第一篇:苏教版五年级上册数学多边形面积练习题
五年级数学多边形面积练习题
一、填空
(1)一个平行四边形,底边是5.7米,面积是26.22平方米,高是()米。
(2)一个三角形和一个平行四边形等底等高,如果平行四边形的面积是128平方米,那么三角形的面积是()
(3)一个梯形,上底是3.4厘米,下底是4.8厘米,高是2.7厘米,则这个梯形的面积是()
(4)一个平行四边形的底是2.4分米,高是底的一半,它的面积是()
(5)一个三角形的底是0.4米,是高的2倍,它的面积是()
(6)一个正方形的周长是16厘米,它的面积是()平方厘米。
(7)一个梯形的上底是4.5厘米,下底是5.2厘米,高是5厘米,它的面积是()平方厘米。(8)一个面积是6.3平方米的梯形,上底是1.4米,高是1.2米,下底是()米。
(9)一个平行四边形的底是14厘米,高是9厘米,它的面积是();与它等底等高的三角形面积是().(10)工地上有一堆钢管,横截面是一个梯形,已知最上面一层有2根,最下面一层有12根,共堆了11层,这堆钢管共有()根。
(11)一个三角形比与它等底等高的平行四边的面积少30平方厘米,则这个三角形的面积是()。(12)一个三角形的面积是4.5平方分米,底是5分米,高是()分米。
(13)一个等边三角形的周长是18厘米,高是3.6厘米,它的面积是()平方厘米。
二、判断(对的画“√”,错的画“×”)
(1)平行四边形只有一条高。
()
(2)两个面积相等的三角形可以拼成一个平行四边形。
()
(3)等底等高的三角形,面积一定相等。
()
(4)平行四边形的面积一定比三角形的面积大。()
(5)平行四边形的面积等于一个三角形面积的2倍.()(6)两个完全一样的梯形,能拼成一个平行四边形.()
(7)把一个长方形的框架挤压成一个平行四边形,面积减少了.()(8)两个三角形面积相等,底和高也一定相等。()
三、选择
(1)把一个平行四边形割补成一个长方形后,面积不变,周长()。
A.扩大了 B.缩小了 C.不变
(2)梯形的上底CD在不停地变化。当CD的长等于零时,D C 这个图形就变成了();当CD长和AB长相等时,这个图 形就变成了()。A B A.三角形 B.长方形 C.平行四边形
(3)面积是56平方分米的平行四边形,底是14分米,高是()。
A.4分米 B.2分米 C.8分米
(4)两个完全一样的锐角三角形,可以拼成一个().A.长方形 B.正方形
C.平行四边形 D.梯形
(5)一个平行四边形,底边不变,高扩大3倍,它的面积()A.扩大3倍 B.扩大9倍 C.缩小3倍
(6)设为一个三角形的面积是63平方分米,高是7分米,它的底是()A.4.5 B.18 C.9(7)把一个平行四边形任意分割成两个梯形,这两个梯形中()总是相等的。
A.高 B.面积 C.上下两底的和
(8)一个三角形,底不变,高扩大5倍,它的面积()。
A.扩大5倍 B.扩大25倍 C.缩小25倍(9)两个()的梯形可以拼成一个平行四边形。
A.面积相等 B.周长相等 C.等腰梯形 D.完全相同(10)等边三角形一定是
_______ 三角形.()A.锐角;
B.直角;
C.钝角
四、(1)计算下面图形阴影部分的面积。(单位:厘米)
3.如图:已知三角形的面积是60平方厘米,求梯形面积。(阴影部分)(单位:厘米)
五、应用题。
(1)有一块梯形的果园,它的上底是110米,下底是160米,高80米,如果每棵果树占地9平方米,这个果园共有果树多少棵?
(2)有一块平行四边形钢板,底是8.4分米,高是3.5分米。如果每平方分米钢板重0.75千克,这块钢板重多少千克?
(3)一块三角形的地,底是500米,高是36米,这块地的面积是多少?如果用拖拉机每天耕18平方米,这块地几天才能耕完?
(4)一块三角形的玻璃,量得这它的底是115分米,高是84分米。如果每平方分米玻璃的价钱是2元,买这块玻璃要用多少钱?
(5)一块红布长30米,宽1.5米,用它做两条直角边都是5分米的直角三角形小旗,可以做多少面?
