2010年7月自考线性代数(经管类)试题及答案(有详细求解过程)(精选合集)

时间:2019-05-14 03:39:56下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《2010年7月自考线性代数(经管类)试题及答案(有详细求解过程)》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《2010年7月自考线性代数(经管类)试题及答案(有详细求解过程)》。

第一篇:2010年7月自考线性代数(经管类)试题及答案(有详细求解过程)

全国2010年7月高等教育自学考试 线性代数(经管类)试题 课程代码:04184

A*试卷说明:在本卷中,A表示矩阵A的转置矩阵(行列对换);A表示A的伴随矩阵; A=(重要)

AT

*

-1求A-1 和A*时,可用这个公式,A*太复杂了自己看看

10020r(A)表示矩阵A的秩;| A |表示A的行列式;E表示单位矩阵。E010

2E020010000,每一项都乘2 2

一、单项选择题

[ ]表示矩阵,矩阵乘矩阵还是矩阵;|

|表示行列式,计算后为一个数值,行列式相乘为数值运算

在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。

1.设3阶方阵A=(α1,α2,α3),其中α(为A的列向量,若| B |=|(α1+2α2,α2,α3)|=6,则| A |=(C)ii=1,2,3)A.-12 C.6

B.-6 αi(i=1,2,3)为A的列向量,3行1列 D.12 3 0 2 0 2 10 5 02.计算行列式=(A)=3*-2*10*3=-180

0 0 2 02 3 2 3A.-180 C.120

B.-120 D.180

33.若A为3阶方阵且| A-1 |=2,则| 2A |=(C)=2A.| A |=8*1/2=4 2B.2 D.8 C.4 4.设α1,α2,α3,α4都是3维向量,则必有(B)n+1个n维向量线性相关 A.α1,α2,α3,α4线性无关 C.α1可由α2,α3,α4线性表示

B.α1,α2,α3,α4线性相关 D.α1不可由α2,α3,α4线性表示

B.3

n-r(A)=解向量的个数=2,n=6 D.5 5.若A为6阶方阵,齐次线性方程组Ax=0的基础解系中解向量的个数为2,则r(A)=(C)A.2 C.4 6.设A、B为同阶方阵,且r(A)=r(B),则(C)A与B合同 r(A)=r(B)PTAP=B, P可逆 A.A与B相似 C.A与B等价

B.| A |=| B | D.A与B合同

7.设A为3阶方阵,其特征值分别为2,1,0则| A+2E |=(D),| A |=所有特征值的积=0

A.0 C.3

B.2

A+2E的特征值为2+2,1+2,0+2,即4,3,2,| A+2E |=4*3*2 D.24 8.若A、B相似,则下列说法错误的是(B)..A.A与B等价 C.| A |=| B |

B.A与B合同

D.A与B有相同特征值

A、B相似A、B特征值相同| A |=| B | r(A)=r(B);若A~B,B~C,则A~C(~代表等价)9.若向量α=(1,-2,1)与β=(2,3,t)正交,则t=(D)

A.-2 C.2

B.0 D.4

T0, 即1*2-2*3+1*t=0,t=4

10.设3阶实对称矩阵A的特征值分别为2,1,0,则(B),所有特征值都大于0,正定; A.A正定

B.A半正定

所有特征值都小于0,负定;

C.A负定

D.A半负定

所有特征值都大于等于0,半正定;同理半负定;其他情况不定

二、填空题(本大题共10小题,每小题2分,共20分)

请在每小题的空格中填上正确答案。错填、不填均无分。3 211.设A=0 1,B=2 42 1 10 1 0,则AB=(A的每一行与B的每一列对应相乘相加)

a12a13a22a如a21表示第二2下标依次为行列,3a32a333*22*03*12*13*12*0653a110*11*00*11*0=010

a21=0*21*02*24*02*14*12*14*0422a31行第一列的元素。

A为三行两列的矩阵即3×2的矩阵,B为2×3的矩阵,则AB为3×3的矩阵,对应相乘放在对应位置

12.设A为3阶方阵,且| A |=3,则| 3A

-|= 33| A-1 |=27*

1=9 Ax1x2x3113.三元方程x1+x2+x3=1的通解是_______________.扩充为0x200,再看答案

00x3014.设α=(-1,2,2),则与α反方向的单位向量是_____跟高中单位向量相同____________.15.设A为5阶方阵,且r(A)=3,则线性空间W={x | Ax=0}的维数是______________.116.设A为3阶方阵,特征值分别为-2,1,则| 5A-1 |=____同12题__________.217.若A、B为5阶方阵,且Ax=0只有零解,且r(B)=3,则r(AB)=_________________.若矩阵A的行列式| A |0,则A可逆,即A A-1=E,E为单位矩阵。Ax=0只有零解| A |0,故A可逆

