小学六年级总复习数的认识知识点

时间:2019-05-14 10:11:20下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《小学六年级总复习数的认识知识点》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《小学六年级总复习数的认识知识点》。

第一篇:小学六年级总复习数的认识知识点

小学六年级总复习知识点

数的认识

一、整数和小数

1、自然数、0、整数

(1)数物体的时候,用来表示物体个数的0,1,2,3„叫做自然数.(2)一个物体也没有用0表示.0也是自然数.(3)0和自然数都是整数.注: 但不能说整数只包括0和自然数

2、十进制计数法

(1)一(个)、十、百、千、万„„都叫做计数单位.其中“一”是计数的基本单位.(2)10个一是十,10个十是百„„10个一百亿是一千亿„„每相邻两个计数单位之间的进率都是十.这种计数方法叫做十进制计数法.3、整数的读法和写法

读数时,从高位起,一级一级地往下读,属于亿级和万级的要读出级名.684528563读作: 六亿八千四百五十二万八千五百六十三。

读数时,每级末尾的“0”都不读,其他数位有一个0或连续几个0都只读一个0.8000406000读作:八十亿零四十万六千。写数时,从高位起,一级一级地往下写,哪一位上一个单位也没有,就在哪个数位上写0。

4.四舍五入法

求一个数的近似数,要看尾数的最高位上的数是几,如果比5小,就把尾数都舍去;如果尾数最高位上的数是5或大于5,就把尾数舍去后,要向它的前一位进1.5.整数大小的比较

比较两个多位数的大小,首先看它们位数的多少,位数较多的数较大;如果两个数的位数相同,那么首先看最高位,最高位上的数较大的,这个数就大;如果最高位相同,则左边第二位上的数较大的,这个数就大„„

6.小数

把整数“1”平均分成10份,100份„„这样的一份或几份分别是十分之几,百分之几„„可以用小数表示.小数点右边第一位是十分位,计数单位是十分之一;第二位是百分位,计数单位是百分之一„„

小数部分的最大计数单位是十分之一,没有最小的计数单位。

小数部分有几个数位,就叫做几位小数.7.小数的读法和写法 读小数时,小数的整数部分按整数的读法来读,小数点读作“点”,小数部分按照顺序读出每一个数位上的数字.写小数时,整数部分按照整数的写法来写,小数点写在个位右下角,小数部分顺次写出每一个数位上的数字.8.小数的性质

小数的末尾添上0或者去掉0,小数的大小不变.运用小数的性质,可以在小数末尾添上0.如:3.5=3.50 也可以把小数化简.3.500=3.5 9.小数点数位移动引起小数大小的变化

小数点向右(左)移动一位、两位、三位„„原来的数就扩大(缩小)10倍、100倍、1000倍„„

如果要把一个数扩大或缩小10倍、100倍„„只需要移动小数点,数位不够时用0补足。

比较小数的大小:先看它们的整数部分,整数部分大的那个数就大;整数部分相同的,十分位上的数大的那个数就大;十分位上的数也相同的,百分位上的数大的那个数就大。

10.循环小数

一个小数的小数部分,从某一位起,有一个或几个数字依次不断重复出现,这样的数叫做循环小数。如 0.5555„„ 7.23838„„

依次不断重复出现的数字叫做循环节.循环小数的简便记法 如:0.5555„„ 记作:0.5 7.23838„„记作:7.238 10.循环小数分类

循环节从小数部分第一位开始的叫纯循环小数.如:0.5 循环节不是从小数部分第一位开始的叫混循环小数.如7.238 11.小数的分类

(1).按小数位数是有限还是无限分

有限小数:小数部分的数位是有限的小数,叫做有限小数。

无限小数:小数部分的数位是无限的小数,叫做无限小数。无限小数又分为无限不循环小数和无限循环小数。无限不循环小数是指一个数的小数部分,数字排列无规律且位数无限,这样的小数叫做无限不循环小数。一个数的小数部分,有一个数字或者几个数字依次不断重复出现,这个数叫做无限循环小数。无限循环小数又分为纯循环小数和混循环小数。纯循环小数:循环节从小数部分第一位开始的,叫做纯循环小数。混循环小数:循环节不是从小数部分第一位开始的,叫做混循环小数。(2)按小数的整数部分是否为0分

12.数的改写

一个较大的多位数,为了读写方便,常常把它改写成用 “万”或“亿”作单位的数.有时还可以根据需要,省略这个数某一位后面的尾数,写成近似数.如:把76450000改写成用“万”作单位的数是(7645万)把235800改写成用“万”作单位的数是(23.58万)235800省略万位后面的尾数约为(24万)把34562800000改写成用“亿”作单位的数后,保留两位小数是(345.63亿)

二、分数和百分数 1.分数的意义和分数单位

单位“1”—— 一个物体,一个计量单位或是许多物体组成的一个整体,都可以用自然数1来表示,通常我们把它叫做单位“1”。

分数——把单位“1”平均分成若干份,表示这样的一份或者几份的数,叫做分数。

分数单位——把单位“1”平均分成若干份,表示其中的一份的数。2.分数的分类

真分数:分子比分母小的分数叫做真分数。真分数小于1。假分数:分子比分母大或者分子和分母相等的分数,叫做假分数。假分数大于或等于1。

带分数:假分数可以写成整数与真分数合成的数,通常叫做带分数。3.分数比较大小 ★分母相同的两个分数,分子大的分数比较大.★分子相同的两个分数,分母小的分数比较大。

★分数的分母和分子都不相同的,先通分,再比较两个数的大小。

4.分数的基本性质

分数的分子和分母同时乘以或者除以相同的数(零除外),分数的大小不变 5.最简分数

计算的结果,能约分的要约成最简分数;假分数的,一般要化成带分数或整数。

判断一个最简分数能不能化成有限小数。分母中除了2和5以外,不含有其他的质因数,就能化成有限小数。如果分母中含有2和5 以外的质因数,这个分数就不能化成有限小数。6.约分和通分

(1)约分—— 把一个分数化成和它相等,但分子和分母都比较小的分数。约分的方法:用分子和分母的公约数(1除外)去除分子、分母;通常要除到得出最简分数为止。(2)通分—— 先求出原来几个分母的最小公倍数,然后把各个分数分别化成用这个最小公倍数作分母的分数。通分的方法:先求出原来的几个分数分母的最小公倍数,然后把各分数化成用这个最小公倍数作分母的分数。7.百分数的意义

