第一篇:列车再生制动能量回收的方法及分析
列车再生制动能量回收的方法及分析
城市轨道交通是耗电大户。而如何高效利用电能是目前城市轨道交通节能技术的关键问题。车辆在运行过程中,由于站间距一般较短,因此要求起动加速度和制动减速度比较大,并具有良好的起动和制动性能。城轨交通供电系统一直采用二极管整流技术实现交流电源到直流牵引电源的转换,特别是采取24脉波整流技术后,与电网的谐波兼容问题得到较好地解决。该技术虽然可以较好地满足车辆牵引取流的需求,但是此类系统存在以下问题:
(1)只能实现能量的单向流动,对于需要频繁起动和制动的地铁、轻轨等交通工具,制动能量的回收有着很大的潜力。车辆再生制动产生的反馈能量一般为牵引能量的30%甚至更多。而这些再生能量除了按一定比例(一般为20%~80%,根据列车运行密度和区间距离的不同而异)被其它相邻列车吸收利用外,剩余部分将主要被车辆的吸收电阻以发热的方式消耗掉或被线路上的吸收装置吸收。如果在一列地铁列车刹车时附近没有其他列车加速运行,那它所回馈的电能中只有30%~50%能被再次利用(尤其是在低电压、高电流的网络系统里)。如果当列车发车的间隔大于10 min时,再生制动能量被相邻列车吸收重新利用的概率几乎为零。
(2)由于制动电阻的发热引发站台和地下隧道热量积累、温度上升,某些城轨系统隧道温度高达50℃,不得不加大通风设备的容量,造成严重的二次能耗;
(3)对于车载制动电阻模式制动电阻增加车体自重造成的电能消耗十分可观 ;
(4)牵引网上同时在线运行的车辆有十几对甚至几十对,负荷的变化造成牵引网压波动严重,不利于车辆平稳、可靠运行。可见车辆的制动能量至今还是一种没有被很好地开发利用的能量。
目前,在我国大力提倡节能降耗的形势下,城轨供电系统的发展进度已滞后列车车辆技术的发展,多个待建的城市轨道线路,如无锡、苏州、长沙、西安、深圳和广州等多条线路,都提出了对现有牵引供电系统进行技术改造的需求或者是寻求更好的储能装置去回收这些多余的再生能量。再生制动能量循环利用主要有储能和逆变两种方式:储能所采用的技术主要有蓄电池储能、电容储能、飞轮储能3种;而能量回馈所采用的技术主要是逆变至中压网络和低压网络两类。
首先介绍储能型回收装置
(1)蓄电池储能
蓄电池储能系统如图所示,该装置是将制动能量吸收到电池介质中,当供电区间有列车需要取流时,再将所储存的能量释放出去,由于蓄电池本身的特点充放电电流小,瞬间不能大功率充放电,所以该装置体积较大电池处于频繁充放电状态将影响其使用寿命,储能容量相对较少。
(2)飞轮储能型
采用飞轮储能方式的吸收装置由储能飞轮电机、IGBT斩波器、直流快速断路器、电动隔离开关、传感器和控制模块等组成。该装置直接接在变电所正负母线间或接触网和回流轨间,其核心技术是利用核物理工业的物质分离衍生技术而制造的飞轮,该装置设置在真空壳体内,飞轮经过特殊材料和加工工艺制成的轴支撑在底部结构上。
近几年,英国UPT电力公司生产的成熟运营的飞轮储能型产品,在香港电力系统、香港巴士公司、英国、纽约部分地铁均有应用。国内北京大学某实验室有类似的小功率产品研制,但飞轮的机械参数难以达到国外的水平,无法在工程中投入使用。该产品的优点:有效利用了再生制动能量,节能效益好;并可取消(或减少)车载制动电阻,降低车辆自重,提高列车动力性能;直接接在接触网或变电所正负直流母线间,再生电能直接在直流系统内转换,对交流供电系统不会造成影响。该产品的缺点:飞轮是高速转动的机械产品,对制造工艺要求很高,需采用真空环境和特殊轴类制造技术,成本较高。使用寿命是否能满足要求,维护维修是否方便,另外国内无成熟技术和产品等都成为制约其推广的因素。
(3)超级电容储能
以已经投入运行的北京地铁5号线为例简单说明超级电容储能的应用。
当具有再生制动能力的车辆在变电站能量存储系统附近释放能量时,牵引网网压上升,能量存储系统的调节器可探测到这种情况,并将牵引网系统中暂时多余的能量存储到电容器中,使牵引网网压保持在限定范围内。若车辆在变电站能量存储系统附近起动或加速,牵引网网压下降,此时,能量存储系统的调节器将能量从存储系统输送回牵引网系统中,保持牵引网网压稳定。在直流牵引网的空载状态下,能量存储系统从牵引系统吸收一部分能量,通过这种方式可以帮助车辆起动。
储能系统的基本工作原理如下:+SlAl—Sl为隔离开关,维护设备时,可将系统从干线牵引网隔离开来。并可使用+SlA2—Q0断路器隔离系统。+SlA2—QO断路器发生故障导致短路时,熔断器+S1Fl将熔断。充电时,与+SlA2—QO断路器并联的预充电路(+S 1 A 1—F l、+S1Al—K1和+S1A1—Rl和)将对间接电容器(Czk)进行“软”预充,避免充电冲击电流太大损坏设备。间接电容器为一组直流滤波电容器。牵引网产生瞬变电压时,+S3—L 1滤波电抗器将保护能量存储系统。此外,该电抗器将牵引网和变流单元的谐波电流有效地分隔开来。+S3—G l、+S3—G2是变流单元的2个变流器模块(图2),每个变流器模块分别包括2条变流器分路,共4条变流器分路对能量的总量及流向进行调节控制。+S 3—Fl、+S3—F2、+S3—F3,+S3—F4为带熔断器的手动隔离开关,+S 4—L1、+S4—L2、+S4—L3、+S4—L4为平波电抗器。进行设备维修时将系统从牵引网隔离出来以后,使用由+S3—V1和S9—R1组成的放电支路对能量存储系统进行放电。+S5—E1„„+S8—E8为储能双层电容器。双层电容器特点:高动态充电容量,具有频繁充放电能力,免维护,高效率,可分级控制储能容量。
该系统的应用具有明显优势:能量存储系统先进、高性能的控制回路,在实时检测到牵引网的网压波动达到设定的条件后,能够快速地启动充放电装置,对牵引网进行充、放电;而同时由于采用了能够快速进行充放电的双层电容器,整套装置能够对牵引网的电能变化做出及时反应,从而改善牵引网供电质量,满足车辆起动和制动需要。北京地铁5号线的14座牵引变电所均预留安装再生电能吸收装置,从目前4套再生电能吸收装置的运行情况来看,在改善牵引网供电质量、提高车辆舒适性方面,效果良好,达到了设计目的。北京地铁5号线变电所的一套再生电能吸收装置设备采购费用为51O余万元人民币,造价昂贵。因此,在计划采用这种设备时需要考虑经济效益,对近期和长期经济效益、社会效益要综合比较,最终确定是否可行。随着产品的大规模化生产以及电子产品的飞速发展,类似产品的价格必将大幅下降,相信不久的将来再生电能吸收技术能在地铁领域得到大面积应用,成为轨道交通牵引供电技术发展的方向。其次是逆变装置以及相关技术(1)逆变至中压网络的应用