若A可逆,则r(AB)= r(B)=3,同理若C可逆,则r(ABC)= r(B) 2 1 02218.实对称矩阵A=1 0 1 所对应的二次型f(x1, x2, x3)=2x1x32x1x22x2x3

 0 1 1x12实对称矩阵A 对应于x1x2x1x3x1x22x2x2x3x1x3x2x3各项的系数 2x31119.设3元非齐次线性方程组Ax=b有解α1=2,α2= 2且r(A)=2,则Ax=b的通解是_______________.3 3120.设α=2,则A=ααT的非零特征值是_______________.3

三、计算题(本大题共6小题,每小题9分,共54分)2 0 0 0 1 0 2 0 0 0 21.计算5阶行列式D=

0 0 2 0 0 1 0 0 0 222.设矩阵X满足方程

2 0 01 0 01 4 3

0 1 0X0 0 1=2 0 1 0 0 20 1 01 2 0求X.23.求非齐次线性方程组

x1x23x3x413x1x23x34x44的x5x9x8x02341.24.求向量组α1=(1,2,-1,4),α2=(9,100,10,4),α3=(-2,-4,2,-8)的秩和一个极大无关组. 2 1 225.已知A= 5 a 3的一个特征向量ξ=(1,1,-1)T,求a,b及ξ所对应的特征值,并写出对应于这个特征值1 b 2的全部特征向量.2 1 1 226.设A= 1 2 1 a,试确定a使r(A)=2. 1 1 2 2

四、证明题(本大题共1小题,6分)

27.若α1,α2,α3是Ax=b(b≠0)的线性无关解,证明α2-αl,α3-αl是对应齐次线性方程组Ax=0的线性无关解.

第二篇:2010年7月自考线性代数(经管类)试卷及答案

全国2010年7月高等教育自学考试 线性代数(经管类)试题 课程代码:04184 说明:在本卷中,AT表示矩阵A的转置矩阵,A表示矩阵A的伴随矩阵,E是单位矩阵,|A|表示方阵A的行列式.*

一、单项选择题

在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。

1.设3阶方阵A=(α1,α2,α3),其中α(为A的列向量,若| B |=|(α1+2α2,α2,α3)|=6,则| A |=(C)ii=1,2,3)A.-12 C.6

B.-6

D.12 解析: αi(i=1,2,3)为A的列向量,3行1列

0 2 0 2 10 5 0 0 0 2 02 3 2 32.计算行列式=(A)

A.-180 C.120

B.-120 D.180 解析: =3*-2*10*3=-180

3.若A为3阶方阵且| A-1 |=2,则| 2A |=(C)1A.B.2 2C.4 解析:=2

3D.8 | A |=8*1/2=4

4.设α1,α2,α3,α4都是3维向量,则必有(B)n+1个n维向量线性相关 A.α1,α2,α3,α4线性无关 C.α1可由α2,α3,α4线性表示

B.α1,α2,α3,α4线性相关 D.α1不可由α2,α3,α4线性表示

B.3

n-r(A)=解向量的个数=2,n=6 D.5 5.若A为6阶方阵,齐次线性方程组Ax=0的基础解系中解向量的个数为2,则r(A)=(C)A.2 C.4 6.设A、B为同阶方阵,且r(A)=r(B),则(C)A与B合同 r(A)=r(B)PTAP=B, P可逆 A.A与B相似 C.A与B等价

B.| A |=| B | D.A与B合同

7.设A为3阶方阵,其特征值分别为2,1,0则| A+2E |=(D),| A |=所有特征值的积=0 A.0 C.3

B.2

A+2E的特征值为2+2,1+2,0+2,即4,3,2,| A+2E |=4*3*2 D.24 8.若A、B相似,则下列说法错误的是(B)..A.A与B等价 C.| A |=| B |

