第一篇:自考《线性代数》经管类2012年04月考试真题及答案
全国2012年4月高等教育自学考试
线性代数(经管类)试题 课程代码:04184
说明:在本卷中,A表示矩阵A的转置矩阵,A表示矩阵A的伴随矩阵,E是单位矩阵,|A|表示方阵A的行列式,r(A)表示矩阵A的秩.T
*a111.设行列式a21a12a22a32a13a112a122a222a323a133a23=()3a33D.12 a31A.-12 a23=2,则a21a33a31B.-6
C.6 1202.设矩阵A=120,则A*中位于第1行第2列的元素是()003A.-6 B.-3
C.3
D.6 3.设A为3阶矩阵,且|A|=3,则(A)1=()A.3 B.1 3C.1 3D.3 4.已知43矩阵A的列向量组线性无关,则AT的秩等于()A.1 B.2
C.3
D.4 1005.设A为3阶矩阵,P =210,则用P左乘A,相当于将A()001A.第1行的2倍加到第2行
B.第1列的2倍加到第2列 C.第2行的2倍加到第1行
D.第2列的2倍加到第1列
0x12x23x36.齐次线性方程组的基础解系所含解向量的个数为()x+xx= 0234A.1 B.2
C.3
D.4 7.设4阶矩阵A的秩为3,1,2为非齐次线性方程组Ax =b的两个不同的解,c为任意常数,则该方程组的通解为()A.1c122 B.1223 5c1 C.1c122 D.1225 3c1
8.设A是n阶方阵,且|5A+3E|=0,则A必有一个特征值为()A.5 3B.C.5D.1009.若矩阵A与对角矩阵D=010相似,则A3=()001A.E B.D 222C.A D.-E
10.二次型f(x1,x2,x3)=3x12x2x3是()
A.正定的 B.负定的 C.半正定的 D.不定的
二、填空题(本大题共10小题,每小题2分,共20分)
111.行列式21146=____________.4163600110012.设3阶矩阵A的秩为2,矩阵P =010,Q =010,若矩阵B=QAP ,100101则r(B)=_____________.144813.设矩阵A=,B=,则AB=_______________.141214.向量组1=(1,1,1,1),2=(1,2,3,4),3=(0,1,2,3)的秩为______________.15.设1,2是5元齐次线性方程组Ax =0的基础解系,则r(A)=______________.1000216.非齐次线性方程组Ax =b的增广矩阵经初等行变换化为01002,0012-2则方程组的通解是__________________________________.17.设A为3阶矩阵,若A的三个特征值分别为1,2,3,则|A|=___________.18.设A为3阶矩阵,且|A|=6,若A的一个特征值为2,则A*必有一个特征值为_________.22219.二次型f(x1,x2,x3)=x1的正惯性指数为_________.x23x322220.二次型f(x1,x2,x3)=x12x22x34x2x3经正交变换可化为标准形______________.三、计算题(本大题共6小题,每小题9分,共54分)
3421.计算行列式D =12512533
20103413022.设A=210,矩阵X满足关系式A+X=XA,求X.00223.设,,2,3,4均为4维列向量,A=(,2,3,4)和B=(,2,3,4)为4阶方阵.若行列式|A|=4,|B|=1,求行列式|A+B|的值.24.已知向量组1=(1,2,1,1)T,2=(2,0,t,0)T,3=(0,4,5,2)T,4=(3,2,t+4,-1)T(其中t为参数),求向量组的秩和一个极大无关组.x1x22x3x4325.求线性方程组x12x2x3x42的通解..2xx5x4x73412(要求用它的一个特解和导出组的基础解系表示)
26.已知向量1=(1,1,1)T,求向量2,3,使1,2,3两两正交.四、证明题(本题6分)
27.设A为mn实矩阵,ATA为正定矩阵.证明:线性方程组Ax=0只有零解.