本方案采用如图1所示原理图。虚线框中的部分即所提出的再生制动能量回馈系统,从主接线上看,该系统与牵引供电支路并列布置在交流中压电网和直流牵引母线之间。系统包含1台多重化变压器以及多个四象限PWM变流器模块,整套装置与传统的二极管整流机组并列布置。系统的多重化变压器一次侧通过高压开关柜QFac与交流中压电网相连,其低压侧每套绕组都与一个四象限变流器模块交流侧相连,四象限变流直流侧则并联在一起后通过直流开关柜QFdc和负极柜QCdc与直流牵引母线相连。
系统检测直流母线电压,当确定有车辆制动且直流母线电压超过设置的门槛值时,进入回馈模式。此时装置将多余的再生制动能量通过各重IGBT变流器以及多重化变压器回馈到交流中压电网,此时装置内能量的流动方向是从牵引直流母线流向交流中压电网,且交流中压电网侧的功率因数接近-1。
针对目前城轨供电系统再生制动能量回馈的几个问题,该方案提出了基于多重化四象限变流器的制动能量回馈系统。仿真和样机试制表明,该系统可以在满足电网兼容性要求的前提下实现制动能量回馈至中压电网的功能,加之所述系统与现有牵引供电系统并列连接,并与中压交流电网和直流牵引网之间相互间兼容性好,有着较大实际意义和推广价值。
(2)逆变至低压压负荷网络
逆变至低压网络利用再生制动能量逆变回馈装置来逆变多余的再生制动能量,采用直流牵引网的电压作为能量控制策略依据,提出DC/AC变换器电压外环、电流内环的SVPWM控制策略;运用Matlab/Simlulink搭建了一个750V直流电气化铁路等效模型仿真平台,并通过仿真和实验验证了该控制策略的可行性和有效性。再生制动能量逆变回馈装置能满足地铁列车再生制动能量吸收利用及稳定直流牵引网电压要求,实现车辆再生制动能量回馈利用。
图1示出再生制动能量逆变回馈装置主电路。该系统由三相交流电源经降压变压器降压后与二极管构成不可控整流来模拟变电所直流牵引供电系统,整流器输出24脉动整流电压到直流牵引供电网,电路后端加入逆变器和电机,通过控制电机运行的不同状态来模拟地铁运行工况,再生制动能量逆变回馈装置并联在直流母线电压端。
在三相静止对称坐标系数学模型中,因为并网逆变器的交流侧均为时变交流量,所以对控制系统的设计比较复杂。为使控制系统的设计变简单,可通过坐标变换转换到与电网基波频率同步旋转的d,q坐标系下。这样,经过坐标旋转变换后,三相对称静止坐标系中的基波正弦量将转化为同步旋转坐标系中的直流变量。这里对电压源型逆变器采用输出电流控制,在与电网电压矢量同步旋转的d,q坐标系下,应用同步矢量电流PI控制器对逆变器输出电流实施闭环控制,实现有功和无功的解祸控制,达到逆变器输出单位功率因数并网的目的。图2示出DC/AC控制的流程图,采用基于SVPWM的双环控制结构,直流牵引网的电压采用外环控制,而内环控制逆变器输出电流。
外环控制直流牵引网电压,实际直流牵引网电压叽与给定电压叽'的差值作为直流电压PI调节器的输入,其输出作为对应有功功率的d轴电流参考值ia*,通过调节逆变器传送到电网的有功功率,使直流牵引网电压工作在给定参考电压。内环为电流控制环,在与电网电压矢量同步旋转的d,q坐标系统下,利用两个PI调节器对逆变器输出电流的d,q轴分量进行解祸控制,PI调节器的输出分别为Ud*和Uq*。根据Ud*和Uq*及电网电压矢量旋转角度的值,利用7段式SVPWM算法即可得三相参考电压Ua,Ub,Uc的调制波形。设置iq*=0使逆变器输出功率因数为1。该装置的驱动电路将无桥Boost的PFC和半桥谐振LLC电路有机结合,具有器件少,成本低,无电解电容,控制简单,输入功率因数高等优点。
由上述分析可知:
电容储能型或飞轮储能型再生制动能量吸收装置主要采用IGBT 逆变器将列车的再生制动能量吸收到大容量电容器组或飞轮电机中,当供电区间内有列车起动或加速需要取流时,该装置将所储存的电能释放出去并进行再利用。该类吸收装置的电气系统主要包括储能电容器组或飞轮电机、IGBT 斩波器、直流快速断路器、电动隔离开关、传感器和微机控制单元等。该装置充分利用了列车再生制动能量,节能效果好,并可减少列车制动电阻的容量。其主要缺点是要设置体积庞大的电容器组和转动机械飞轮装置作为储能部件,因此应用实例较少。
逆变回馈型再生制动能量吸收装置主要采用电力电子器件构成大功率晶闸管三相逆变器,该逆变器的直流侧与牵引变电所中的整流器直流母线相联,其交流进线接到交流电网上。当再生制动使直流电压超过规定值时,逆变器启动并从直流母线吸收电流,将再生直流电能逆变成工频交流电回馈至交流电网。该吸收装置的电气系统主要包括晶闸管逆变器、逆变变压器、平衡电抗器、交流断路器、直流快速断路器、电动隔离开关、直流电压变换器和调节控制柜等。该装置充分利用了列车再生制动能量,提高了再生能量的利用率,节能效果好,并可减少列车制动电阻的容量。其能量直接回馈到电网,既不要配置储能元件,又不要配置吸收电阻,因此对环境温度影响小,在大功率室内安装的情况下多采用此方案。
第二篇:刹车回收能量分析(转载学习材料)
刹车能量回收分析
摘要:电动汽车的驱动电机运行在再生发电状态时,既可以提供制动力,又可以给电池充电回收车体动能,从而延长电动车续驶里程。对制动模式进行了分类,并详细探讨了中轻度刹车时制动能量回收的机制和影响因素。提出了制动能量回收的最优控制策略,给出了仿真模型及结果,最后基于仿真模型及XL型纯电动车对控制算法的效果进行了评价。
关键词:制动能量回收 电动汽车 镍氢电池 Simulink模型电动汽车(EV)的研究是在环境保护问题及能源问题日益受到关注的情况下兴起的。在EV性能提高并逐步迈向产业化的过程中,提高能量的储备与利用率是迫切需要解决的两个问题。尽管蓄电池技术有了长足进步,但由于受安全性、经济性等因素的制约,近期不会有大的突破。因此如何提高EV能量利用率是一个非常关键的问题。制动能量回收问题对于提高EV的能量利用率具有重要意义。电动汽车采用电制动时,驱动电机运行在发电状态,将汽车的部分动能回馈给蓄电池以对其充电,对延长电动汽车的行驶距离是至关重要的。国外有关研究表明,在存在较频繁的制动与起动的城市工况运行条件下,有效地回收制动能量,可使电动汽车的行驶距离延长百分之十到百分之三十。目前国内关于制动能量回收的研究还处在初级阶段。制动能量回收要综合考虑汽车动力学特性、电机发电特性、电池安全保证与充电特性等多方面的问题。研制一种既具有实际效用、又符合司机操作习惯的系统是有一定难度的。本文对上述问题作了一些积极的探索,并得出了一些有益的结论。
