X满足XA=B,求X.43312219.求向量组1=(1,-1,2,1)T,2=(1,0,1,2)T,3=(0,2,0,1)T,4=(-1,0,-3,-1)T, 5=(4,-1,5,7)T的秩和一个极大线性无关组,并将向量组中的其余向量由该极大线性无关组线性表出.
20.求线性方程组的通解.(要求用它的一个特解和导出组的基础解系表示)20021.已知矩阵A=021的一个特征值为1,求数a,并求正交矩阵Q和对角矩阵,01a使得Q-1AQ=.
22.用配方法化二次型f(x1,x2,x3)=x12+3x22-2x32+4x1x2+2x2x3为标准形,并写出所作的可逆线性变换.
四、证明题(本题7分)23.设1,2,3为齐次线性方程组Ax=0的一个基础解系,证明21+2+3,1+22+3,1+2+23也是该方程组的基础解系.
第三篇:2011年4月自考线性代数(经管类)试题和参考答案
全国2011年4月高等教育自学考试线性代数(经管类)试题
课程代码:04184 说明:AT表示矩阵A的转置矩阵,A*表示矩阵A的伴随矩阵,E是单位矩阵,|A|表示方阵A的行列式.一、单项选择题(本大题共10小题,每小题2分,共20分)
在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。
1.下列等式中,正确的是()A.
B.
3=
C.5 D.
2.下列矩阵中,是初等矩阵的为()A. B. C.
D.
3.设A、B均为n阶可逆矩阵,且C=,则C-1是()
A. B.
C. D.
4.设A为3阶矩阵,A的秩r(A)=3,则矩阵A*的秩r(A*)=()A.0 B.1 C.2 D.3 5.设向量,若有常数a,b使,则(A.a=-1, b=-2 B.a=-1, b=2 C.a=1, b=-2 D.a=1, b=2 6.向量组的极大线性无关组为()A.
B.
C.
D.
7.设矩阵A=,那么矩阵A的列向量组的秩为()
A.3 B.2 C.1 D.0 8.设是可逆矩阵A的一个特征值,则矩阵
有一个特征值等于()
A.
B.
C.
D.)
9.设矩阵A=,则A的对应于特征值的特征向量为()
A.(0,0,0)T
B.(0,2,-1)T
C.(1,0,-1)T
D.(0,1,1)T 10.二次型f(x1,x2,x3)2x12x1x2x22的矩阵为()A.
B.
C. D.
二、填空题(本大题共10小题,每小题2分,共20分)
请在每小题的空格中填上正确答案。错填、不填均无分。11.行列式__________.301134102010212.行列式105中第4行各元素的代数余子式之和为__________.13.设矩阵A=,B=(1,2,3),则BA=__________.12314.设3阶方阵A的行列式|A|=,则|A|=__________.-
1-1
2215.设A,B为n阶方阵,且AB=E,AB=BA=E,则A+B=__________.16.已知3维向量=(1,-3,3),(1,0,-1)则+3=__________.17.设向量=(1,2,3,4),则的单位化向量为__________.18.设n阶矩阵A的各行元素之和均为0,且A的秩为n-1,则齐次线性方程组Ax=0的通解为__________.19.设3阶矩阵A与B相似,若A的特征值为,111234,则行列式|B-1|=__________.20.设A=是正定矩阵,则a的取值范围为__________.三、计算题(本大题共6小题,每小题9分,共54分)21.已知矩阵A=
,B=,求:(1)ATB;(2)|ATB|.22.设A=
23.求向量组组.x1x23x3x4124.判断线性方程组2x1x2x34x42是否有解,有解时求出它的解.x4x5x1341,B=,C=,且满足AXB=C,求矩阵X.=(1, 2, 1, 0)T,=(1, 1, 1, 2)T,=(3, 4, 3, 4)T,=(4, 5, 6, 4)T的秩与一个极大线性无关
25.已知2阶矩阵A的特征值为=1,=9,对应的特征向量依次为
26.已知矩阵A相似于对角矩阵Λ=
四、证明题(本大题共6分)
27.设A为n阶对称矩阵,B为n阶反对称矩阵.证明:(1)AB-BA为对称矩阵;(2)AB+BA为反对称矩阵.,求行列式|A-E|的值.=(-1,1)T,=(7,1)T,求矩阵A.