B.A与B合同

D.A与B有相同特征值

A、B相似A、B特征值相同| A |=| B | r(A)=r(B);若A~B,B~C,则A~C(~代表等价)9.若向量α=(1,-2,1)与β=(2,3,t)正交,则t=(D)

A.-2 C.2

B.0 D.4

T0, 即1*2-2*3+1*t=0,t=4

10.设3阶实对称矩阵A的特征值分别为2,1,0,则(B),所有特征值都大于0,正定; A.A正定

B.A半正定

所有特征值都小于0,负定;

C.A负定

D.A半负定

所有特征值都大于等于0,半正定;同理半负定;其他情况不定

二、填空题(本大题共10小题,每小题2分,共20分)

请在每小题的空格中填上正确答案。错填、不填均无分。3 211.设A=0 1,B=2 42 1 10 1 0,则AB=(A的每一行与B的每一列对应相乘相加)

a12a13a22a如a21表示第二2下标依次为行列,3a32a333*22*03*12*13*12*0653a110*11*00*11*0=010

a21=0*21*02*24*02*14*12*14*0422a31行第一列的元素。

A为三行两列的矩阵即3×2的矩阵,B为2×3的矩阵,则AB为3×3的矩阵,对应相乘放在对应位置

12.设A为3阶方阵,且| A |=3,则| 3A

-|= 33| A-1 |=27*

1=9 Ax1x2x3113.三元方程x1+x2+x3=1的通解是_______________.扩充为0x200,再看答案

00x3014.设α=(-1,2,2),则与α反方向的单位向量是_____跟高中单位向量相同____________.15.设A为5阶方阵,且r(A)=3,则线性空间W={x | Ax=0}的维数是______________.116.设A为3阶方阵,特征值分别为-2,1,则| 5A-1 |=____同12题__________.217.若A、B为5阶方阵,且Ax=0只有零解,且r(B)=3,则r(AB)=_________________.若矩阵A的行列式| A |0,则A可逆,即A A-1=E,E为单位矩阵。Ax=0只有零解| A |0,故A可逆 若A可逆,则r(AB)= r(B)=3,同理若C可逆,则r(ABC)= r(B) 2 1 02218.实对称矩阵A=1 0 1 所对应的二次型f(x1, x2, x3)=2x1x32x1x22x2x3

 0 1 1x12实对称矩阵A 对应于x1x2x1x3x1x22x2x2x3x1x3x2x3各项的系数 2x31119.设3元非齐次线性方程组Ax=b有解α1=2,α2= 2且r(A)=2,则Ax=b的通解是_______________.3 3120.设α=2,则A=ααT的非零特征值是_______________.3

三、计算题(本大题共6小题,每小题9分,共54分)

0 0 0 1 0 2 0 0 0 0 0 2 0 0 1 0 0 0 221.计算5阶行列式D=

22.设矩阵X满足方程

2 0 01 0 01 4 3

0 1 0X0 0 1=2 0 1 0 0 20 1 01 2 0求X.23.求非齐次线性方程组

x1x23x3x413x1x23x34x44的x5x9x8x02341.24.求向量组α1=(1,2,-1,4),α2=(9,100,10,4),α3=(-2,-4,2,-8)的秩和一个极大无关组. 2 1 225.已知A= 5 a 3的一个特征向量ξ=(1,1,-1)T,求a,b及ξ所对应的特征值,并写出对应于这个特征值1 b 2的全部特征向量.2 1 1 226.设A= 1 2 1 a,试确定a使r(A)=2. 1 1 2 2

四、证明题(本大题共1小题,6分)

27.若α1,α2,α3是Ax=b(b≠0)的线性无关解,证明α2-αl,α3-αl是对应齐次线性方程组Ax=0的线性无关解.