1 制动模式电动汽车制动可分为以下三种模式,对不同情况应采用不同的控制策略。1.1 急刹车对应于制动加速度大于2m/s的过程。出于安全性方面的考虑,急刹车应以机械为主,电刹车同时作用。在急刹车时,可根据初始速度的不同,由车上ABS控制提供相应的机械制动力。
1.2 中轻度刹车中轻度刹车对应于汽车在正常工况下的制动过程,可分为减速过程与停止过程。电刹车负责减速过程,停止过程由机械刹车完成。两种刹车的切换点由电机发电特性确定。
1.3 汽车长下坡时的刹车汽车长下坡一般发生在盘山公路下缓坡时。在制动力要求不大时,可完全由电刹车提供。其充电特点表现为回馈电流较小但充电时间较长。限制因素主要为电池的最大可充电时间。由于电动汽车主要工作在城市工况下,所以本文将研究重点放在中轻度电刹车上。
2 制动能量回收的约束条件实用的能量回收系统应满足以下要求:(1)满足刹车的安全要求,符合驾驶员的刹车习惯。刹车过程中,对安全的要求是第一位的。需要找到电刹车和机械刹车的最佳覆盖区间,在确保安全的前提下,尽可能多地回收能量。具有能量回收系统的电动汽车的刹车过程应尽可能地与传统的刹车过程近似,这将保证在实际应用中,系统有吸引力,可以为大众所接受。(2)考虑驱动电机的发电工作特性和输出能力。电动汽车中常用的是永磁直流电机或感应异步电机,应针对不同的电机的发电效率特性,采取相应的控制手段。
(3)确保电池组在充电过程中的安全,防止过充。电动汽车中常用的电池为镍氢电池、锂电池和铅酸电池。充电时,避免因充电电流过大或充电时间过长而损害电池。由以上分析可得能量回收的约束条件:
(1)根据电池放电深度的不同,电池可接受的最大充电电流。(2)电池可接受的最大充电时间。
(3)能量回收停止时电机的转速及与此相对应的充电电流值。
本项目原型车为XL型纯电动车,驱动采用异步交流电机,额定功率为20kW,峰值功率为60kW,额定转矩为53Nm,峰值转矩为290Nm,持续输出三倍额定转矩时间不小于30s,额定转速为3600r/min,最高转速为9000r/min。蓄电池采用24节100Ah镍氢电池,其瞬时充电电流可达1.5C(C为电池放电倍率),即150A。在充电电流为0.5C时,可持续安全充电。实验表明,在电机转速为500r/min时,充电电流小于6A。可设此点为电刹车与机械刹车的切换点。
3 制动能量回收控制算法
3.1制动过程分析经推导可得,一次刹车回收能量E=K1K2K3(ΔW-FfS)。特定刹车过程中,车体动能衰减ΔW为定值。特定车型的机械传动效率K1和滚动摩擦力Ff基本上是固定的。对蓄电池来说,制动能量回收对应于短时间(不超过20s)、大电流(可达100A)充电,因此能量回收约束条件(2)可忽略,充电效率K3也可认为恒定。对于电机来说,在制动过程中,其发电效率K2随转速和转矩的变化而变化。制动距离S取决于制动力的大小和制动时间的长短。由以上分析可知,如果电池状态(包括放电深度、初始充电电流强度)允许,回收能量只与发电机发电效率和刹车距离有关。在满足制动时间要求的前提下,通过调节电机制动转矩可以控制电机转速。
3.2 控制算法控制策略可描述为:在满足刹车要求的情况下(由中轻度刹车档位决定),根据能量回收约束条件(1)和(3)的不同值,确定最优制动力,使回收的能量达到最大,即电流对时间的积分达到最大。为了与平常的刹车习惯相符合,令制动力随刹车时间呈线性增长,即Fj=Fo+Kt。问题转换为寻找最优的制动力初值Fo和制动力增长系数K。我国常用的轿车循环25工况规定,汽车最高速度不超过60km/h,加速度变化范围为-1.5m/s2~1.5m/s2。为了体现城市工况下汽车制动的典型性,同时保证安全性和平稳性,考察如下制动过程:电制动初始速度为60km/h(对应电机转速为4500r/min),电制动结束速度为5.4km/h(对应电机转速为500r/min),要求加速度的绝对值小于2m/s2,速度曲线尽量平滑。中度档位刹车时规定制动时间为8s~12s,轻度档位刹车时规定制动时间为12s~18s。下面只讨论中度档位刹车情况,轻度档位刹车情况与之类似。镍氢电池(100Ah)在常温以0.5C放电时,电池单体电压变化范围为12~15V,但电池主要工作于平台段,即12.2~13V。为讨论问题方便,认为电池单体端电压为12.5V,总电压等于300V。据此假设,计算所得的充电电流误差不超过6%。电机在不同的转速与转矩运行时,实测的效率曲线类似指数函数。为了处理方便,可将效率曲线分三段线性拟合成如下函数(拟合误差不超过5%,其中n为电机瞬时转速):与此相对应,可将制动过程分成三个阶段:第一阶段:电机转速变化范围为4500r/min~3600r/min,电机发电效率为0.9,要求制动时间t1≤3s。取制动转矩为60Nm,即F0=1860N,K=20,可得t1=2.62s,平均加速度约为-1.29m/s2。计算可知,充电电流I单调减小,IMax=It=0=75.75A。第二阶段:电机转速变化范围为3600r/min~1500r/min,电机的发电效率变化范围为0.9~0.82,要求制动时间t2≤5s。此时问题归结为在约束条件下的最优控制问题。经仿真计算可知,回收能量值随F0、K的增加而单调增加,并且主要由F0决定。当F0较小时,K的变化对制动时间的影响较大。由于电机可运行在三倍过载(140Nm)的情况下,可得最大制动力为4300N。当F0=4300N、K=30时,回收能量取最大值,为274.3(单位:安秒/As),平均加速度为-2.83m/s2。为了满足刹车平稳性的要求,取F0=2300N、K=50。制动时间为4.71s,此时回收能量为262.8As,较最大值减少4.2%,而平均加速度为-1.68m/s2,仅为最大值的59.3%。此阶段充电电流最大值为76.9A。为了准确描述能量回收的效果;引入了一个新的单位“安秒/As”(即时间以秒为单位对电流的积分)来衡量能量的大小。第三阶段:电机转速变化范围为1500r/min~500r/min,电机的发电效率变化范围为0.82~0.6,要求制动时间t3≤2s。仿照第二阶段的分析方法可得,取F0=3000N、K=30时,制动时间为1.88s,回收能量为42.1As,平均加速度为-2.01m/s2。此时回收能量较最大值减少2.3%,而平均加速度为最大值的74.1%,此阶段充电电流最大值为35.9A。4 仿真模型及结果根据汽车动力学理论并结合其它相关方程可得仿真模型:驱动力合力:Ft=Ff+Fj+Fi+Fw其中,Ft为作用于车轮上的驱动力合力,Ff为滚动摩擦力,Fj为加速阻力,Fi为坡度阻力,Fw为空气阻力。在城市工况下,Fi和Fw可忽略。其中,车体质量为M,瞬时车速为V,制动初始车速为V0,电制动结束时车速为V1,充电电流为I,电池端电压为U。其它符号含义与前相同。在Simulink环境下建立仿真模型,可得电机转速曲线如图1所示,充电电流曲线如图2所示,回收能量曲线如图3所示。