(6)一块平行四边形的纸板,底边长22厘米,比高多5厘米,这块纸板的面积是多少?
(7)一间教室长9米,宽7.2米,如果用边长3分米的正方形地面砖铺地,一共需要多少块?
(8)有一块梯形蔬菜地,上底长13米,下底长27米,高125米,如果每平方米蔬菜收入3元,这块菜地的总收入是多少元?
(9)一种直角三角形的小旗,一条直角边长15厘米,另一条直角边长24厘米,做150面这样的小旗,至少要用红布多少平方米?
(10)一堆圆形钢管堆在一起,它的横截面形状成等腰梯形。已知这堆钢管最上面一层有8根,最下面的一层有13根,并且下面一层都比上面一层多1根。求这堆钢管共有多少根?
第二篇:苏教版数学五年级上册第二单元多边形的面积同步练习题
苏教版数学五年级上册第二单元多边形的面积同步练习(2)
姓名:________
班级:________
成绩:________
小朋友,带上你一段时间的学习成果,一起来做个自我检测吧,相信你一定是最棒的!
一、选择题
(共5题;共10分)
1.(2分)在图中,平行线间的三个图形,它们的面积相比
()
A
.平行四边形的面积大
B
.三角形的面积大
C
.梯形的面积大
D
.面积都相等
2.(2分)三角形的面积()是平行边形面积的一半。
A
.可能
B
.不可能
C
.一定
3.(2分)如图中,甲和乙两部分面积的关系是()
A
.甲>乙
B
.甲<乙
C
.甲=乙
4.(2分)图中,甲、乙两点分别为长方形宽的中点,那么图中面积相等的所有三角形是()
A
.A、B、C
B
.A、B
C
.B、C
5.(2分)图中阴影部分的面积是空白部分面积的()
A
.一半
B
.相等
C
.2倍
D
.无法比较
二、判断题
(共5题;共10分)
6.(2分)两个三角形面积相等,底和高也一定相等。
7.(2分)下图是三个完全相同的长方形,它们阴影部分的面积相等。
8.(2分)判断对错.
等底等高的三角形,面积一定相等
9.(2分)一个三角形的面积是2.4平方米,高是1.2米,它的底是4米。()
10.(2分)两个等底等高的三角形的形状不一定相同,但它们的面积一定相等。()
三、填空题
(共10题;共14分)
11.(2分)一个三角形的面积是
16cm2,其中一个底是
8cm,这个底上的高是_______cm,用两个这样的三角形拼成的平行四边形面积是_______cm2。
12.(3分)利用数方格的方法数出下面图形的面积。(每个小方格的面积表示l平方厘米)
图①的面积是_______,图②的面积是_______,图③的面积是_______。
13.(1分)如图所示,梯形的周长是52厘米,阴影部分的面积是_______平方厘米。
14.(1分)下图平行四边形的面积是25平方厘米,阴影部分的面积是_______平方厘米.
15.(1分)在一个直径是10厘米的半圆内,画一个面积最大的三角形,这个三角形的面积是_______平方厘米。
16.(1分)一个平行四边形的底是4.2厘米,高是3厘米,与它等底等高的三角形的面积是_______平方厘米.
17.(1分)如图所示,平行四边形的面积是9.6cm,涂色部分的面积是_______cm。
18.(1分)一个平行四边形与一个三角形的面积和底都相等,平行四边形的高是18厘米,三角形的高是_______厘米。
19.(2分)一个直角三角形,三条边的长度分别是10厘米、8厘米、6厘米,这个三角形的周长是_______厘米,面积是_______平方厘米.
20.(1分)一个三角形的面积是120平方厘米.如果它的底是20厘米,高是_______厘米?
四、应用题
(共5题;共25分)
21.(5分)有一个停车场原来的形状是梯形,为扩大停车面积,将它扩建为一个长方形的停车场。扩建后面积增加了多少平方米?
22.(5分)有一块三角形菜地的面积是24平方米,底是120分米,高是多少米?
23.(5分)计算下面图形的面积.(π取3.14)
24.(5分)下面是一个正方形和一个等腰直角三角形组成的图形,已知正方形的周长为44厘米,求三角形的面积是多少平方厘米?
25.(5分)广场中央有一块三角形绿地,底长45米,高24米,如果每棵树占地2.16平方米,这块绿地能种多少棵树?