表示一个数是另一个数的百分之几的数叫百分数。百分数又叫百分率或百分比。百分数后面不能带单位名称。

百分数通常用“%”来表示。百分号是表示百分数的符号。8.数的互化

(1)小数化成分数:原来有几位小数,就在1的后面写几个零作分母,把原来的小数去掉小数点作分子,能约分的要约分。

(2)分数化成小数:用分母去除分子。能除尽的就化成有限小数,有的不能除尽,不能化成有限小数的,一般保留三位小数。

(3)小数化成百分数:只要把小数点向右移动两位,同时在后面添上百分号。

三、数的整除 1.整除与除尽

整除:整数a除以整数b(b≠0),除得的商是整数而没有余数,我们就说数a能被数b整除,或数b能整除a.除尽:数a除以数b(b≠0),除得的商是整数或是有限小数, 这就叫做除尽。

注:整除是除尽的一种特殊情况,整除也可以说是除尽,但除尽不一定是整除.2.约数和倍数 如果数a能被数b整除(b≠0),a就叫做b的倍数,b就叫做a的约数。

一个数的约数的个数是有限的,其中最小的约数是1,最大的约数是它本身。一个数的倍数的个数是无限的,其中最小的倍数是它本身,没有最大的倍数。约数和倍数是相互依存的。

3.能被2.3.5整除的数的特征

(1)个位上是0、2、4、6、8的数,都能被2整除,例如:202、480、304,都能被2整除

(2)个位上是0或5的数,都能被5整除,例如:5、30、405都能被5整除。

(3)一个数的各位上的数的和能被3整除,这个数就能被3整除,例如:12、108、204都能被3整除。

(4)能同时被2,5整除的数的特征:个位是0(5)能同时被2,3,5整除的数的特征:个位是0,而且各个位上的数字的和能被3整除。

4.奇数与偶数

能被2整除的数叫做偶数。不能被2整除的数叫做奇数。一个自然数不是奇数就是偶数。0也是偶数。

5.质数与合数

一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数)。100以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。

一个数,如果除了1和它本身还有别的约数,这样的数叫做合数,例如 4、6、8、9、12都是合数。

1不是质数也不是合数。最小质数是:2 最小合数是:4 6.质因数和分解质因数

质因数:每一个合数都可以写成几个质数相乘的形式,这几个质数叫做这个合数的质因数。例如15=3×5,3和5 叫做15的质因数。

分解质因数:把一个合数用几个质因数相乘的形式表示出来,叫做分解质因数。分解质因数的方法: 短除法

7.最大公约数和最小公倍

几个数公有的约数,叫做这几个数的公约数;其中最大的一个叫做这几个数的最大公约数。

几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个叫做这几个数的最小公倍数。

8.互质数

公约数只有1的两个数叫做互质数。

成互质关系的两个数,有下列几种情况:

(1)1和任何自然数互质。

(2)相邻的两个自然数互质。

(3)两个不同的质数互质。

当合数不是质数的倍数时,这个合数和这个质数互质。两个合数的公约数只有1时,这两个合数互质,如果几个数中任意两个都互质,就说这几个数两两互质。

9.求最大公约数和最小公倍数

⑴如果较小数是较大数的约数,那么较小数就是这两个数的最大公约数;较大数就是这两个数的最小公倍数。

⑵如果两个数互质,它们的最大公约数就是1;最小公倍数就是它们的积。

四、正数与负数

像+

13、+

38、+49„„都是正数,“+”是正号,通常省略不写;像-

3、-

10、-155„„都是负数,读作负

三、负

十、„„“-”是负号;0既不是正数,也不是负数。

正数都大于0,负数都小于0。

第二篇:六年级总复习数的认识精选习题

总复习数的认识练习题

一、填空题 1、5060086540读作()。省略亿后面的尾数是()

2、二百零四亿零六十万零二十写作()。3、5009000改写成用“万”作单位的数是()4、960074000用“亿”作单位写作();用“亿”作单位再保留两位小数()。

5、把3/

7、3/8和4/7从小到大排列起来是()。6、0,1,54,208,4500都是()数,也都是()数。

7、分数的单位是1/8的最大真分数是(),它至少再添上()个这样的分数单位就成了假分数。8、0.045里面有45个()。

9、把0.58万改写成以“一”为单位的数,写作()。

10、把一根5米长的铁丝平均分成8段,每一段的长度是这根铁丝的(),每段长()米。11、6/13的分数单位是(),它里面有()个这样的单位。

12、()个1/7是5/7;8个()是 0.08。

13、把12.5先缩小10倍后,小数点再向右移动两位,结果是()。

14、分数单位是1/11的最大真分数和最小假分数的和是()。

二、判断(对的打“√”,错的打“×”)

1、所有的小数都小于整数。()

2、比7/9小而比5/9大的分数,只有6/9一个数。()2、120/150不能化成有限小数。()3、1米的4/5与4米的1/5同样长。()

4、合格率和出勤率都不会超过 100%。()5、0表示没有,所以0不是一个数。()6、0.475保留两位小数约等于0.48。()

7、因为3/5比5/6小,所以3/5的分数单位比5/6的分数单位小。()

8、比3小的整数只有两个。()9、4和0.25互为倒数。()

10、假分数的倒数都小于1。()

11、去掉小数点后面的0,小数的大小不变。()12、5.095保留一位小数约是5.0。()

三、填空题 1、24和8,()是()的约数,()是()的倍数。

2、在1、2、3、9、24、41和51中,奇数是(),偶数是(),质数是(),合数是(),()是奇数但不是质数,()是偶数但不是合数。

3、一个数的最小倍数是12,这个数有()个约数。4、21的所有约数是(),21的全部质因数有()

5、一个合数的质因数是10以内所有的质数,这个合数是()。

6、a=2×2×5 ,b=2×3×3,a、b两数的最大公约数是(),最小公倍数是()。

7、a与b是互质数,它们的最大公约数是(),它们的最小公倍数是()。8、20以内,既是偶数又是质数的数是(),是奇数但不是质数的数是()。

9、把171分解质因数是()

五、判断(对的打“√”,错的打“×”)

1、任何自然数都有两个约数。()

2、互质的两个数没有公约数。()

3、所有的质数都是奇数。()

4、一个自然数不是奇数就是偶数。()

5、因为21÷7=3,所以21是倍数,7是约数。()

6、质数可能是奇数也可能是偶数。()

7、因为60=3×4×5,所以3、4、5都是60的质因数。()8、8能被0.4整除。()9、18既是18的约数,又是18的倍数。()

10、有公约数1的两个数,叫做互质数。()

11、因为8和13的公约数只有1,所以8和13是互质数。()

12、所有偶数的公约数是2。()

六、选择(将正确答案的序号填在括号里)

1、下面各组数中,第一个数能整除第二个数的是()(1)0.2和0.24(2)35和5(3)5和25

2、下面各组数,一定不能成为互质数的一组是()(1)质数与合数(2)奇数与偶数(3)质数与质数(4)偶数与偶数

3、把210分解质因数是()