5 制动能量回收控制算法功效的评价以初始速度为60km/h的电制动典型过程为例,经仿真计算可得,回收能量占车体总动能的65.4%,其余的34.6%为机械刹车和电刹车过程中的损耗。以我国轿车25循环工况为例,考虑到摩擦阻力及各部分效率的问题,回收能量占总耗能的23.3%。实验证明,本文提出的制动能量回收控制策略是简洁有效的。在典型城市工况下,配备能量回收系统的XL型纯电动轿车运行可靠,可以延长续驶里程10%以上。6 其它相关问题的讨论锂电池由于比能量高,也是EV常用的动力源。实验证明国内研制的锂电池瞬时(20s)充电电流上限可达1C,对常用的80Ah锂电池而言,其最大充电电流为80A左右。但是出于安全方面的考虑,如果把制动能量回收系统用于锂电池系统,需要严格的限流措施或将电刹车与机械刹车同时作用。制动能量回收的另一种情况是汽车下长缓坡。我国规定城市道路坡度不超过8%,在此条件下,如果EV下坡速度为30km/h(n=2200r/min,效率=0.847),则制动充电电流为37.6A,对镍氢电池来说不到0.4C,可以安全地持续充电。尽管本课题针对纯电动车,但由于混合动力车与纯电动车的能量回收规律相似,因此以上讨论同样适用于各种混合动力车,主要区别在于电池放电倍率大小不同。
第三篇:列车完整性检测方法
摘要
当前国内铁路快速发展,但近期出现了多次安全事故,对人民的生命财产都造成了重大影响。铁路安全关系到国家的长期稳定发展。列车完整性检测是保障列车安全运行的重要一部分。为了防止列车在行驶过程中发生抛车,可以采用有效的列车完整性检查设备。目前低成本技术要求下,所采用的技术可以不依赖轨道电路。主要介绍列车完整性检测技术,主要包括基于GPS技术的列车完整性检测、基于加速度传感器的列车完整性检测。
关键词:完整性;GPS;加速度传感器;
引言
列车的完整性监测是指列车运行过程中利用设备检测列车的完整性,即检测列车有无脱钩抛车现象,目前国内大多采用列车尾部安全防护装置(列尾装置)来完成。列尾装置由安装在列车尾部的主机和司机室内的控制盒两部分组成,它能实时检测列车尾部风管风压并将风压信息不停的反馈给机车司机控制盒,实现欠压报警,提示司机采取紧急制动等应急措施。主机对主管风压进行检测,当列车发生抛车,风管断开漏风,泄露量超过规定值时,通过无线调度系统机车电台及时向机车乘务员发出警示。
但是,但列尾装置在使用过程中还存在一些问题,如:既有或新增的无线列调,没有列尾装置司机控制盒的预留接口,给安装和使用带来困难;无线列调的使用频率不当,造成枢纽内列尾装置主机与无线列调间相互干扰,影响列车的出发;列尾装置对风压的查询频率不够,有些一分钟甚至几分钟查询一次,这样不能保证完整性检查的实时性;另外无线通信存在盲区,设备受环境影响较大。
1.基于GPS技术的列车完整性检测
1.1 GPS技术简介
GPS是英文Global Positioning System(全球定位系统)的简称,而其中文简称为“球位系”。GPS是20世纪70年代由美国陆海空三军联合研制的新一代空间卫星导航定位系统。其主要目的是为陆、海、空三大领域提供实时、全天候和全球性的导航服务,并用于情报收集、核爆监测和应急通讯等一些军事目的,经过20余年的研究实验,耗资300亿美元,到1994年3月,全球覆盖率高达98%的24颗GPS卫星星座己布设完成增强系统的性能,增加系统实现的灵活性,并降低运营成本。
1.2 GPS技术的原理
GPS导航仪GPS导航系统的基本原理是测量出已知位置的卫星到用户接收机之间的距离,然后综合多颗卫星的数据就可知道接收机的具体位置。要达到这一目的,卫星的位置可以根据星载时钟所记录的时间在卫星星历中查出。而用户到卫星的距离则通过记录卫星信号传播到用户所经历的时间,再将其乘以光速得到(由于大气层电离层的干扰,这一距离并不是用户与卫星之间的真实距离,而是伪距(PR):当GPS卫星正常工作时,会不断地用1和0二进制码元组成的伪随机码(简称伪码)发射导航电文。GPS系统使用的伪码一共有两种,分别是民用的C/A码和军用的P(Y)码。C/A码频率1.023MHz,重复周期一毫秒,码间距1
微秒,相当于300m;P码频率10.23MHz,重复周期266.4天,码间距0.1微秒,相当于30m。而Y码是在P码的基础上形成的,保密性能更佳。导航电文包括卫星星历、工作状况、时钟改正、电离层时延修正、大气折射修正等信息。它是从卫星信号中解调制出来,以50b/s调制在载频上发射的。导航电文每个主帧中包含5个子帧每帧长6s。前三帧各10个字码;每三十秒重复一次,每小时更新一次。后两帧共15000b。导航电文中的内容主要有遥测码、转换码、第1、2、3数据块,其中最重要的则为星历数据。当用户接受到导航电文时,提取出卫星时间并将其与自己的时钟做对比便可得知卫星与用户的距离,再利用导航电文中的卫星星历数据推算出卫星发射电文时所处位置,用户在WGS-84大地坐标系中的位置速度等信息便可得知。
图1.1 GPS分布和定位指示
可见GPS导航系统卫星部分的作用就是不断地发射导航电文。然而,由于用户接受机使用的时钟与卫星星载时钟不可能总是同步,所以除了用户的三维坐标x、y、z外,还要引进一个Δt即卫星与接收机之间的时间差作为未知数,然后用4个方程将这4个未知数解出来。所以如果想知道接收机所处的位置,至少要能接收到4个卫星的信号。
1.3 GPS技术在列车完整性检测中的应用
火车在正常行使过程中车头和车尾的距离固定不变。如果发生抛车事故,车头和车尾的距离增大。GPS检测列车抛车的原理就是在火车的行进过程中检测列车头尾的GPS位置信息,并计算列车头尾两点的直线距离。当发现计算的直线
距离Lt大于火车的原始长度Lo时,即可以判定抛车。
欧洲相关部门于目前采用的列车完整性检查系统即TIMS(Train Integrity Monitoring System)是欧洲列车控制系统(ETCS)中的重要组成。TIMS是ETCS三级必需的子系统,能够应用在高密度、移动闭塞的线路上。不仅减少路旁设备外,而且缩短平均列车间隔,提高行车效率。