第二篇:自考(线性代数)经管类2011年10 月考试真题
全国2011年10月高等教育自学考试线性代数(经管类)试题课程代码:04184 在本卷中,A表示矩阵A的转置矩阵,A表示矩阵A的伴随矩阵,E表示单位矩阵。T*
A表示方阵A的行列式,r(A)表示矩阵A的秩。
一、单项选择题(本大题共10小题,每小题2分,共20分)1.设3阶方阵A的行列式为2,则12A()A.-1
B.14 C.14
D.1
x2x1x22.设f(x)2x22x12x2,则方程f(x)0的根的个数为()3x23x23x5A.0
B.1
C.2
D.3 3.设A为n阶方阵,将A的第1列与第2列交换得到方阵B,若AB,则必有(A.A0
B.AB0
C.A0
D.AB0
4.设A,B是任意的n阶方阵,下列命题中正确的是()A.(AB)2A22ABB2 B.(AB)(AB)A2B2 C.(AE)(AE)(AE)(AE)
D.(AB)2A2B2
a1b1a1b2a1b35.设Aa2baa12b22b3bi0,i1,2,3,则矩阵A的秩为()a3b1aa,其中ai0,3b23b3A.0
B.1
C.2 D.3 6.设6阶方阵A的秩为4,则A的伴随矩阵A*的秩为()A.0
B.2
C.3 D.4 7.设向量α=(1,-2,3)与β=(2,k,6)正交,则数k为()A.-10
B.-4
C.3 D.10 x1x2x38.已知线性方程组4x1ax2x33无解,则数a=()2x12ax24A.1
2B.0
C.12 D.1 9.设3阶方阵A的特征多项式为EA(2)(3)2,则A()A.-1
B.-6
C.6
D.18 10.若3阶实对称矩阵A(aij)是正定矩阵,则A的3个特征值可能为()A.-1,-2,-3
B.-1,-2,3
C.-1,2,3
D.1,2,3
二、填空题(本大题共10小题,每小题2分,共20分)
30411.设行列式D222,其第3行各元素的代数余子式之和为__________.532)12.设Aaabb,B,则AB__________.aabb10313.设A是4×3矩阵且r(A)2,B020,则r(AB)__________.10314.向量组(1,2),(2,3)(3,4)的秩为__________.15.设线性无关的向量组α1,α2,…,αr可由向量组β1,β2,…,βs线性表示,则r与s的关系为__________.x1x2x3016.设方程组x1x2x30有非零解,且数0,则__________.xxx031217.设4元线性方程组Axb的三个解α1,α2,α3,已知1(1,2,3,4)T,23(3,5,7,9)T,r(A)3.则方程组的通解是__________.18.设3阶方阵A的秩为2,且A5A0,则A的全部特征值为__________.2211119.设矩阵A0a0有一个特征值2,对应的特征向量为x2,则数a=__________.413220.设实二次型f(x1,x2,x3)xTAx,已知A的特征值为-1,1,2,则该二次型的规范形为__________.三、计算题(本大题共6小题,每小题9分,共54分)
21.设矩阵A(,22,33),B(,2,3),其中,,2,3均为3维列向量,且A18,B2.求AB.11101112X1011.22.解矩阵方程02110432123.设向量组α1=(1,1,1,3)T,α2=(-1,-3,5,1)T,α3=(3,2,-1,p+2)T,α4=(3,2,-1,p+2)T问p为何值时,该向量组线性相关?并在此时求出它的秩和一个极大无关组.2x1x2x3124.设3元线性方程组x1x2x32, 4x5x5x1231(1)确定当λ取何值时,方程组有惟一解、无解、有无穷多解?
(2)当方程组有无穷多解时,求出该方程组的通解(要求用其一个特解和导出组的基础解系表示).225.已知2阶方阵A的特征值为11及2,方阵BA.13(1)求B的特征值;(2)求B的行列式.22226.用配方法化二次型f(x1,x2,x3)x12x22x34x1x212x2x3为标准形,并写出所作的可逆线性变换.四、证明题(本题6分)27.设A是3阶反对称矩阵,证明A0.