(1)210=2×7×3×5×1(2)210=2×5×21(3)210=3×5×2×7

4、两个奇数的和()

(1)是奇数(2)是偶数(3)可能是奇数,也可能是偶数

5、如果a、b都是自然数,并且a÷b=4,那么数a和数b的最大公约数是()。(1)4(2)a(3)b

6、一个合数至少有()个约数。(1)1(2)2(3)3 7、6是36和48的()

(1)约数(2)公约数(3)最大公约数

8、有4、5、7、8这四个数,能组成()组互质数。

(1)3(2)4(3)5

9、一个正方形的边长是一个奇数,这个正方形的周长一定是()

(1)质数(2)奇数(3)偶数

10、下面各数中能被3整除的数是()(1)84(2)8.4(3)0.6

11、下列各数中,同时能被2、3和5整除的最小数是()

(1)100(2)120(3)300 12、8和5是()。(1)互质数(2)质数(3)质因数

13、已知a能整除23,那么a是()(1)46(2)23(3)1或23

14、如果用a表示自然数,那么偶数可以表示为()(1)a+2(2)2a(3)a-1(4)2a-1

15、一个能被9、12、15整除的最小数是(3(2)90(3)180)(1)

第三篇:小学六年级英语总复习知识点归纳之三

小学六年级英语总复习知识点归纳之三

(话题9-12)

(9)动物:家畜、家禽;农场动物、动物园及野生动物的特点;生活地点和所属关系

words(animals): cat, dog, duck, goose(geese)fish, sheep, bird, panda, monkey, rabbit, hen , cock, chicken, tiger, lion, pig, cow , mouse(mice),giraffe,dolphin,生活地点:at home, in a farm, in a zoo …

所属关系:同上话题(7)

(10)植物:特点、所属关系;存在的位置

words: tree, rose, flower, leaf(leaves)…

(11)环境与建筑:特点、所属关系;存在的位置

buildings: factory, hospital, park, house, library, museum, office, farm, post office, bank, police station, train station, sports stadium, department store, store, school, classroom, house: bathroom, living-room, sitting-room, bedroom, washroom,kitchen, garden…

房子的基本构造: door, gate, wall, window, floor…

相关句型: 1)Where do you study at ? I study at Longdong Primary School.2)Where does your mother work at ? She works at a hospital.3)Let’s meet at the gate of the park.4)My brother is playing in the garden.(12)身体:特点

body: head, hair, eye, nose, ear, mouth, neck, shoulder, hand, finger, foot(feet),toe…

外貌: fat, thin, plump , tall, short, old, young, round face, two big blue eyes, long hair, short hair, black hair ,white hair…

相关句型: 1)I’m /You’re /He’s/She’s /We’re /They’re(not)tall.2)Is he/she tall or short? He’s /She’s tall(short).3)I/We/They/You have(got)black hair.4)He/She has(got)a round face.5)Has he/she got long hair ? Yes, he/she has.No, he/she hasn’t.注意:描述人的外貌时,have与has用法上的区别;形容词的用法,如 :tall, short, old, young, black , long…

第四篇:六年级总复习数与代数,数的认识教案

教学内容:义务教育课程标准实验教科书第12册84页“整理与反思”和“练习与实践”5-10

教学目标:

使学生通过复习,进一步掌握数的读写、改写和大小比较,进一步明确奇数与偶数、素数与合数、公因数与公倍数的联系与区别,加深整数及其性质的理解。

教学重点、难点:进一步掌握数的读写、改写和大小比较,进一步明确奇数与偶数、素数与合数、公因数与公倍数的联系与区别,加深整数及其性质的理解。

教学设计:

一、复习多位数

1、复习数的读写:出示第84页上第6题,要求学生写出这些数。

补充:一个数由3个千万、4个百、5个一组成,这个数是(),读作()

2、复习数的改写

说明:一个比较大的数,为了读写方便,常常把它改写成用“万”或“亿”作单位的数,请你将上面这些数分别用“万”和“亿”作单位进行改写。

学生独立改写,集体校对,回忆改写方法。

3、复习求一个数的近似数

(1)说明:有时根据需要,还可以省略某一位后面的尾数,求近似数。请你将上面这些数省略“万”后面的尾数,求近似数。

(2)练习:把199163000改写成用“亿”作单位的数是(),精确到亿位是(),省略“万”后面的尾数约是()。

(3)第85页上的第9题:先读题,理解要求,再按要求完成,指名回答。

(4)第85页上的第8题:先读题,理解要求,思考怎样算每户的拥有量,再口算,并将结果按要求取近似值填入表中。指名回答。

二、复习奇数等概念。

1、将1、2、19、30、75、368、100按照不同的标准分类,可以怎样分?

引导学生复习认识:(1)将自然数按能否被2整除分为奇数和偶数两类;

(2)将自然数按因数的个数分成1、素数和合数三类。

2、口答:最小的素数是几?最小的合数是几?20以内的素数有哪些?合数呢?20以内既是偶数又是素数的有(),既是奇数又是合数的有()。

3、将24分解质因数()

4、练习:第85页上第10题,学生先独立思考,再指名回答。

5、补充

(1)35和40的最小公倍数是(),最大公因数是()。

(2)A=3×5×7;B=2×3×7,那么A和B的最小公倍数是(),最大公因数是()。

(3)有一蓝苹果,如果2个2个数,还多1个,如果3个3个数,也多1个,这蓝苹果至少有几个?

(4)有3段钢材分别长30分米、35分米、50分米,要将它截成一小段一小段而没有多余,至少可以截成几小段?

课前思考:

在教材的总复习这一部分,提供的复习思路是清晰的,提供的复习题也是较为典型实用的,但由于第一大部分有关“数的认识”所涉及到的数的概念相当多,所以还需要我们联系学生学习情况,将所要复习的这些内容作适当分解和重组。高教导在前一课时中主要复习了自然数、整数、分数、小数、百分数的意义,在本课时中主要就数的改写及数的整除中涉及到的倍数、因数及偶数、奇数、合数、素数等内容进行复习。这里还需补充2、3、5的倍数的特征和短除法求最大公因数和最小公倍数的内容。

复习内容的学习难度比前一课时有所增加,所以除了讲清每一个概念外,更主要的是通过一些形式多样的练习来帮助学生内化。针对复习难点,我补充以下练习:

1.一个三位数2□□,是5的倍数,又是3的倍数,这个三位数的末两位可以是哪些数?

2.某市汽车站1路公交车每隔6分钟发一次车,3路车每隔10分钟发一次车。早晨6时,1路、3路公交车同时发车,问经过多长时间1路、3路公交车又同时发车?