在TIMS的实现方法中,GPS的应用是通过对车头尾定位来检测车长。定位方法大多轨道地图数据库与卫星定位相结合,利用轨道数字地图的数据资源,补充卫星不完备条件下的定位条件缺失问题。例如在基于轨道地图数据库的双星定位模型中,数字地图提供的区间轨道信息可视为一系列坐标点信息,轨道段可根据要求划分,每一个小段可视为空间直线段,利用一定的坐标转换方法,可以将其转换至WGS一84坐标,再应用双星定位算法定位结算。这种方法计算精确,但是需要编辑数据库,前期准备,测量工作繁重。
目前来看,GPS技术在列车完整性检测以及列车运行检测等的应用中的主要问题是无法有效突破GPS的四星模式,即在环境等客观因素的制约下,接受设备无法接收到四颗以上卫星信号的情况下,无法使用GPS技术。为此有人做了相关研究,基本前提都是在接收设备接收到三颗卫星信号,再利用多普勒效应、虚拟卫星等方法来增加附加约束方程。但其实都没有突破四星定位模型的限制。
2.其他列车完整性检测方案
2.1 加速度传感器检测技术
对火车的运动规律和列车抛车特点进行分析,可以得到如下结论:(1)列车在减速过程中不可能发生抛车;(2)列车在匀速和加速行使时会发生抛车。
在匀速行驶和加速度行驶过程中,火车任何部分的加速度不小于0,车尾也是如此。如果列尾发生抛车,列尾由于收到阻力的影响,加速度出现负值。通过车头和车尾的加速度比对可以确定是否发生抛车。加速度是力的体现,若要检测加速度必须对火车的受力进行分析。火车由于不是刚性连接,受力影响因素很多,火车受力分析非常复杂。在对列车运行有直接影响的力主要有以下三种力:1机车牵引力F;2列车制动力B;3列车运行阻力w。机车牵引力由发动机提供,力的大小由司机控制,方向与运动方向相同。列车制动力由闸瓦装置提供,力的大小由司机提供,方向与运动方向相反。列车阻力最为复杂,它的大小和方向受外部条件影响很大,根据不同情况不同对待。在列车抛车检测过程中,对火车阻力的研
究是火车受力分析的关键所在。
在车尾和车头分别安装加速度传感器,然后把车尾加速度传感器的数据通过“车载综合电台”发送到车头的列车运行信息检测平台,和车头加速度传感器的数据进行对比,就可得到列车的完整性信息。但这种方法对“车载综合电台”的依赖性较高,一旦“车载综合电台”出现问题,其可靠性就难以保障。
2.2 有线呼叫应答法和无线呼叫应答法
为列车中机车、车辆设置唯一的ID标识,并把它们顺序电气连接起来;在软件中,从车头开始将每一个ID标识按照其实际排列顺序串联起来,再首尾相连形成循环队列;运行过程中列车按照车头至车尾的顺序对机车、车辆循环呼叫,应答后,与循环队列中的ID标识进行比较,同时对其前、后ID标识进行比较,若发现不符或顺序错误,则重复上次呼叫,三次后仍不相符,则可以确认列车失去完整性。
这种方法基于电气连接技术,依赖于电路的完整性和有效性。从理论上讲,有线呼叫、应答法只需保证电路连接方面的科学性和合理性即可。然而,从实际操作层面上看,大量的电气连接不仅限制了列车编组、重装的灵活性,而且大大加重了各列车中转站的工作量,增加了调度难度,并且对人工拆装的要求进一步提高,费时费力,不具有经济可行性,也不利于我国铁道运输控制系统的自动化。在我国铁路高速发展的今天,基于幅员辽阔,铁路运输网发达的现实条件,如何有效优化资源配置,使得投入最小化,效益最大化显得尤为重要。因此,在列车中实施大规模的电气连接符合实际运作和当今社会发展所提倡的低能高效原则。
与有线呼叫应答法不同的是它取消了电气连接,由于采取无线通信方式,可能会出现机车、车辆物理连接顺序与循环队列的逻辑连接顺序有所不同的情形,甚至会出现没有物理连接关系的机车、车辆与循环队列的逻辑连接顺序相同的情况,因此,在无线呼叫应答方法中,机车、车辆必须在同一列列车中,即满足同列条件,才可以进行完整性检查的呼叫应答。
无线呼叫应答法适用于铁路列车解体、编组等作业后形成新列车的情形,减少了解体、编组等作业过程中机车、车辆电气连接这一作业环节,是相对于育线连接方式来说较为科学、可行的方式。在目前通信领域日新月异,技术发展高速前行的情况下,无线呼叫应答法将得到更多的技术支持和有效、先进的方法指导。
3.结论
以上三种列车完整性检查的方案都符合移动闭塞系统不设轨道电路和地面
信号机的特点,但是各有利弊。从我国特有的国情、路情出发,基于进一步对上述预案进行安全性、经济性的充分对比论证,从而确定不同方案在城轨、铁路的适用条件和适用范围。GPS检测技术由于四星模式的瓶颈、在地形较为复杂的山区难以接受到有效信息因此难以普及;加速度传感器的方法受制于车尾信息向车头传送的可靠性;呼叫应答法则对车辆解体后再编组提出了更高的要去,其可靠性也得依赖信息传输。综合在以上三种预案中,GPS检测技术的应用前景是最好的。一方面GPS不但可以检测列车完整性,还可以应用于列车定位监测系统中;另一方面,虽然当前在全球定位系统上我们得依赖国外技术,但不久后我国自行研制的北斗定位系统将全面运行,这无疑将进一步降低定位系统在列车完整性检测应用的成本和精度。但是,卫星信号不可能覆盖全部地形情况,所以可以采用加速度传感器法辅助检测,进一步提高完整性检测的可靠性,提高列车运行的安全性。
Monitoring and Controlling Technology of Train’s Integrality
Abstract With the rapid development of current domestic railway system, the accidents about railway safety were happened frequently, these have greatly negative influence on the lives and property of the people.Railway safety is related to the country's long-term stable development.Train integrity monitoring is to ensure the safe operation of the important part of the train.to prevent the tail-escaping in the course of driving from happening, it can be used effectively in train integrity checking equipments.Currently low cost technical requirements, the technology can do not depend on the track circuit.This article mainly introduces the train integrity monitor technology, including GPS technology based on the train integrity monitoring, acceleration sensor based on the train integrity monitoring.Key words:Integrity;GPS;Acceleration sensor.