参考答案
一、选择题
(共5题;共10分)
1-1、2-1、3-1、4-1、5-1、二、判断题
(共5题;共10分)
6-1、7-1、8-1、9-1、10-1、三、填空题
(共10题;共14分)
11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、19-1、20-1、四、应用题
(共5题;共25分)
21-1、22-1、23-1、24-1、25-1、
第三篇:小学五年级数学上册多边形面积知识点归纳总结
小学五年级数学上册多边形面积知识点归纳总结
1、长方形面积=长×宽
字母公式:s=ab
长方形周长=(长+宽)×2
字母公式:c=(a+b)×2(长=周长÷2-宽;
宽=周长÷2-长)
★长方形中面积、周长与长和宽之间的变化关系:
(1)长方形的长加宽等于长方形周长的一半。即 a + b = c ÷ 2
(2)当长方形的周长不变时,长与宽的差越大,这个长方形的面积就越小;反之,长与宽的差越小,这个长方形的面积就越大。
(3)当长方形的面积不变时,长与宽的差越大,这个长方形的周长就越长;长与宽的差越小,这个长方形的周长就越短。
(4)长方形框架拉成平行四边形,周长不变,面积变小。
2、正方形面积=边长×边长
字母公式:s= a²或者s=a×a
正方形周长=边长×4
字母公式:c=4a 或者c= a×4
3、平行四边形面积=底×高
字母公式:s=ah ★平行四边形面积公式的推导过程:剪拼、平移
沿着平行四边形的任意一条高剪开,将其一部分平移与另一部分正好拼成一个长方形,这个长方形的长就是平行四边形的底,这个长方形的宽就是平行四边形的高。因为长方形的面积=长×宽,所以平行四边形的面积=底×高,用字母表示S=a×h。★等底等高的平行四边形面积相等。
4、三角形面积=底× 高÷2
字母公式:s=ah÷2(底=面积×2÷高;
高=面积×2÷底)★三角形面积公式的推导过程: 旋转、平移
将两个完全一样的三角形拼成一个平行四边形,拼成的平行四边形的底就是三角形的底,拼成的平行四边形的高就是三角形的高,拼成的平行四边形的面积是三角形面积的2倍。一个三角形的面积是这个平行四边形的面积一半。因为平行四边形的面积等于底×高,所以三角形的面积等于底×高÷2。用字母表示S=a×h÷2。
★等底等高的三角形面积相等。
★等底等高的三角形和平行四边形面积关系:等底等高的平行四边形面积是三角形面积的2倍;等底等高的三角形面积是平行四边形面积的一半。
5、梯形面积=(上底+下底)×高÷2
字母公式:s=(a+b)×h÷2(上底=面积×2÷高-下底;
下底=面积×2÷高-上底; 高=面积×2÷(上底+下底))
梯形面积公式的推导过程: 旋转、平移
将两个完全一样的梯形拼成一个平行四边形,这个平行四边形的底等于梯形的上底与下底的和,平行四边形的高等于梯形的高,拼成的平行四边形的面积是每个梯形面积的2倍,每个梯形的面积是拼成的平行四边形面积的一半。因为平行四边形的面积=底×高,所以梯形的面积=(上底+下底)×高÷2 用字母表示S=(a+b)×h÷2.6、计算圆木、钢管等的根数:(顶层根数+底层根数)×层数÷2
7、组合图形:转化成已学的简单图形,通过加、减进行计算。
8、有关规律:
★在平行四边形里画一个最大的三角形,这个三角形的面积等于这个平行四边形面积的一半。
★用细木条钉成一个长方形框架,如果把他拉成一个平行四边形,则它的周长不变,面积变小了,因为底不变,高变小了;如果将平行四边形框架拉成一个长方形,则他们的周长不变,面积变大了。
★1三角形和平行四边形面积相等时,若高相等,则三角形的底是平行四边形的2倍,平行四边形的底是三角形的一半。
★2三角形和平行四边形的面积相等时,若底相等,则三角形的高是平行四边形的2倍,平行四边形的高是三角形的一半。★3三角形和平行四边形等底等高时,则三角形的面积是平行四边形的一半,平行四边形的面积是三角形的2倍。★在直角三角形中,斜边最长。
第四篇:五年级数学上册《多边形的面积—三角形的面积》教案
五年级数学上册《多边形的面积—三角
形的面积》教案
教学内容:教材P92例2及练习二十第1、2题。
教学目标:
知识与技能:掌握三角形的面积计算公式,并能正确计算三角形
的面积。
过程与方法:经历探索三角形的面积计算公式的过程,能用三角
形的面积计算公式解决简单的实际问题。
情感、态度与价值观:培养学生观察、比较、推理和概括能力。
教学重点:探索并掌握三角形的面积公式,能正确计算三角形的 面积。
教学难点:三角形的面积计算公式的推导过程和实际应用。
教学方法:动手实践、自主探索、合作交流
教学准备:多媒体。
教学过程:
一、复习导入
.出示长方形、正方形、平行四边形、三角形的图片。
提问:我们学过了哪些平面图形的面积?计算这些图形的面积公
式是什么?