3.王老师的小灵通号码是一个八位数,如果从左往右数,第三位上的数是最大的一位数,第四位上的数是最小的合数,第六位上的数既不是素数也不是合数,其余各位上的数都是偶素数。你知道这个电话号码吗?

4.把一张长20厘米、宽12厘米的长方形纸裁成同样大小、面积尽可能大的正方形,没有剩余,至少可以裁多少个?

5.求出各组数的最大公因数和最小公倍数。

18和24 30和45 21、28和

42课前思考:

每次看了孙老师发的帖子,就感觉学到了很多东西,作为一个新教师,我好象有点被动,懒于思考,也懒于探索,也没有想的那么深,钻研的那么透。事实上教学就应该结合学生的实际情况来进行。其实在六年级上学期我也帮学生整理归纳了素数和合数以及最大公因数和最小公倍数的一些内容,不知道学生还能否有些印象,但从学生之前学的效果来看,最大公因数和最小公倍数这部分内容学生掌握得不错,我将它分为3种情况:一种是倍数关系,一种是互质关系,一种是一般关系(提倡用短除法来做)。但是在运用这一知识解决实际问题的过程中,学生还是会存在一定的困难,仍然需要加强练习。

课前思考:

“数的认识”第二课时,主要是读数与写数和小数的一些性质与规律的内容,教学中学生可能会对一些结论(比如读写数的方法的描述)的完整概括有些困难,对于教材中的练习题,由于难度不大,学生的练习效果应该不会糟糕,教学时重点关注学困生的掌握情况。高教导和孙老师增加的补充题,适当增加了点练习难度,让课堂多一些味道。

课后反思:

从学生课堂上的学习情况来看,单单求一个数的最小公倍数和最大公因数,学生经过复习都能掌握,但是在求实际问题时,不少学生就遇到了困难。其次,把奇数、偶数、素数、合数这些内容综合起来,学生的判断就有错误了。书上的内容确实很简单,对学生来说基本没问题,但在做补充习题第4小题时,要求用下列所有卡片组成符合条件的小数时,两个班都有一部分学生犯了同样的错误:没有把所给的卡片全部用上,尤其是在填写最小的两位数时,不少学生写了0.25。仔细回想一下,在五年级也遇到过类似的题目,学生也犯了同样的错误,没有想象中的那么容易,复习课反而让我感到比上新课来的困难些,仍然需要和学生一起努力。

课后反思:

这节课的读数与写数和小数的一些性质与规律学生掌握的还行,主要问题出在 “倍数、因数”方面的知识,这个地方的概念比较多,虽然布置学生复习了,但是实际教学时学生还是有些生疏,新教材中就没有用“整除”这一概念来说明“倍数与因数”的意思。看来,抽空一定要把前面的教材翻开来看一看。

课后反思:

本课时复习的内容较多,特别是很多学生对于因数、倍数、素数、合数等内容已遗忘得差不多,所以在今天的课上先重点复习了这些概念,然后逐一完成相应的练习。复习过程中,我较多地关注了平时学习有困难的学生。这些学生由于对于这部分内容没有真正理解,结果就在练习过程中屡屡出错,特别是应用最大公因数和最小公倍数的知识解决实际问题时更是不知道该如何思考。抽空还是要辅导这些学生,否则与其他学生的差距会更大。

第五篇:2014年小学六年级数学毕业总复习(知识点)

潼南县玉溪镇小学校

2014毕业班小学数学总复习资料

常用的数量关系式

1、每份数×份数=总数 总数÷每份数=份数 总数÷份数=每份数 2、1倍数×倍数=几倍数 几倍数÷1倍数=倍数 几倍数÷倍数=1倍数

3、速度×时间=路程 路程÷速度=时间 路程÷时间=速度

4、单价×数量=总价 总价÷单价=数量 总价÷数量=单价

5、工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率

6、加数+加数=和 和-一个加数=另一个加数

7、被减数-减数=差 被减数-差=减数 差+减数=被减数

8、因数×因数=积 积÷一个因数=另一个因数

9、被除数÷除数=商 被除数÷商=除数 商×除数=被除数 小学数学图形计算公式

1、正方形(C:周长 S:面积 a:边长)周长=边长×4 C=4a 面积=边长×边长 S=a×a

2、正方体(V:体积 a:棱长)

表面积=棱长×棱长×6 S表=a×a×6

体积=棱长×棱长×棱长 V=a×a×a

3、长方形(C:周长 S:面积 a:边长)

周长=(长+宽)×2 C=2(a+b)面积=长×宽 S=ab

4、长方体(V:体积 s:面积 a:长 b: 宽 h:高)(1)表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)(2)体积=长×宽×高 V=abh

5、三角形(s:面积 a:底 h:高)

面积=底×高÷2 s=ah÷2

三角形高=面积 ×2÷底 三角形底=面积 ×2÷高

6、平行四边形(s:面积 a:底 h:高)

面积=底×高 s=ah

7、梯形(s:面积 a:上底 b:下底 h:高)

面积=(上底+下底)×高÷2 s=(a+b)× h÷2

8、圆形(S:面积 C:周长 л d=直径 r=半径)

(1)周长=直径×л=2×л×半径 C=лd=2лr(2)面积=半径×半径×л

9、圆柱体(v:体积 h:高 s:底面积 r:底面半径 c:底面周长)

(1)侧面积=底面周长×高=ch(2лr或лd)(2)表面积=侧面积+底面积×2(3)体积=底面积×高(4)体积=侧面积÷2×半径

10、圆锥体(v:体积 h:高 s:底面积 r:底面半径)

体积=底面积×高÷3

11、总数÷总份数=平均数

12、和差问题的公式

(和+差)÷2=大数(和-差)÷2=小数

13、和倍问题

和÷(倍数-1)=小数 小数×倍数=大数(或者 和-小数=大数)

14、差倍问题

差÷(倍数-1)=小数 小数×倍数=大数(或 小数+差=大数)

15、相遇问题

潼南县玉溪镇小学校

相遇路程=速度和×相遇时间 相遇时间=相遇路程÷速度和 速度和=相遇路程÷相遇时间

17、利润与折扣问题

利润=售出价-成本

利润率=利润÷成本×100%=(售出价÷成本-1)×100% 涨跌金额=本金×涨跌百分比 利息=本金×利率×时间

税后利息=本金×利率×时间×(1-20%)