第四篇:列车碰撞安全性分析
列车碰撞安全性研究发展与应用
吴雪峰
(中南大学 交通运输工程学院,长沙,410075)
摘要:论文详细地介绍了国内外列车碰撞研究的必要性和基本理论,较系统的阐述了国内外列车碰撞研究的发展状况,最后概述了碰撞研究中的一些设计方法以及在实际中吸能元件的简单应用。
关键词:碰撞研究;基本理论;发展状况;设计方法;应用
The Development and Application of Train Crash Safety Research
WU Xue Feng(School of Traffic and Transportation Engineering, Central South University, Changsha 410075)
Abstract:The paper describes the need of domestic and international train collisions research and the basic theory in detail.And systematicly elaborate the development of the train collision studies at home and abroad.Finally,The article overview some of the design on collisions and the simple application of energy absorption components in practice.Keywords:
1、引言
在交通运输业中对车辆的运行安全一直是公众关注的焦点,尤其对行驶中的客运车辆发生意外碰撞、断轴或倾覆脱轨等重大事故一旦发生,如果不能在瞬间将巨大的动能耗散,必将车毁人亡,造成严重的人身伤亡和重大的财产损失。同汽车碰撞事故相比,虽然列车发生碰撞的概率要小于汽车发生碰撞的概率,然而一旦发生意外事故,同样会带来严重后果。例如:2001年8月3日,美国芝加哥市发生高架铁路2辆轻轨列车追尾事故,141人受伤。2005年1月17日,曼谷2列地铁列车在市区国家文化中心车站相撞,列车上约有700名乘客,造成约200人受伤。2005 年3月10日,在阿根廷首都布宜诺斯艾利斯,由于1列火车司机违章,未按信号指示行车,造成2列城市列车追尾相撞,131名乘客受伤等[1-2]。
据文献[3-5]介绍,英国在1972年—1981年10年间,铁路运输发生重大事故达83次,死亡人数共计68人;在1980年—1989年10年间,造成死亡人数增至165人,增幅达140%。我国多年来列车正面冲突、尾追重大意外事故也时有发生,90年代沪宁线旅客列车正面冲突造成80多名旅客罹难, 京广线客车尾追重大事故造成数10人伤亡,08年4.28事件等。这一系列惨痛事件迫使人们去寻找所谓的第二安全措施(相对于行车信号而言),即车辆自身结构防碰撞性能的研究。因此,近十多年来防撞车辆的设计研究便应运而生, 许多国家在铁路机车车辆、城市轨道车辆(地铁、轻轨车辆)的结构设计中, 提高客室的耐撞性,在车体的特定部位设置碰撞能量吸收装置和防爬装置,以期达到发生意外碰撞时能吸收大部分碰撞动能和防爬车目的, 从而最大限度地减少人员的伤亡。英国铁路(BR)与欧洲铁路研究组织(ORE)在防撞车的研究中,进行了大量的基础性试验研究和现车的碰撞试验,所获得的成果可直接用于防撞车的结构设计。
车辆的安全性分为主动安全性和被动安全性。前者是指预防事故发生的安全措施;后者是指发生事故时对乘员进行保护的安全措施,如提高车辆结构的耐撞击性和采用各种安全约束保护系统等。处于对乘客安全的关心与重视,近年来,对车辆被动安全性的评估已成为一个重要的研究课题。
2、国内外研究概况
碰撞安全问题作为现代车辆设计中以人为本思想的重要组成部分而成为近年来国际国内车辆设计研究的一个热点。尽管轨道列车系统中采用了大量的主动安全性措施,但是仍然不能完全消除造成乘客严重伤害的列车碰撞事故。
为使事故造成的损失最小,人们逐步认识到,在设计车辆时充分考虑车辆耐碰撞性能的重要性。英国是较早进行耐冲击车体研究的国家,20世纪90 年代,在英国铁路管理委员会内成立了专门从事列车碰撞问题的研究机构。对铁道车辆结构耐碰撞性和吸能元件,如GRP 圆管进行较深入的理论分析、计算机仿真和试验研究。设计出如图1所示带司机室的防碰撞车辆的前端结构[1]。
当发生碰撞时在乘客区域发生变形前,通过压缩车钩缓冲器以及GRP 能量吸收管和前端底架的有序塑性变形吸收掉1 MJ 能量。法国国营铁路从1998 年开始进行列车耐碰撞性能研究。利用大型有限元软件对两起发生在平交道口的列车碰撞事故进行了仿真再现分析,一起事故是内燃动车与1 辆油罐车相撞,另一起是1 列新型的耐撞击的电动车与1 辆载重30t的大卡车相撞。仿真结果表明,欧洲标准EN12663中的第二部分关于铁道车辆被动安全性评价中的15t重的方型障碍物不能很好地代表与铁道车辆相碰撞的路面车辆。为此,法国在设计TGV双层高速列车的动力车和尾部拖车时,对其结构的耐撞击性能进行了大量的理论研究和试验验证。
因此,近年来,对于如何在更高碰撞速度的情况下,提高列车的被动安全性越来越被重视。车体结构不能发生永久变形的既有概念则应变为基于可控制能量吸收过程的设计理念。欧洲正在讨论制定“碰撞安全性设计”的新标准,旨在定义适合于车体结构的能量吸收装置,它涵盖从有轨电车到高速列车所有类型的轨道客车。
总体而言,车辆的碰撞安全技术可分为主动防护技术和被动防护技术两类。主动防护技术研究为防止碰撞所采取的各项防范措施。被动防护技术则通过车辆耐撞性能的设计,使车辆在事故发生的瞬间通过吸能装置将巨大的撞击动能耗散,从而达到最大可能的保护乘员生命安全的目的。就机车车辆本身而言,研制耐冲击吸能车体对减轻客运列车碰撞事故造成的损失, 有重要的实用价值。为了抵御冲击,按“为乘员提供安全空间和有效缓和撞击”的思路,重新分配车体各部分刚度,设计出具有合适吸能结构的耐冲击车体, 即列车的动车及客车车体结构均按前、中、后三种纵向刚度设置,前后两部分为弱刚度结构, 中间部分为强刚度结构。这样一旦发生列车碰撞事故, 车体两端的弱刚度部分将产生塑性大变形吸收冲击动能(简称吸能结构), 而车体中间的强刚度部分仅产生弹性变形(简称弹变结构),最终达到保护乘客、司机与机器设备安全的目的。这种车体结构设计方法, 不仅在较大碰撞速度下能对乘员起到保护作用, 还将提高中国机车车辆的车体结构设计水平。