第三篇:2010年7月自考线性代数(经管类)试卷及答案
全国2010年7月高等教育自学考试 线性代数(经管类)试题 课程代码:04184 说明:在本卷中,AT表示矩阵A的转置矩阵,A表示矩阵A的伴随矩阵,E是单位矩阵,|A|表示方阵A的行列式.*
一、单项选择题
在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。
1.设3阶方阵A=(α1,α2,α3),其中α(为A的列向量,若| B |=|(α1+2α2,α2,α3)|=6,则| A |=(C)ii=1,2,3)A.-12 C.6
B.-6
D.12 解析: αi(i=1,2,3)为A的列向量,3行1列
0 2 0 2 10 5 0 0 0 2 02 3 2 32.计算行列式=(A)
A.-180 C.120
B.-120 D.180 解析: =3*-2*10*3=-180
3.若A为3阶方阵且| A-1 |=2,则| 2A |=(C)1A.B.2 2C.4 解析:=2
3D.8 | A |=8*1/2=4
4.设α1,α2,α3,α4都是3维向量,则必有(B)n+1个n维向量线性相关 A.α1,α2,α3,α4线性无关 C.α1可由α2,α3,α4线性表示
B.α1,α2,α3,α4线性相关 D.α1不可由α2,α3,α4线性表示
B.3
n-r(A)=解向量的个数=2,n=6 D.5 5.若A为6阶方阵,齐次线性方程组Ax=0的基础解系中解向量的个数为2,则r(A)=(C)A.2 C.4 6.设A、B为同阶方阵,且r(A)=r(B),则(C)A与B合同 r(A)=r(B)PTAP=B, P可逆 A.A与B相似 C.A与B等价
B.| A |=| B | D.A与B合同
7.设A为3阶方阵,其特征值分别为2,1,0则| A+2E |=(D),| A |=所有特征值的积=0 A.0 C.3
B.2
A+2E的特征值为2+2,1+2,0+2,即4,3,2,| A+2E |=4*3*2 D.24 8.若A、B相似,则下列说法错误的是(B)..A.A与B等价 C.| A |=| B |
B.A与B合同
D.A与B有相同特征值
A、B相似A、B特征值相同| A |=| B | r(A)=r(B);若A~B,B~C,则A~C(~代表等价)9.若向量α=(1,-2,1)与β=(2,3,t)正交,则t=(D)
A.-2 C.2
B.0 D.4
T0, 即1*2-2*3+1*t=0,t=4
10.设3阶实对称矩阵A的特征值分别为2,1,0,则(B),所有特征值都大于0,正定; A.A正定
B.A半正定
所有特征值都小于0,负定;
C.A负定
D.A半负定
所有特征值都大于等于0,半正定;同理半负定;其他情况不定
二、填空题(本大题共10小题,每小题2分,共20分)
请在每小题的空格中填上正确答案。错填、不填均无分。3 211.设A=0 1,B=2 42 1 10 1 0,则AB=(A的每一行与B的每一列对应相乘相加)
a12a13a22a如a21表示第二2下标依次为行列,3a32a333*22*03*12*13*12*0653a110*11*00*11*0=010
a21=0*21*02*24*02*14*12*14*0422a31行第一列的元素。
A为三行两列的矩阵即3×2的矩阵,B为2×3的矩阵,则AB为3×3的矩阵,对应相乘放在对应位置
12.设A为3阶方阵,且| A |=3,则| 3A
-|= 33| A-1 |=27*
1=9 Ax1x2x3113.三元方程x1+x2+x3=1的通解是_______________.扩充为0x200,再看答案
00x3014.设α=(-1,2,2),则与α反方向的单位向量是_____跟高中单位向量相同____________.15.设A为5阶方阵,且r(A)=3,则线性空间W={x | Ax=0}的维数是______________.116.设A为3阶方阵,特征值分别为-2,1,则| 5A-1 |=____同12题__________.217.若A、B为5阶方阵,且Ax=0只有零解,且r(B)=3,则r(AB)=_________________.若矩阵A的行列式| A |0,则A可逆,即A A-1=E,E为单位矩阵。Ax=0只有零解| A |0,故A可逆 若A可逆,则r(AB)= r(B)=3,同理若C可逆,则r(ABC)= r(B) 2 1 02218.实对称矩阵A=1 0 1 所对应的二次型f(x1, x2, x3)=2x1x32x1x22x2x3