学生回答:长方形的面积=长×宽;正方形的面积=边长×边长;
平行四边形的面积=底×高。
2.师:今天我们就一起来研究“三角形的面积”。(板书题:
三角形的面积)
3.学习新知识之前,我们共同回忆一下平行四边形的面积计算
公式是怎样得出的?(演示推导过程)
(我们把一个平行四边形转化成一个长方形,它的面积与原来的平行四边形的面积相等。这个长方形的长与平行四边形的底相等,这个长方形的宽与平行四边形的高相等,因为长方形的面积
等于长乘宽,所以平行四边形的面积等于底乘高。)
二、互动新授
l.谈话:成为一名少先队员后,我们每个人都要佩带红领巾。红领巾是什么形状的?(三角形)如果要想知道它用多少面料,要怎样解决呢?(求出三角形的面积。)
追问:怎样求三角形的面积?引导学生利用平行四边形的面积公
式的推导猜测,可以把三角形转化成我们已经学过的图形。
2.请每个小组拿出三角形学具,并说一说你发现了什么?(每组都有完全一样的直角三角形、锐角三角形、钝角三角形各两
个。)
师提出操作要求:用两个同样的三角形拼一拼,并思考:能拼出什么图形?拼出图形的面积你会计算吗?拼出的图形与原来的三角形有什么联系?(这里不让学生回答,而是通过动手操作得
出结论。)
3.分小组操作,并利用下表做好记录。
我们是用两个三角形,拼成了一个。
原三角形的底等于拼成的形的;原三角形的高等于拼成的形的;原三角形的面积等于拼成的 形的。
教师巡视指导。
小组汇报操作结果:让学生边汇报边把转化后的图形贴在黑板
上。
学生可能选用两个完全一样的锐角三角形拼成了一个平行四边
形,拼成的平行四边形的面积=底×高,每一个锐角三角形的面积是这个平行四边形面积的一半,所以得
出一个三角形的面积=底×高÷2。
也可能选用两个完全一样的直角三角形拼成了一个长方形,拼成的长方形的长就是直角三角形的一条直角边(可以看作直角三角形的高),拼成的长方形的宽就是直角三角形的另一条直角边(可以看作直角三角形的底)。拼成的长方形的面积=长×宽,每一个直角三角形的面积就是这个长方形面积的一半,所以得出一个
三角形的面积=底×高÷2。还可以选两个完全一样的钝角三角形拼成一个平行四边形。同理,每一个钝角三角形的面积是这个平行四边形面积的一半。所以,得出一个三角形的面积=底×高÷2。
4.小结:不管是锐角三角形、直角三角形,还是钝角三角形,只要是两个完全一样的三角形,就能拼成一个平行四边形,其中
一个三角形的面积是拼成的平行四边形的面积的一半。
追问:是不是任意一个三角形的面积都是任意一个平行四边形面
积的一半呢?
教师可以通过任意一个三角形和与其不等底等高的平行四边形的纸板,让学生通过对比得出:三角形的底和高必须与平行四边形的底和高相等时,这个三角形的面积才是平行四边形的面积的一半。三角形的面积是与它等底等高的平行四边形的面积的一半。(教师根据学生回答板书)
再让学生说一说三角形的面积的计算公式是什么?
.如果用a表示三角形的底,h表示三角形的高,s表示三角形的面积,那么三角形的面积计算公式可以写成:S=ah÷2(板书)
6.教学教材第92页例2。
出示第92页例2:红领巾的底是l,高是33,它的面积
是多少平方厘米?