常用单位换算

长度单位换算

1千米=1000米 1米=10分米

1分米=10厘米 1米=100厘米

1厘米=10毫米

面积单位换算

1平方千米=100公顷

1公顷=10000平方米

1平方米=100平方分米

1平方分米=100平方厘米

1平方厘米=100平方毫米

体(容)积单位换算

1立方米=1000立方分米

1立方分米=1000立方厘米

1立方分米=1升

1立方厘米=1毫升

1立方米=1000升

重量单位换算

1吨=1000 千克

1千克=1000克

1千克=1公斤

人民币单位换算

1元=10角

1角=10分

1元=100分

时间单位换算

1世纪=100年

1年=12月

大月(31天)有:135781012月

小月(30天)的有:46911月

平年2月28天, 闰年2月29天

平年全年365天, 闰年全年366天

1日=24小时

1时=60分

1分=60秒

1时=3600秒

基本概念

潼南县玉溪镇小学校

如果数a能被数b(b ≠ 0)整除,a就叫做b的倍数,b就叫做a的约数(或a的因数)。倍数和约数是相互依存的。

因为35能被7整除,所以35是7的倍数,7是35的约数。

一个数的约数的个数是有限的,其中最小的约数是1,最大的 约数是它本身。例如:10的约数有1、2、5、10,其中最小的约数是1,最大的约数是10。

一个数的倍数的个数是无限的,其中最小的倍数是它本身。3的倍数有:3、6、9、12„„其中最小的倍数是3,没有最大的倍数。

个位上是0、2、4、6、8的数,都能被2整除,例如:202、480、304,都能被2整除。

个位上是0或5的数,都能被5整除,例如:5、30、405都能被5整除。

一个数的各位上的数的和能被3整除,这个数就能被3整除,例如:12、108、204都能被3整除。

一个数各位数上的和能被9整除,这个数就能被9整除。

能被3整除的数不一定能被9整除,但是能被9整除的数一定能被3整除。

一个数的末两位数能被4(或25)整除,这个数就能被4(或25)整除。例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除。

一个数的末三位数能被8(或125)整除,这个数就能被8(或125)整除。例如:1168、4600、5000、12344都能被8整除,1125、13375、5000都能被125整除。

能被2整除的数叫做偶数。

不能被2整除的数叫做奇数。

0也是偶数。自然数按能否被2 整除的特征可分为奇数和偶数。

一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数),100以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。

一个数,如果除了1和它本身还有别的约数,这样的数叫做合数,例如 4、6、8、9、12都是合数。

1不是质数也不是合数,自然数除了1外,不是质数就是合数。如果把自然数按其约数的个数的不同分类,可分为质数、合数和1。

每个合数都可以写成几个质数相乘的形式。其中每个质数都是这个合数的因数,叫做这个合数的质因数,例如15=3×5,3和5 叫做15的质因数。

把一个合数用质因数相乘的形式表示出来,叫做分解质因数。

例如把28分解质因数

几个数公有的约数,叫做这几个数的公约数。其中最大的一个,叫做这几个数的最大公约数,例如12的约数有1、2、3、4、6、12;18的约数有1、2、3、6、9、18。其中,1、2、3、6是12和1 8的公约数,6是它们的最大公约数。

公约数只有1的两个数,叫做互质数,成互质关系的两个数,有下列几种情况:

1和任何自然数互质。

相邻的两个自然数互质。

两个不同的质数互质。

当合数不是质数的倍数时,这个合数和这个质数互质。

两个合数的公约数只有1时,这两个合数互质,如果几个数中任意两个都互质,就说这几个数两两互质。

如果较小数是较大数的约数,那么较小数就是这两个数的最大公约数。

如果两个数是互质数,它们的最大公约数就是1。

几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数,如2的倍数有2、4、6、8、10、12、14、16、18 „„

3的倍数有3、6、9、12、15、18 „„ 其中6、12、18„„是2、3的公倍数,6是它们的最小公倍数。

如果较大数是较小数的倍数,那么较大数就是这两个数的最小公倍数。如果两个数是互质数,那么这两个数的积就是它们的最小公倍数。

几个数的公约数的个数是有限的,而几个数的公倍数的个数是无限的。

潼南县玉溪镇小学校

(二)小数小数的意义

把整数1平均分成10份、100份、1000份„„ 得到的十分之几、百分之几、千分之几„„ 可以用小数表示。

一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几„„

一个小数由整数部分、小数部分和小数点部分组成。数中的圆点叫做小数点,小数点左边的数叫做整数部分,小数点左边的数叫做整数部分,小数点右边的数叫做小数部分。

在小数里,每相邻两个计数单位之间的进率都是10。小数部分的最高分数单位“十分之一”和整数部分的最低单位“一”之间的进率也是10。

2小数的分类

纯小数:整数部分是零的小数,叫做纯小数。例如: 0.25、0.368 都是纯小数。

带小数:整数部分不是零的小数,叫做带小数。例如: 3.25、5.26 都是带小数。

有限小数:小数部分的数位是有限的小数,叫做有限小数。例如: 41.7、25.3、0.23 都是有限小数。

无限小数:小数部分的数位是无限的小数,叫做无限小数。例如: 4.33 „„ 3.1415926 „„

无限不循环小数:一个数的小数部分,数字排列无规律且位数无限,这样的小数叫做无限不循环小数。例如:∏

循环小数:一个数的小数部分,有一个数字或者几个数字依次不断重复出现,这个数叫做循环小数。例如: 3.555 „„ 0.0333 „„ 12.109109 „„

一个循环小数的小数部分,依次不断重复出现的数字叫做这个循环小数的循环节。例如: 3.99 „„的循环节是“ 9 ”,0.5454 „„的循环节是“ 54 ”。

纯循环小数:循环节从小数部分

潼南县玉溪镇小学校

1.整数的读法:从高位到低位,一级一级地读。读亿级、万级时,先按照个级的读法去读,再在后面加一个“亿”或“万”字。每一级末尾的0都不读出来,其它数位连续有几个0都只读一个零。

2.整数的写法:从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写0。

3.小数的读法:读小数的时候,整数部分按照整数的读法读,小数点读作“点”,小数部分从左向右顺次读出每一位数位上的数字。

4.小数的写法:写小数的时候,整数部分按照整数的写法来写,小数点写在个位右下角,小数部分顺次写出每一个数位上的数字。

5.分数的读法:读分数时,先读分母再读“分之”然后读分子,分子和分母按照整数的读法来读。

6.分数的写法:先写分数线,再写分母,最后写分子,按照整数的写法来写。

7.百分数的读法:读百分数时,先读百分之,再读百分号前面的数,读数时按照整数的读法来读。

8.百分数的写法:百分数通常不写成分数形式,而在原来的分子后面加上百分号“%”来表示。

(二)数的改写

一个较大的多位数,为了读写方便,常常把它改写成用“万”或“亿”作单位的数。有时还可以根据需要,省略这个数某一位后面的数,写成近似数。

1.准确数:在实际生活中,为了计数的简便,可以把一个较大的数改写成以万或亿为单位的数。改写后的数是原数的准确数。例如把 1254300000 改写成以万做单位的数是 125430 万;改写成 以亿做单位 的数 12.543 亿。