第三篇:2013.10自考线性代数经管类试题

线性代数(经管类)试题课程代码:04184 请考生按规定用笔将所有试题的答案涂、写在答题纸上。说明:在本卷中,AT表示矩阵A的转置矩阵,A*表示矩阵A的伴随矩阵,E表示单位矩阵,|A|表示方阵A的行列式,r(A)表示矩阵A的秩。

选择题部分

注意事项:1.答题前,考生务必将自己的考试课程名称、姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题纸规定的位置上。2.每小题选出答案后,用2B铅笔把答题纸上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。不能答在试题卷上。

一、单项选择题(本大题共5小题,每小题2分,共10分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其选出并将“答题纸”的相应代码涂黑。错涂、多涂或未涂均无分。1.设行列式a11a12a21a22=3,删行列式

a112a125a11a212a225a21B.-6 D.15

= A.-15 C.6 2.设A,B为4阶非零矩阵,且AB=0,若r(A)=3,则r(B)= A.1 C.3

B.2 D.4 3.设向量组1=(1,0,0)T,2=(0,1,0)T,则下列向量中可由1,2线性表出的是 A.(0,-1,2)T C.(-1,0,2)T

B.(-1,2,0)T D.(1,2,-1)T

4.设A为3阶矩阵,且r(A)=2,若1,2为齐次线性方程组Ax=0的两个不同的解。k为任意常数,则方程组Ax=0的通解为A.k

1B.kC.k122

D.k1 225.二次型f(x1,x2,x3)=x12+2x22+x32-2x1x2+4x1x3-2x2x3的矩阵是

非选择题部分

注意事项:用黑色字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上。

二、填空题(本大题共10小题,每小题2分,共20分)

2346.3阶行列式152第2行元素的代数余子式之和A21+A22+A23=________.

1117.设A为3阶矩阵,且|A|=2,则|A*|=________. 102301T8.设矩阵A=,B=,则AB=________.

01001019.设A为2阶矩阵,且|A|=,则|(-3A)-l|=________.

310.若向量组1 =(1,-2,2)T,2=(2,0,1)T,3=(3,k,3)T线性相关,则数k=________. 11.与向量(3,-4)正交的一个单位向量为________.

2x1x23x3012.齐次线性方程组的基础解系所含解向量个数为________.

2xx3x023113.设3阶矩阵A的秩为2,1,2为非齐次线性方程组Ax=b的两个不同解,则方程组Ax=b的通解为________. 14.设A为n阶矩阵,且满足|E+2A|=0,则A必有一个特征值为________. 15.二次型f(x1,x2,x3)=x12+2x1x2+x22+x32的正惯性指数为________.

三、计算题(本大题共7小题,每小题9分,其63分)1416.计算行列式D=233142231442的值.31a21a22a23a11a12a1317.设矩阵A=a21a22a23,B=a113a31a123a32a133a33,求可逆矩阵P,使得PA=B.aa31a32a3331a32a3311210018.设矩阵A=223,B=211,矩阵X满足XA=B,求X.43312219.求向量组1=(1,-1,2,1)T,2=(1,0,1,2)T,3=(0,2,0,1)T,4=(-1,0,-3,-1)T, 5=(4,-1,5,7)T的秩和一个极大线性无关组,并将向量组中的其余向量由该极大线性无关组线性表出.

20.求线性方程组的通解.(要求用它的一个特解和导出组的基础解系表示)20021.已知矩阵A=021的一个特征值为1,求数a,并求正交矩阵Q和对角矩阵,01a使得Q-1AQ=.

22.用配方法化二次型f(x1,x2,x3)=x12+3x22-2x32+4x1x2+2x2x3为标准形,并写出所作的可逆线性变换.

四、证明题(本题7分)23.设1,2,3为齐次线性方程组Ax=0的一个基础解系,证明21+2+3,1+22+3,1+2+23也是该方程组的基础解系.