3、能量吸收装置的元件
能量吸收装置的基本原理是利用其元件材料的塑性变形能来耗散所遭受的冲击动能,对一般材料可忽略其强化性能, 当作理想刚塑性体。在外载荷达到某一定值时,理想刚塑性体可在外载荷不变的情况下发生塑性流动,即无限制的塑性大变形,这时称元件或结构处于极限状态,所受的载荷称为元件或结构的极限承载能力,或称极限载荷, 与之相对应的速度场称为塑性损伤机构,或塑性流动(可动)机构。元件或结构若有几个塑性流动机构, 则对应地可求得几个不同的极限载荷值, 在极限状态下应选取其最小值作为该元件或结构的极限载荷值, 即极限载荷是唯一确定的。从能量吸收装置的元件变形情况看, 不宜采用单独拉伸或扭转变形, 因为理想刚塑性材料载荷一旦达到材料的屈服极限,则变形要无限增大,直到断裂,很难控制。另外实际材料存在拉伸颈缩变形失稳现象,行程一般较短, 难以满足要求。为了满足设计要求,性能稳定可靠,能量吸收装置大多采用受弯曲变形或压缩变形的元件。
4、研究及实际应用
列车通常由动车与拖车组成的多个车组用车钩装置予以连接而成,车组的动车与拖车之间采用刚度较大的铰连接,因而整个车组实际上相当于一辆车。当列车与前面的障碍物相碰撞时,头车组首先处于撞击状态,其他的车组经过车钩缓冲装置的相位差以后才进入撞击状态。由于相位差的存在,在计算碰撞动能时,可以把列车中各车组视为独立的运动物体,其他车组的质量是不断地补充到撞击车辆的质量中去的。
图2为一个典型的碰撞过程压缩力与压缩变形行程关系曲线,它反映了采用现代碰撞安全性系统原理设计的车辆在列车端部发生碰撞时的情况。对于在非专用线路上运行的列车或者与其它类型的列车混合运行的情况,车体结构的碰撞安全性设计可能还应考虑其它的碰撞假设条件,例如:与其它类型列车的碰撞,在平交道口与卡车或小汽车碰撞等。
地铁车辆碰撞安全性设计通常采用车钩中配置的能量吸收元件以及车辆端部配置的碰撞变形能量吸收区来实现,主要为底架结构中的变形元件,专门用来吸收超过车钩系统能量吸收限度的碰撞能量,一旦发生事故,以降低乘客受到伤害的风险。为了保证碰撞过程中产生的塑性变形局限于预先设定的专门的碰撞变形能量吸收区内,客室区域车体结构的承载能力必须明显高于车辆端部。具有恰当高度的防爬器要正好布置在碰撞变形能量吸收区的前方,防止严重车辆碰撞时发生爬升情况而挤压到客室区域。碰撞变形能量吸收元件的设计通常采用筒形结构(正方形、长方形、六边形、多单元组合断面等)单元。在纵向冲击力的作用下,这些吸能元件能够发生逐步渐进式的塑性屈曲变形,其特性曲线呈现振荡波形,但在碰撞冲击变形的很长距离内冲击力水平基本保持一致,如图2所示。
吸能元件初始长度的70%~75% 可以作为能量吸收用途使用,它与吸能元件的断面形状有关。通常采用的触发机构形式包括:局部弱化处理、锥形结构等,目的是把碰撞初始过程的冲击力峰值降低到合理的水平,并明确定义结构屈服发生的起始位置。车辆端部的设计理念主要通过以下两种方法来实现:①车辆端部碰撞变形能量吸收区与车体结构完全集成在一起。②由吸能元件构成的碰撞变形能量吸收区与防爬器板状结构集成在一起组成一个模块化部件,然后通过螺栓等机械联结组装到底架结构前端。
车辆端部碰撞安全性设计的主要挑战之一来自必须同时满足多个、并且经常是相互矛盾的要求,因为集成的碰撞变形能量吸收区不仅要承受碰撞冲击时的载荷,还要传递静态载荷。例如:作用在防爬器上的纵向及垂向载荷、作用在端墙结构上的局部载荷、车钩载荷、架车引起的载荷等。静强度设计通常导致非常刚性的车体端部结构,但是碰撞安全性设计要求具有一个可以变形的区域,并能够恰当地控制能量吸收的过程及碰撞冲击力的水平。碰撞变形能量吸收区本身的设计与评估已经非常复杂,但是为了兼顾静强度及碰撞安全性两个方面的要求,通常车辆端部的结构设计需要反复进行,而最终的设计结果通常是兼顾两个方面的折衷方案。
参考文献:
[1] 张振淼,逄增祯。轨道车辆碰撞能量吸收装置原理及结构设计(续完).国外铁道车辆,2001,38(4).[2] Frank Muller.轻轨车辆的制造.国外铁道车辆,2000,37(5).[3] John Lewis.铁路客车冲击试验研究.国外铁道车辆,1999(4).[4] 蒋 秋, 穆霞英.塑性力学基础[M].机械工业出版社, 136-141.[5] 田口真.铁道车辆抗冲撞结构的开发.国外铁道车辆,2003,40(6)[6] 刘鸿文.材料力学[M].高等教育出版社, 1979,1622174.[7] Markus Seitzberger.城轨车辆碰撞安全性的现代设计理念.现代城市轨道交通,2005(1)[8] 侯卫星.欧洲铁路碰撞技术的开发[J].国外铁道车辆, 1998,(1):23226,46.[9] 朱西产. 汽车正面碰撞实验法规及其发展趋势的分析汽车工程,2002,(l):l-5 [10] 田红旗等 客运列车耐冲击吸能车体设计方法[J],交通运输工程学报,2001,(1):100-114 [11] 赵洪伦等 城市轨道车辆动车组耐冲击吸能车体设计研究[J], 铁道车辆,2003,(2)12-41 [12] LEW IS J H.Structural crashworthiness2possibilities and p racticalities[C] //Proc Institution of Mech Engineers:Part F.London: Professional Eng Publishing, 2002: 117-121.[13] LU G.Energy absorp tion requirement for crashworthy vehicles[C]//Proc Institution ofMech Engineers: Part F.London: Professional Eng Publishing, 2002: 31-39.[14] The Association of Train Operating Companies.AV /ST 9001, Vehicle interior crashworthiness[S].