0 1 1x12实对称矩阵A 对应于x1x2x1x3x1x22x2x2x3x1x3x2x3各项的系数 2x31119.设3元非齐次线性方程组Ax=b有解α1=2,α2= 2且r(A)=2,则Ax=b的通解是_______________.3 3120.设α=2,则A=ααT的非零特征值是_______________.3
三、计算题(本大题共6小题,每小题9分,共54分)
0 0 0 1 0 2 0 0 0 0 0 2 0 0 1 0 0 0 221.计算5阶行列式D=
22.设矩阵X满足方程
2 0 01 0 01 4 3
0 1 0X0 0 1=2 0 1 0 0 20 1 01 2 0求X.23.求非齐次线性方程组
x1x23x3x413x1x23x34x44的x5x9x8x02341.24.求向量组α1=(1,2,-1,4),α2=(9,100,10,4),α3=(-2,-4,2,-8)的秩和一个极大无关组. 2 1 225.已知A= 5 a 3的一个特征向量ξ=(1,1,-1)T,求a,b及ξ所对应的特征值,并写出对应于这个特征值1 b 2的全部特征向量.2 1 1 226.设A= 1 2 1 a,试确定a使r(A)=2. 1 1 2 2
四、证明题(本大题共1小题,6分)
27.若α1,α2,α3是Ax=b(b≠0)的线性无关解,证明α2-αl,α3-αl是对应齐次线性方程组Ax=0的线性无关解.
第四篇:2012年1月自考线性代数(经管类)试题及答案
说明:本卷中,A-1表示方阵A的逆矩阵,r(A)表示矩阵A的秩,||||表示向量的长度,T表示向量的转置,E表示单位矩阵,|A|表示方阵A的行列式.一、单项选择题(本大题共10小题,每小题2分,共20分)
在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。
a111.设行列式a21a31a12a22a32a133a11a23=2,则a31a33a21a313a12a32a22a323a13a33=()a23a33A.-6 B.-3 C.3 D.6 2.设矩阵A,X为同阶方阵,且A可逆,若A(X-E)=E,则矩阵X=()A.E+A-1 B.E-A
C.E+A D.E-A-1
3.设矩阵A,B均为可逆方阵,则以下结论正确的是()
AA.可逆,且其逆为-1BBAC.可逆,且其逆为-1BAA-1 B-1 B.A不可逆 B-1BA-1AD.可逆,且其逆为B4.设1,2,…,k是n维列向量,则1,2,…,k线性无关的充分必要条件是()
A.向量组1,2,…,k中任意两个向量线性无关
B.存在一组不全为0的数l1,l2,…,lk,使得l11+l22+…+lkk≠0 C.向量组1,2,…,k中存在一个向量不能由其余向量线性表示 D.向量组1,2,…,k中任意一个向量都不能由其余向量线性表示 5.已知向量2(1,2,2,1)T,32(1,4,3,0)T,则=()A.(0,-2,-1,1)T B.(-2,0,-1,1)T C.(1,-1,-2,0)T D.(2,-6,-5,-1)T
6.实数向量空间V={(x, y, z)|3x+2y+5z=0}的维数是()A.1 B.2 C.3 D.4 7.设是非齐次线性方程组Ax=b的解,是其导出组Ax=0的解,则以下结论正确的是()
A.+是Ax=0的解 B.+是Ax=b的解 C.-是Ax=b的解 D.-是Ax=0的解
118.设三阶方阵A的特征值分别为,3,则A-1的特征值为()
241A.2,4,3111B.,,24311C.,3
24D.2,4,3 19.设矩阵A=21,则与矩阵A相似的矩阵是()
11A.12301 B.102
2111C. D.21
10.以下关于正定矩阵叙述正确的是()
A.正定矩阵的乘积一定是正定矩阵 B.正定矩阵的行列式一定小于零 C.正定矩阵的行列式一定大于零
D.正定矩阵的差一定是正定矩阵
二、填空题(本大题共10小题,每空2分,共20分)请在每小题的空格中填上正确答案,错填、不填均无分。
11.设det(A)=-1,det(B)=2,且A,B为同阶方阵,则det((AB)3)=__________.