第四篇:2012年1月自考线性代数(经管类)试题及答案
说明:本卷中,A-1表示方阵A的逆矩阵,r(A)表示矩阵A的秩,||||表示向量的长度,T表示向量的转置,E表示单位矩阵,|A|表示方阵A的行列式.一、单项选择题(本大题共10小题,每小题2分,共20分)
在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。
a111.设行列式a21a31a12a22a32a133a11a23=2,则a31a33a21a313a12a32a22a323a13a33=()a23a33A.-6 B.-3 C.3 D.6 2.设矩阵A,X为同阶方阵,且A可逆,若A(X-E)=E,则矩阵X=()A.E+A-1 B.E-A
C.E+A D.E-A-1
3.设矩阵A,B均为可逆方阵,则以下结论正确的是()
AA.可逆,且其逆为-1BBAC.可逆,且其逆为-1BAA-1 B-1 B.A不可逆 B-1BA-1AD.可逆,且其逆为B4.设1,2,…,k是n维列向量,则1,2,…,k线性无关的充分必要条件是()
A.向量组1,2,…,k中任意两个向量线性无关
B.存在一组不全为0的数l1,l2,…,lk,使得l11+l22+…+lkk≠0 C.向量组1,2,…,k中存在一个向量不能由其余向量线性表示 D.向量组1,2,…,k中任意一个向量都不能由其余向量线性表示 5.已知向量2(1,2,2,1)T,32(1,4,3,0)T,则=()A.(0,-2,-1,1)T B.(-2,0,-1,1)T C.(1,-1,-2,0)T D.(2,-6,-5,-1)T
6.实数向量空间V={(x, y, z)|3x+2y+5z=0}的维数是()A.1 B.2 C.3 D.4 7.设是非齐次线性方程组Ax=b的解,是其导出组Ax=0的解,则以下结论正确的是()
A.+是Ax=0的解 B.+是Ax=b的解 C.-是Ax=b的解 D.-是Ax=0的解
118.设三阶方阵A的特征值分别为,3,则A-1的特征值为()
241A.2,4,3111B.,,24311C.,3
24D.2,4,3 19.设矩阵A=21,则与矩阵A相似的矩阵是()
11A.12301 B.102
2111C. D.21
10.以下关于正定矩阵叙述正确的是()
A.正定矩阵的乘积一定是正定矩阵 B.正定矩阵的行列式一定小于零 C.正定矩阵的行列式一定大于零
D.正定矩阵的差一定是正定矩阵
二、填空题(本大题共10小题,每空2分,共20分)请在每小题的空格中填上正确答案,错填、不填均无分。
11.设det(A)=-1,det(B)=2,且A,B为同阶方阵,则det((AB)3)=__________.
1223,B为3阶非零矩阵,且AB=0,则t=__________. 12.设3阶矩阵A=4t31113.设方阵A满足Ak=E,这里k为正整数,则矩阵A的逆A-1=__________. 14.实向量空间Rn的维数是__________. 15.设A是m×n矩阵,r(A)=r,则Ax=0的基础解系中含解向量的个数为__________. 16.非齐次线性方程组Ax=b有解的充分必要条件是__________.
17.设是齐次线性方程组Ax=0的解,而是非齐次线性方程组Ax=b的解,则A(32)=__________.
18.设方阵A有一个特征值为8,则det(-8E+A)=__________.
19.设P为n阶正交矩阵,x是n维单位长的列向量,则||Px||=__________.
2220.二次型f(x1,x2,x3)x125x26x34x1x22x1x32x2x3的正惯性指数是__________.
三、计算题(本大题共6小题,每小题9分,共54分)
11111421.计算行列式24612421. 12222.设矩阵A=35,且矩阵B满足ABA-1=4A-1+BA-1,求矩阵B.
23.设向量组1(3,1,2,0),2(0,7,1,3),3(1,2,0,1),4(6,9,4,3),求其一个极大线性无关组,并将其余向量通过极大线性无关组表示出来.
14324.设三阶矩阵A=253,求矩阵A的特征值和特征向量.
24225.求下列齐次线性方程组的通解.
x1x35x40 2x1x23x40xxx2x02341223026.求矩阵A=0311420611的秩.