让学生独立计算,再集体订正。
说一说都是怎样做的,并根据学生的汇报板书计算过程:
S=ah÷2
=100×33÷2
=160(2)
7.让学生再说一说:为什么要除以2?
学生可能会回答:“底×高”表示用两个完全一样的三角形拼成的平行四边形的面积;因为一个三角形的面积是拼成的平行四边
形面积的一半,所以要“÷2”。
三、巩固拓展
.出示:一种零有一面是三角形,三角形的底是6厘米,高是4厘米。这个三角形的面积是多少平方厘米?由学生独立解答,订正答案。
2.完成教材第92页“做一做”第1题。先让学生找一找三角尺的底和高,使学生明白直角三角形的任意一条直角边作底,另一条直角边就作高。如底是72,高是12。再进行计算。
3.完成教材第92页“做一做”第2题。
先说一说涂色的三角形的面积与平行四边形的面积有什么关系,再计算。(涂色的三角形的面积是平行四边形面积的一半。)
四、堂小结
师:这节你学会了什么?有哪些收获?
引导总结:
.三角形的面积=底×高÷2,用字母表示S=ah÷2。
2.要求三角形的面积需要知道三角形的底和高。
3.三角形的面积是与它等底等高的平行四边形的面积的一半。
五、作业:教材第93页练习二十第1、2题。
板书设计:
三角形的面积
三角形的面积是与它等底等高的平行四边形的面积的一半。
三角形的面积=底×高÷2
第五篇:五年级数学上册《多边形面积》课堂教学评课专题
《多边形面积》课堂教学评课
《多边形面积》的教学是学生学习了长方形、正方形的面积计算方法后再次接触平行四边形、三角形、梯形这些平面图形平面图形的面积公式,而后种平面图形的面积公式的推导又是建立在平行四边形面积公式的基础之上的。从知识的体系来看,平行四边形面积公式应是本学期学习的面积公式的核心知识,核心知识体现在:后两种面积公式都是转化成已学的平行四边形来推导的,把新知转化成旧知、陌生转化成熟悉又是解决问题的一个重要策略,乃至是后续数学学习的一种思想方法。本课教学中,曹老师大胆地对教材作了创造性的处理和运用,将原本的两节课融合到一节课之中解决。纵观整个课堂教学,有以下几点体会:
1、尊重学生的原生态思维。数学是思维的数学,脱离了思维,课堂就是一潭死水,没有任何生机与活力。曹老师在课中多次提问学生:“你是怎样想的?”“老师要听你的真实想法。”这样,就充分点燃起学生思维的火花,不管正确与否,老师注重的是学生的思维参与过程,课堂是一个讨论场和辩论场,教师也可从回答中洞察和明辨学生对于知识的理解和掌握情况。
2、尊重学生的直观认知。把长方形、正方形、平行四边形、三角形分别剪下后标上有关名称和数据贴到黑板上,便于学生感受公式的由来和知识的体系;在平行四边形和三角形面积的推导过程中,多次实物演示和多媒体演示剪、拼的转化过程,让学生通过视觉的直观感知加深对知识实质的而理解;又如,通过剪拼演示,化解了思维难点即求有草部分的面积是多少。
3、尊重知识的沿袭。课首先复习长方形和正方形面积的计算,目的在于唤醒学生学习的方法,它们都是先通过数方格的方法得出面积的,然后出示一个平行四边形让学生说一下它的面积是多少,学生就马上迁移过来,把它通过平移后变成一个长方形,知道了长方形面积也就得出了平行四边形面积,为何要把它变成长方形,主要是让学生体会到长方形格子便于数数和计算。在学生掌握了平行四边形面积公式后,教师又巧妙过渡,出示一个平行四边形把它一折为二,引导学生思考三角形面积是多少、三角形面积该如何计算?这里实质上也是沿袭着转化思想,三角形的面积计算要通过平行四边形面积来推导。而且又注重了知识的变式,如已知平行四边形(三角形)面积和高(底),如何求底(高)?等,把知识融会贯通起来。
本节课曹老师大胆地改造教材、处理教材,为我们数学课教学模式的改良迈出了可贵而又关键的一步,这种探索精神值得大家学习。就本课的设计而言,有几个问题需要追问:课堂的大容量和密度如何兼顾到小部分学困生?转化过程中学生的操作体验应如何把握?三角形面积公式的推导如何让学生体验到转化过程及前后联系?这些都是我们需要思考的和研讨的。