第四篇:2012年1月自考线性代数(经管类)试题及答案

说明:本卷中,A-1表示方阵A的逆矩阵,r(A)表示矩阵A的秩,||||表示向量的长度,T表示向量的转置,E表示单位矩阵,|A|表示方阵A的行列式.一、单项选择题(本大题共10小题,每小题2分,共20分)

在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。

a111.设行列式a21a31a12a22a32a133a11a23=2,则a31a33a21a313a12a32a22a323a13a33=()a23a33A.-6 B.-3 C.3 D.6 2.设矩阵A,X为同阶方阵,且A可逆,若A(X-E)=E,则矩阵X=()A.E+A-1 B.E-A

C.E+A D.E-A-1

3.设矩阵A,B均为可逆方阵,则以下结论正确的是()

AA.可逆,且其逆为-1BBAC.可逆,且其逆为-1BAA-1 B-1 B.A不可逆 B-1BA-1AD.可逆,且其逆为B4.设1,2,…,k是n维列向量,则1,2,…,k线性无关的充分必要条件是()

A.向量组1,2,…,k中任意两个向量线性无关

B.存在一组不全为0的数l1,l2,…,lk,使得l11+l22+…+lkk≠0 C.向量组1,2,…,k中存在一个向量不能由其余向量线性表示 D.向量组1,2,…,k中任意一个向量都不能由其余向量线性表示 5.已知向量2(1,2,2,1)T,32(1,4,3,0)T,则=()A.(0,-2,-1,1)T B.(-2,0,-1,1)T C.(1,-1,-2,0)T D.(2,-6,-5,-1)T

6.实数向量空间V={(x, y, z)|3x+2y+5z=0}的维数是()A.1 B.2 C.3 D.4 7.设是非齐次线性方程组Ax=b的解,是其导出组Ax=0的解,则以下结论正确的是()

A.+是Ax=0的解 B.+是Ax=b的解 C.-是Ax=b的解 D.-是Ax=0的解

118.设三阶方阵A的特征值分别为,3,则A-1的特征值为()

241A.2,4,3111B.,,24311C.,3

24D.2,4,3 19.设矩阵A=21,则与矩阵A相似的矩阵是()

11A.12301 B.102

2111C. D.21

10.以下关于正定矩阵叙述正确的是()

A.正定矩阵的乘积一定是正定矩阵 B.正定矩阵的行列式一定小于零 C.正定矩阵的行列式一定大于零

D.正定矩阵的差一定是正定矩阵

二、填空题(本大题共10小题,每空2分,共20分)请在每小题的空格中填上正确答案,错填、不填均无分。

11.设det(A)=-1,det(B)=2,且A,B为同阶方阵,则det((AB)3)=__________.

1223,B为3阶非零矩阵,且AB=0,则t=__________. 12.设3阶矩阵A=4t31113.设方阵A满足Ak=E,这里k为正整数,则矩阵A的逆A-1=__________. 14.实向量空间Rn的维数是__________. 15.设A是m×n矩阵,r(A)=r,则Ax=0的基础解系中含解向量的个数为__________. 16.非齐次线性方程组Ax=b有解的充分必要条件是__________.

17.设是齐次线性方程组Ax=0的解,而是非齐次线性方程组Ax=b的解,则A(32)=__________.

18.设方阵A有一个特征值为8,则det(-8E+A)=__________.

19.设P为n阶正交矩阵,x是n维单位长的列向量,则||Px||=__________.

2220.二次型f(x1,x2,x3)x125x26x34x1x22x1x32x2x3的正惯性指数是__________.

三、计算题(本大题共6小题,每小题9分,共54分)

11111421.计算行列式24612421. 12222.设矩阵A=35,且矩阵B满足ABA-1=4A-1+BA-1,求矩阵B.

23.设向量组1(3,1,2,0),2(0,7,1,3),3(1,2,0,1),4(6,9,4,3),求其一个极大线性无关组,并将其余向量通过极大线性无关组表示出来.

14324.设三阶矩阵A=253,求矩阵A的特征值和特征向量.

24225.求下列齐次线性方程组的通解.

x1x35x40 2x1x23x40xxx2x02341223026.求矩阵A=0311420611的秩.