001210
四、证明题(本大题共1小题,6分)
a1127.设三阶矩阵A=a21a31a12a22a32a13a23的行列式不等于0,证明: a33a11a12aaa13121,222,3a23线性无关.
a31a32a33
第五篇:2009年4月自考线性代数(经管)试题和答案
全国2009年4月高等教育自学考试
线性代数(经管类)试题
课程代码:04184 说明:在本卷中,AT表示矩阵A的转置矩阵,A*表示矩阵A的伴随矩阵,E表示单位矩阵,|A|表示方阵A的行列式,r(A)表示矩阵A的铁。
一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。
010111中元素a21的代数余了式A21=()01.3阶行列式aij=11A.-2 B.-1
C.1
D.2 a112.设矩阵A=a21a12a21a11,B=aa2211a22a120110,P=,P=,则必有()121011a12A.P1P2A=B
B.P2P1A=B
C.AP1P2=B A.A-1C-
1B.C-1A-1
C.AC
D.CA
D.AP2P1=B
3.设n阶可逆矩阵A、B、C满足ABC=E,则B-1=()0104.设3阶矩阵A=001,则A2的秩为()
000A.0
B.1 C.2
D.3 5.设1,2,3,4是一个4维向量组,若已知4可以表为1,2,3的线性组合,且表示法惟一,则向量组1,2,3,4的秩为()
A.1
B.2
C.3
D.4 6.设向量组1,2,3,4线性相关,则向量组中()A.必有一个向量可以表为其余向量的线性组合 B.必有两个向量可以表为其余向量的线性组合 C.必有三个向量可以表为其余向量的线性组合 D.每一个向量都可以表为其余向量的线性组合
7.设1,2,3是齐次线性方程组Ax=0的一个基础解系,则下列解向量组中,可以作为该方程组基础解系的是()A.1,2,12 C.1,2,12
B.12,23,31 D.12,23,31
208.若2阶矩阵A相似于矩阵B=,E为2阶单位矩阵,则与矩阵E-A相似的矩阵是()
2310101010A. B. C. D. 141424240209.设实对称矩阵A=042,则3元二次型f(x1,x2,x3)=xTAx的规范形为()0212222222222A.z1 B.z1C.z1 D.z1 z2z3z2z3z2z210.若3阶实对称矩阵A=(aij)是正定矩阵,则A的正惯性指数为()A.0 B.1 C.2 D.3
二、填空题(本大题共10小题,每小题2分,共20分)
请在每小题的空格中填上正确答案。错填、不填均无分。
a112a123a13a11a12a22a32a13a23=_______________.a3311.已知3阶行列式2a214a223a316a326a23=6,则a219a33a3112.设3阶行列式D3的第2列元素分别为1,-2,3,对应的代数余子式分别为-3,2,1,则D3=__________________.12213.设A=,则A-2A+E=____________________.101214.设A为2阶矩阵,将A的第2列的(-2)倍加到第1列得到矩阵B.若B=,则A=______________.3400115.设3阶矩阵A=022,则A-1=_________________.33316.设向量组1=(a,1,1),2=(1,-2,1), 3=(1,1,-2)线性相关,则数a=________.17.已知x1=(1,0,-1)T, x2=(3,4,5)T是3元非齐次线性方程组Ax=b的两个解向量,则对应齐次线性方程组Ax=0有一个非零解向量=__________________.18.设2阶实对称矩阵A的特征值为1,2,它们对应的特征向量分别为1=(1,1)T, 2=(1,k)T,则数k=_____________________.19.已知3阶矩阵A的特征值为0,-2,3,且矩阵B与A相似,则|B+E|=_________.20.二次型f(x1,x2,x3)=(x1-x2)2+(x2-x3)2的矩阵A=_____________.三、计算题(本大题共6小题,每小题9分,共54分)
1x230中元素a12的代数余子式A12=8,求元素a21的代数余子式A21的值.21.已知3阶行列式aij=x51
4111122.已知矩阵A,B=,矩阵X满足AX+B=X,求X.1002
23.求向量组1=(1,1,1,3)T,2=(-1,-3,5,1)T,3=(3,2,-1,4)T,4=(-2,-6,10,2)T的一个极大无关组,并将向量组中的其余向量用该极大无关组线性表出.ax1x2x3024.设3元齐次线性方程组x1ax2x30,x1x2ax30(1)确定当a为何值时,方程组有非零解;
(2)当方程组有非零解时,求出它的基础解系和全部解.20125.设矩阵B=313,405(1)判定B是否可与对角矩阵相似,说明理由;
(2)若B可与对角矩阵相似,求对角矩阵和可逆矩阵P,使P-1BP=
22226.设3元二次型f(x1,x2,x3)x12x2x32x1x22x2x3,求正交变换x=Py,将二次型化为标准形.四、证明题(本题6分)
27.已知A是n阶矩阵,且满足方程A2+2A=0,证明A的特征值只能是0或-2.