2.近似数:根据实际需要,我们还可以把一个较大的数,省略某一位后面的尾数,用一个近似数来表示。例如: 1302490015 省略亿后面的尾数是 13 亿。

3.四舍五入法:要省略的尾数的最高位上的数是4 或者比4小,就把尾数去掉;如果尾数的最高位上的数是5或者比5大,就把尾数舍去,并向它的前一位进1。例如:省略 345900 万后面的尾数约是 35 万。省略 4725097420 亿后面的尾数约是 47 亿。

4.大小比较

1.比较整数大小:比较整数的大小,位数多的那个数就大,如果位数相同,就看最高位,最高位上的数大,那个数就大;最高位上的数相同,就看下一位,哪一位上的数大那个数就大。

2.比较小数的大小:先看它们的整数部分,整数部分大的那个数就大;整数部分相同的,十分位上的数大的那个数就大;十分位上的数也相同的,百分位上的数大的那个数就大„„

3.比较分数的大小:分母相同的分数,分子大的分数比较大;分子相同的数,分母小的分数大。分数的分母和分子都不相同的,先通分,再比较两个数的大小。

(三)数的互化

1.小数化成分数:原来有几位小数,就在1的后面写几个零作分母,把原来的小数去掉小数点作分子,能约分的要约分。

2.分数化成小数:用分母去除分子。能除尽的就化成有限小数,有的不能除尽,不能化成有限小数的,一般保留三位小数。

3.一个最简分数,如果分母中除了2和5以外,不含有其他的质因数,这个分数就能化成有限小数;如果分母中含有2和5 以外的质因数,这个分数就不能化成有限小数。

4.小数化成百分数:只要把小数点向右移动两位,同时在后面添上百分号。

5.百分数化成小数:把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。

6.分数化成百分数:通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。

7.百分数化成小数:先把百分数改写成分数,能约分的要约成最简分数。

(四)数的整除

1.把一个合数分解质因数,通常用短除法。先用能整除这个合数的质数去除,一直除到商是质数为止,再把除数和商写成连乘的形式。

2.求几个数的最大公约数的方法是:先用这几个数的公约数连续去除,一直除到所得的商只有公约数1为止,然后把所有的除数连乘求积,这个积就是这几个数的的最大公约数。

潼南县玉溪镇小学校

3.求几个数的最小公倍数的方法是:先用这几个数(或其中的部分数)的公约数去除,一直除到互质(或两两互质)为止,然后把所有的除数和商连乘求积,这个积就是这几个数的最小公倍数。

4.成为互质关系的两个数:1和任何自然数互质 ; 相邻的两个自然数互质;

当合数不是质数的倍数时,这个合数和这个质数互质; 两个合数的公约数只有1时,这两个合数互质。

(五)约分和通分

约分的方法:用分子和分母的公约数(1除外)去除分子、分母;通常要除到得出最简分数为止。

通分的方法:先求出原来的几个分数分母的最小公倍数,然后把各分数化成用这个最小公倍数作分母的分数。

性质和规律

(一)商不变的规律

商不变的规律:在除法里,被除数和除数同时扩大或者同时缩小相同的倍,商不变。

(二)小数的性质

小数的性质:在小数的末尾添上零或者去掉零小数的大小不变。

(三)小数点位置的移动引起小数大小的变化

1.小数点向右移动一位,原来的数就扩大10倍;小数点向右移动两位,原来的数就扩大100倍;小数点向右移动三位,原来的数就扩大1000倍„„

2.小数点向左移动一位,原来的数就缩小10倍;小数点向左移动两位,原来的数就缩小100倍;小数点向左移动三位,原来的数就缩小1000倍„„

3.小数点向左移或者向右移位数不够时,要用“0"补足位。

(四)分数的基本性质

分数的基本性质:分数的分子和分母都乘以或者除以相同的数(零除外),分数的大小不变。

(五)分数与除法的关系

1.被除数÷除数= 被除数/除数

2.因为零不能作除数,所以分数的分母不能为零。

3.被除数 相当于分子,除数相当于分母。

运算的意义

(一)整数四则运算

1整数加法:

把两个数合并成一个数的运算叫做加法。

在加法里,相加的数叫做加数,加得的数叫做和。加数是部分数,和是总数。

加数+加数=和

一个加数=和-另一个加数

2整数减法:

已知两个加数的和与其中的一个加数,求另一个加数的运算叫做减法。

在减法里,已知的和叫做被减数,已知的加数叫做减数,未知的加数叫做差。被减数是总数,减数和差分别是部分数。

加法和减法互为逆运算。

3整数乘法:

求几个相同加数的和的简便运算叫做乘法。

在乘法里,相同的加数和相同加数的个数都叫做因数。相同加数的和叫做积。

在乘法里,0和任何数相乘都得0.1和任何数相乘都的任何数。

一个因数× 一个因数 =积

一个因数=积÷另一个因数

整数除法:

潼南县玉溪镇小学校

已知两个因数的积与其中一个因数,求另一个因数的运算叫做除法。

在除法里,已知的积叫做被除数,已知的一个因数叫做除数,所求的因数叫做商。

乘法和除法互为逆运算。

在除法里,0不能做除数。因为0和任何数相乘都得0,所以任何一个数除以0,均得不到一个确定的商。

被除数÷除数=商

除数=被除数÷商

被除数=商×除数

(二)小数四则运算

1.小数加法:

小数加法的意义与整数加法的意义相同。是把两个数合并成一个数的运算。

2.小数减法:

小数减法的意义与整数减法的意义相同。已知两个加数的和与其中的一个加数,求另一个加数的运算.3.小数乘法:

小数乘整数的意义和整数乘法的意义相同,就是求几个相同加数和的简便运算;一个数乘纯小数的意义是求这个数的十分之几、百分之几、千分之几„„是多少。

4.小数除法:

小数除法的意义与整数除法的意义相同,就是已知两个因数的积与其中一个因数,求另一个因数的运算。

5.乘方:

求几个相同因数的积的运算叫做乘方。例如 3 × 3 =32

(三)分数四则运算

1.分数加法:

分数加法的意义与整数加法的意义相同。是把两个数合并成一个数的运算。

2.分数减法:

分数减法的意义与整数减法的意义相同。已知两个加数的和与其中的一个加数,求另一个加数的运算。

3.分数乘法:

分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。

4.乘积是1的两个数叫做互为倒数。

5.分数除法:

分数除法的意义与整数除法的意义相同。就是已知两个因数的积与其中一个因数,求另一个因数的运算。

(四)运算定律

1.加法交换律:

两个数相加,交换加数的位置,它们的和不变,即a+b=b+a。

2.加法结合律:

三个数相加,先把前两个数相加,再加上

潼南县玉溪镇小学校

2.整数减法计算法则:

相同数位对齐,从低位加起,哪一位上的数不够减,就从它的前一位退一作十,和本位上的数合并在一起,再减。

3.整数乘法计算法则:

先用一个因数每一位上的数分别去乘另一个因数各个数位上的数,用因数哪一位上的数去乘,乘得的数的末尾就对齐哪一位,然后把各次乘得的数加起来。

4.整数除法计算法则:

先从被除数的高位除起,除数是几位数,就看被除数的前几位; 如果不够除,就多看一位,除到被除数的哪一位,商就写在哪一位的上面。如果哪一位上不够商1,要补“0”占位。每次除得的余数要小于除数。

5.小数乘法法则:

先按照整数乘法的计算法则算出积,再看因数中共有几位小数,就从积的右边起数出几位,点上小数点;如果位数不够,就用“0”补足。

6.除数是整数的小数除法计算法则:

先按照整数除法的法则去除,商的小数点要和被除数的小数点对齐;如果除到被除数的末尾仍有余数,就在余数后面添“0”,再继续除。

7.除数是小数的除法计算法则:

先移动除数的小数点,使它变成整数,除数的小数点也向右移动几位(位数不够的补“0”),然后按照除数是整数的除法法则进行计算。

8.同分母分数加减法计算方法: 同分母分数相加减,只把分子相加减,分母不变。

9.异分母分数加减法计算方法: 先通分,然后按照同分母分数加减法的的法则进行计算。

10.带分数加减法的计算方法: 整数部分和分数部分分别相加减,再把所得的数合并起来。

11.分数乘法的计算法则: 分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。

12.分数除法的计算法则: 甲数除以乙数(0除外),等于甲数乘乙数的倒数。

(六)运算顺序

1.小数四则运算的运算顺序和整数四则运算顺序相同。

2.分数四则运算的运算顺序和整数四则运算顺序相同。

3.没有括号的混合运算: 同级运算从左往右依次运算;两级运算 先算乘、除法,后算加减法。

4.有括号的混合运算: 先算小括号里面的,再算中括号里面的,最后算括号外面的。

5.潼南县玉溪镇小学校

(2)解题步骤:

a 审题理解题意:了解应用题的内容,知道应用题的条件和问题。读题时,不丢字不添字边读边思考,弄明白题中每句话的意思。也可以复述条件和问题,帮助理解题意。

b选择算法和列式计算:这是解答应用题的中心工作。从题目中告诉什么,要求什么着手,逐步根据所给的条件和问题,联系四则运算的含义,分析数量关系,确定算法,进行解答并标明正确的单位名称。

C检验:就是根据应用题的条件和问题进行检查看所列算式和计算过程是否正确,是否符合题意。如果发现错误,马上改正。复合应用题

(1)有两个或两个以上的基本数量关系组成的,用两步或两步以上运算解答的应用题,通常叫做复合应用题。

(2)含有三个已知条件的两步计算的应用题。

求比两个数的和多(少)几个数的应用题。

比较两数差与倍数关系的应用题。

(3)含有两个已知条件的两步计算的应用题。

已知两数相差多少(或倍数关系)与其中一个数,求两个数的和(或差)。

已知两数之和与其中一个数,求两个数相差多少(或倍数关系)。

(4)解答连乘连除应用题。

(5)解答三步计算的应用题。

(6)解答小数计算的应用题:小数计算的加法、减法、乘法和除法的应用题,他们的数量关系、结构、和解题方式都与正式应用题基本相同,只是在已知数或未知数中间含有小数。d答案:根据计算的结果,先口答,逐步过渡到笔答。

(3)解答加法应用题:

a求总数的应用题:已知甲数是多少,乙数是多少,求甲乙两数的和是多少。

b求比一个数多几的数应用题:已知甲数是多少和乙数比甲数多多少,求乙数是多少。

(4)解答减法应用题:

a求剩余的应用题:从已知数中去掉一部分,求剩下的部分。

-b求两个数相差的多少的应用题:已知甲乙两数各是多少,求甲数比乙数多多少,或乙数比甲数少多少。

c求比一个数少几的数的应用题:已知甲数是多少,乙数比甲数少多少,求乙数是多少。

(5)解答乘法应用题:

a求相同加数和的应用题:已知相同的加数和相同加数的个数,求总数。

b求一个数的几倍是多少的应用题:已知一个数是多少,另一个数是它的几倍,求另一个数是多少。

(6)解答除法应用题:

a把一个数平均分成几份,求每一份是多少的应用题:已知一个数和把这个数平均分成几份的,求每一份是多少。

b求一个数里包含几个另一个数的应用题:已知一个数和每份是多少,求可以分成几份。

C 求一个数是另一个数的的几倍的应用题:已知甲数乙数各是多少,求较大数是较小数的几倍。

d已知一个数的几倍是多少,求这个数的应用题。

(7)常见的数量关系:

总价= 单价×数量

路程= 速度×时间

工作总量=工作时间×工效

总产量=单产量×数量

3典型应用题

具有独特的结构特征的和特定的解题规律的复合应用题,通常叫做典型应用题。

潼南县玉溪镇小学校

(1)平均数问题:平均数是等分除法的发展。

解题关键:在于确定总数量和与之相对应的总份数。

算术平均数:已知几个不相等的同类量和与之相对应的份数,求平均每份是多少。数量关系式:数量之和÷数量的个数=算术平均数。

加权平均数:已知两个以上若干份的平均数,求总平均数是多少。

数量关系式(部分平均数×权数)的总和÷(权数的和)=加权平均数。

差额平均数:是把各个大于或小于标准数的部分之和被总份数均分,求的是标准数与各数相差之和的平均数。

数量关系式:(大数-小数)÷2=小数应得数

最大数与各数之差的和÷总份数=最大数应给数

最大数与个数之差的和÷总份数=最小数应得数。

例:一辆汽车以每小时 100 千米 的速度从甲地开往乙地,又以每小时 60 千米的速度从乙地开往甲地。求这辆车的平均速度。

分析:求汽车的平均速度同样可以利用公式。此题可以把甲地到乙地的路程设为“ 1 ”,则汽车行驶的总路程为“ 2 ”,从甲地到乙地的速度为 100,所用的时间为,汽车从乙地到甲地速度为 60 千米,所用的时间是,汽车共行的时间为

+ = , 汽车的平均速度为 2 ÷

=75(千米)

(2)归一问题:已知相互关联的两个量,其中一种量改变,另一种量也随之而改变,其变化的规律是相同的,这种问题称之为归一问题。

根据求“单一量”的步骤的多少,归一问题可以分为一次归一问题,两次归一问题。

根据球痴单一量之后,解题采用乘法还是除法,归一问题可以分为正归一问题,反归一问题。

一次归一问题,用一步运算就能求出“单一量”的归一问题。又称“单归一。”

两次归一问题,用两步运算就能求出“单一量”的归一问题。又称“双归一。”

正归一问题:用等分除法求出“单一量”之后,再用乘法计算结果的归一问题。

反归一问题:用等分除法求出“单一量”之后,再用除法计算结果的归一问题。

解题关键:从已知的一组对应量中用等分除法求出一份的数量(单一量),然后以它为标准,根据题目的要求算出结果。

数量关系式:单一量×份数=总数量(正归一)

总数量÷单一量=份数(反归一)

例 一个织布工人,在七月份织布 4774 米,照这样计算,织布 6930 米,需要多少天?