第五篇:废旧塑料回收方法和用途解析
废旧塑料回收方法和用途
薄膜是塑料制品中的一大烊,种类繁多,使用寿命一般较短,是回收再生利用的主要品种之一,下按用途,形态简介实例。
(1)农用薄膜,农用薄膜主要有地膜和棚膜,地膜主要为PE膜,棚模有PE,PE/EVA,PVC膜,在回收再生利用时,应将PE和PVC膜区分开来,农用薄膜一般较脏,且常夹带有泥土,沙石,草根,铁钉,铁丝等,要除去铁质杂质并清洗,回收利用的方法主要是造粒,如果,具人工分拣,清洗条件时,经清洗,干燥后的废膜即可直接用热挤压方法生产塑料制品,如盆,桶,塑料法兰等。
废农膜再生粒料用途如下
1、PE再生粒料,PE再生粒料可用来仍生产农膜,也可用来制造化肥包装袋,垃圾袋,农用再生水管,栅栏,树木支撑,盆,桶,垃圾箱,土工材料等。
2、PVC再生粒料,PVC再生粒料可用来生产重包装袋,农用水管,鞋底,等
包装薄膜,包装薄膜的材料包括玻璃纸(赛珞玢),PE,PVC,PP,EVA,PVDC,PA,PET以及各种复合薄膜。单层的一种材料的包装膜,在经分拣,清洗后,可如农用薄膜一样直接制成塑料制品或造粒后制成各种制品。复合薄膜包括不同塑料的复合薄膜和塑料与纸,铝箔,等其他材料制成的薄膜,回收后的再生处理要复杂一些如:
多层塑料复合薄膜,多层塑料复合薄膜有PE/PP,PE/EVA/PE,PE/粘合剂/PA/粘合剂/PE,PP/PVDC等,在再生利用前,首先要将不同的材料分离。分离可用溶剂分离法。
纸塑复合薄膜,纸塑复合薄膜在再生利用前需先将纸塑分离,这也是纸塑复合分离的方法,分离设备为一带有电加热的一镀铬空心料筒,料筒内装有一个带叶片的空心圆筒,料筒和空心圆筒以相反方向转动,破碎后的纸塑混合物加入料筒,在料筒中经加热的混合物上的塑料熔融后以料筒下部出料,空心圆筒中的空气将废气带走。
铝塑复合薄膜,铝塑复合薄膜有BOPP/铝,PE/铝等,用于各种食品包装,使用后的铝塑复合软包装袋实际是一种混合废料,回收利用较为困难。处理的方法国外主要为焚烧回收热量。中国有焚烧取铝和粉碎加入填料制低档粗制品的方法,效果不太理想。这里介绍利用铝的导电性,制造抗静电功能材料的例子,其工艺过程如下:
铝塑复合废料—清洗—粉碎—过筛—团粒— 铝粉-助剂—挤出—半成品—挤出—成品
将铝塑复合废料经清洗,粉碎过10日筛筛选,再进行团粒,该过程可采用北京塑料机械厂的团粒机。团粒工艺条件为喷水:95度水0。8升,加料时间:3min ;抽气时间5min 粉碎时间10min,每次处理15千克。经团粒的物料再用挤出机挤出,成半成品,将此半成品再添加入20%铝 粉,阻燃剂,相容剂及其他助剂,再经挤出选粒即可得制品,用作导电性材料。
3. PET薄膜,在塑料行业,PET主要用作薄膜和瓶,而薄膜可用作包装,装饰,录音带基或电容器绝缘,PET片也用作照相片基,PET也大量用于纤维,薄膜和纤维用PET的物性粘度较瓶用PET纸。因此回收利用也稍有差异。
PET薄膜和纤维生产工厂产生的下脚料可用来等待聚酯/环氧树脂粉末涂料,一般这些下脚料的相对分子质量约为2万,熔点260度以上,为组成单一的线型PET。将这样的下脚料在250至260度下用多元醇醇解,可得相对分子质量约2000至5000的低熔点齐聚聚酯。齐聚聚酯在200至220度加入二元酸酐和酯化剂缩聚,得酸值约3。05 mgKOH/g,软化点约为85至105度,玻璃化温度小于等于50度,的产物,此产物用来制聚酯/环氧树脂粉末涂料。
PET工业废料也可用作粘合剂。日本大阪市立工业研究所和富士照相软片公司用PET工业废料与甘油反应制成粘合剂,用于金属粘接。PET工业废料用已二酸或缩乙二醇改性,也可制得热熔胶,用于柔性材料,如布,皮革,纸,塑料,铝 等的粘接。
废旧PET薄膜,片或纤维加上丙二醇,苯乙烯,丙三醇,邻苯二甲酸酐,顺丁烯二酸酐,对苯二酚及催化剂反应可制得不饱和聚酯,用来制造人造人理石。废旧PET薄膜的回收方法还可参考