001210

四、证明题(本大题共1小题,6分)

a1127.设三阶矩阵A=a21a31a12a22a32a13a23的行列式不等于0,证明: a33a11a12aaa13121,222,3a23线性无关.

a31a32a33

第五篇:全国2009年7月自考线性代数(经管类)试卷

自考复习资料由北京自考吧整理 http://www.xiexiebang.com

全国2009年7月自考线性代数(经管类)试卷

课程代码:04184 试卷说明:在本卷中,AT表示矩阵A的转置矩阵;A*表示A的伴随矩阵;R(A)表示矩阵A的秩;|A|表示A的行列式;E表示单位矩阵。

一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的 括号内。错选、多选或未选均无分。

1.设A,B,C为同阶方阵,下面矩阵的运算中不成立...的是()A.(A+B)T=AT+BT B.|AB|=|A||B| C.A(B+C)=BA+CA

D.(AB)T=BTAT

a11a12a132a112a122a132.已知a21a22a23=3,那么a21a22a23=()a31a32a332a312a322a33A.-24 B.-12 C.-6

D.12

3.若矩阵A可逆,则下列等式成立的是()A.A=1A*

B.A0

AC.(A2)1(A1)2

D.(3A)13A1

414.若A=312,B=30211522,C=,则下列矩阵运算的结果为3×

2矩阵的是(11223A.ABC B.ACTBT C.CBA

D.CTBTAT

5.设有向量组A:1,2,3,4,其中1,2,3线性无关,则()A.1,3线性无关

B.1,2,3,4线性无关

C.1,2,3,4线性相关

D.2,3,4线性相关

6.若四阶方阵的秩为3,则()A.A为可逆阵

B.齐次方程组Ax=0有非零解 C.齐次方程组Ax=0只有零解

D.非齐次方程组Ax=b必有解

7.设A为m×n矩阵,则n元齐次线性方程Ax=0存在非零解的充要条件是()A.A的行向量组线性相关 B.A的列向量组线性相关 C.A的行向量组线性无关 D.A的列向量组线性无关

8.下列矩阵是正交矩阵的是()100101A.010 B.11102

001011

全国2009年7月自考线性代数(经管类)试卷)

自考复习资料由北京自考吧整理 http://www.xiexiebang.com

213263C.cossinD.603

sincos 6321032639.二次型fxTAx(A为实对称阵)正定的充要条件是()A.A可逆

B.|A|>0 C.A的特征值之和大于0

D.A的特征值全部大于0

k0010.设矩阵A=0k2正定,则()024A.k>0 B.k0 C.k>1

D.k1

二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。错填、不填均无分。11.设A=(1,3,-1),B=(2,1),则ATB=____________________。

21012.若1310,则k_____________。k2112013.设A=200,则A*=_____________。01314.已知A2-2A-8E=0,则(A+E)-1=_____________。

15.向量组1(1,1,0,2),2(1,0,1,0),3(0,1,1,2)的秩为_____________。

16.设齐次线性方程Ax=0有解,而非齐次线性方程且Ax=b有解,则是方程组_____________的解。17.方程组x1x20的基础解系为_____________。

x2x3018.向量(3,2,t,1),(t,1,2,1)正交,则t_____________。

19.若矩阵A=10b与矩阵B=304a相似,则x=_____________。x20.二次型f(x2221,x2,x3)x12x23x3x1x23x1x3对应的对称矩阵是_____________。

三、计算题(本大题共6小题,每小题9分,共54分)

134021.求行列式D=4035的值。

20227622

全国2009年7月自考线性代数(经管类)试卷

自考复习资料由北京自考吧整理 http://www.xiexiebang.com 22.已知A=23120,3,C01110B21120,D1101,矩阵X满足方程AX+BX=D-C,求X。23.设向量组为 1(2,0,1,3)

2(3,2,1,1)

3(5,6,5,9)

4(4,4,3,5)

求向量组的秩,并给出一个极大线性无关组。24.求取何值时,齐次方程组

(4)x13x20

4x1x30

5x1x2x30

有非零解?并在有非零解时求出方程组的通解。

16325.设矩阵A=053,求矩阵A的全部特征值和特征向量。

06426.用配方法求二次型f(xx2221,2,x3)x14x2x32x1x34x2x3的标准形,并写出相应的线性变换。

四、证明题(本大题共1小题,6分)27.证明:若向量组1,2,n线性无关,而11n,212,323,,nn1+n,则向量组1,2,,n线性无关的充要条件是n为奇数。

全国2009年7月自考线性代数(经管类)试卷

下载2010年7月自考线性代数(经管类)试题及答案(有详细求解过程)(精选合集)word格式文档
下载2010年7月自考线性代数(经管类)试题及答案(有详细求解过程)(精选合集).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