1223,B为3阶非零矩阵,且AB=0,则t=__________. 12.设3阶矩阵A=4t31113.设方阵A满足Ak=E,这里k为正整数,则矩阵A的逆A-1=__________. 14.实向量空间Rn的维数是__________. 15.设A是m×n矩阵,r(A)=r,则Ax=0的基础解系中含解向量的个数为__________. 16.非齐次线性方程组Ax=b有解的充分必要条件是__________.
17.设是齐次线性方程组Ax=0的解,而是非齐次线性方程组Ax=b的解,则A(32)=__________.
18.设方阵A有一个特征值为8,则det(-8E+A)=__________.
19.设P为n阶正交矩阵,x是n维单位长的列向量,则||Px||=__________.
2220.二次型f(x1,x2,x3)x125x26x34x1x22x1x32x2x3的正惯性指数是__________.
三、计算题(本大题共6小题,每小题9分,共54分)
11111421.计算行列式24612421. 12222.设矩阵A=35,且矩阵B满足ABA-1=4A-1+BA-1,求矩阵B.
23.设向量组1(3,1,2,0),2(0,7,1,3),3(1,2,0,1),4(6,9,4,3),求其一个极大线性无关组,并将其余向量通过极大线性无关组表示出来.
14324.设三阶矩阵A=253,求矩阵A的特征值和特征向量.
24225.求下列齐次线性方程组的通解.
x1x35x40 2x1x23x40xxx2x02341223026.求矩阵A=0311420611的秩.
001210
四、证明题(本大题共1小题,6分)
a1127.设三阶矩阵A=a21a31a12a22a32a13a23的行列式不等于0,证明: a33a11a12aaa13121,222,3a23线性无关.
a31a32a33
第五篇:2015年10月自考线性代数(经管类)试卷及答案
2015年10月高等教育自学考试全国统一命题考试
线性代数(经管类)试卷
(课程代码04184)说明:在本卷中。A表示矩阵A的转置矩阵。A表示矩阵A的伴随矩阵,E是单位矩阵,︱A ︱表示方阵A的行列式,r(A)表示矩阵A的秩。T
*
7.已知矩阵,则A+2A+E=___________.
28.设矩阵9.设向量,若矩阵A满足AP=B,则A=________.,线性表出的表示式为=____________.,则
由向量组10.设向量组a1=(1,2,1),a2=(-1,1,0),a3=(0,2,k)线性无关,则数k的取值应 满足__________.
11.设3元非齐次线性方程组Ax=b的增广矩阵(A,b)经初等行变换可化为
TTT
若该方程组无解,则数k=_________. 12.设=-2是n阶矩阵A的一个特征值,则矩阵A—3E必有一个特征值是________.
13.设2阶矩阵A与B相似,其中,则数a=___________.
14.设向量a1=(1,-l,0),a2=(4,0,1),则15.二次型f(x1,x2)=-2x1+x2+4x1x2的规范形为__________.
三、计算题(本大题共7小题,每小题9分,共63分)请在答题卡上作答。
2TT
=__________.
16.计算行列式的值.
17.已知矩阵,若矩阵x满足等式AX=B+X,求X.
线性代数试卷
18.已知矩阵A,B满足关系式B=E-A,其中2
3,计算
(1)E+A+A与A;2(2)B(E+A+A).
TTTT19.求向量组a1=(1,-l,2,1),a2=(1,0,2,2),a3=(0,2,1,1),a4=-(1,0,3,1)的秩和一个极大线性无关组,并将向量组中的其余向量由该极大线性无关组线性表出.
20.设3元线性方程组,问数a,b分别为何值时,方程组有无穷
多解?并求出其通解(要求用其一个特解和导出组的基础解系表示).
线性代数试卷
21.设矩阵,求A的全部特征值和特征向量.
222.用配方法化二次型f(x1,x2,x3)=x1-x1x2+x2x3为标准形,并写出所作的可逆线性
变换.
四、证明题(本大题共l小题,共7分)请在答题卡上作答。
23·设向量组a1,a2,a3的秩为2,且a3可由a1,a2线性表出,证明a1,a2是向量组 a1,a2,a3的一个极大线性无关组.
线性代数试卷
线性代数试卷
线性代数试卷
线性代数试卷
线性代数试卷