分析:必须先求出平均每天织布多少米,就是单一量。693 0 ÷(477 4 ÷ 31)=45(天)

(3)归总问题:是已知单位数量和计量单位数量的个数,以及不同的单位数量(或单位数量的个数),通过求总数量求得单位数量的个数(或单位数量)。

特点:两种相关联的量,其中一种量变化,另一种量也跟着变化,不过变化的规律相反,和反比例算法彼此相通。

数量关系式:单位数量×单位个数÷另一个单位数量 = 另一个单位数量

单位数量×单位个数÷另一个单位数量= 另一个单位数量。

例 修一条水渠,原计划每天修 800 米,6 天修完。实际 4 天修完,每天修了多少米?

分析:因为要求出每天修的长度,就必须先求出水渠的长度。所以也把这类应用题叫做“归总问题”。不同之处是“归一”先求出单一量,再求总量,归总问题是先求出总量,再求单一量。80 0 × 6 ÷ 4=1200(米)

(4)和差问题:已知大小两个数的和,以及他们的差,求这两个数各是多少的应用题叫做和差问题。

解题关键:是把大小两个数的和转化成两个大数的和(或两个小数的和),然后再求另一个数。

解题规律:(和+差)÷2 = 大数

大数-差=小数

潼南县玉溪镇小学校

(和-差)÷2=小数

和-小数= 大数

例 某加工厂甲班和乙班共有工人 94 人,因工作需要临时从乙班调 46 人到甲班工作,这时乙班比甲班人数少 12 人,求原来甲班和乙班各有多少人?

分析:从乙班调 46 人到甲班,对于总数没有变化,现在把乙数转化成 2 个乙班,即 9 4 - 12,由此得到现在的乙班是(9 4 - 12)÷ 2=41(人),乙班在调出 46 人之前应该为 41+46=87(人),甲班为 9 4 - 87=7(人)

(5)和倍问题:已知两个数的和及它们之间的倍数 关系,求两个数各是多少的应用题,叫做和倍问题。

解题关键:找准标准数(即1倍数)一般说来,题中说是“谁”的几倍,把谁就确定为标准数。求出倍数和之后,再求出标准的数量是多少。根据另一个数(也可能是几个数)与标准数的倍数关系,再去求另一个数(或几个数)的数量。

解题规律:和÷倍数和=标准数

标准数×倍数=另一个数

例:汽车运输场有大小货车 115 辆,大货车比小货车的 5 倍多 7 辆,运输场有大货车和小汽车各有多少辆?

分析:大货车比小货车的 5 倍还多 7 辆,这 7 辆也在总数 115 辆内,为了使总数与(5+1)倍对应,总车辆数应(115-7)辆。

列式为(115-7)÷(5+1)=18(辆),18 × 5+7=97(辆)

(6)差倍问题:已知两个数的差,及两个数的倍数关系,求两个数各是多少的应用题。

解题规律:两个数的差÷(倍数-1)= 标准数

标准数×倍数=另一个数。

例 甲乙两根绳子,甲绳长 63 米,乙绳长 29 米,两根绳剪去同样的长度,结果甲所剩的长度是乙绳 长的 3 倍,甲乙两绳所剩长度各多少米? 各减去多少米?

分析:两根绳子剪去相同的一段,长度差没变,甲绳所剩的长度是乙绳的 3 倍,实比乙绳多(3-1)倍,以乙绳的长度为标准数。列式(63-29)÷(3-1)=17(米)„乙绳剩下的长度,17 × 3=51(米)„甲绳剩下的长度,29-17=12(米)„剪去的长度。

(7)行程问题:关于走路、行车等问题,一般都是计算路程、时间、速度,叫做行程问题。解答这类问题首先要搞清楚速度、时间、路程、方向、杜速度和、速度差等概念,了解他们之间的关系,再根据这类问题的规律解答。

解题关键及规律:

同时同地相背而行:路程=速度和×时间。

同时相向而行:相遇时间=速度和×时间

同时同向而行(速度慢的在前,快的在后):追及时间=路程速度差。同时同地同向而行(速度慢的在后,快的在前):路程=速度差×时间。

例 甲在乙的后面 28 千米,两人同时同向而行,甲每小时行 16 千米,乙每小时行 9 千米,甲几小时追上乙?

分析:甲每小时比乙多行(16-9)千米,也就是甲每小时可以追近乙(16-9)千米,这是速度差。

已知甲在乙的后面 28 千米(追击路程),28 千米 里包含着几个(16-9)千米,也就是追击所需要的时间。列式 2 8 ÷(16-9)=4(小时)

(8)流水问题:一般是研究船在“流水”中航行的问题。它是行程问题中比较特殊的一种类型,它也是一种和差问题。它的特点主要是考虑水速在逆行和顺行中的不同作用。

船速:船在静水中航行的速度。

水速:水流动的速度。

顺水速度:船顺流航行的速度。

潼南县玉溪镇小学校

逆水速度:船逆流航行的速度。

顺速=船速+水速

逆速=船速-水速

解题关键:因为顺流速度是船速与水速的和,逆流速度是船速与水速的差,所以流水问题当作和差问题解答。解题时要以水流为线索。

解题规律:船行速度=(顺水速度+ 逆流速度)÷2 流水速度=(顺流速度逆流速度)÷2 路程=顺流速度× 顺流航行所需时间

路程=逆流速度×逆流航行所需时间

例 一只轮船从甲地开往乙地顺水而行,每小时行 28 千米,到乙地后,又逆水 航行,回到甲地。逆水比顺水多行 2 小时,已知水速每小时 4 千米。求甲乙两地相距多少千米?

分析:此题必须先知道顺水的速度和顺水所需要的时间,或者逆水速度和逆水的时间。已知顺水速度和水流 速度,因此不难算出逆水的速度,但顺水所用的时间,逆水所用的时间不知道,只知道顺水比逆水少用 2 小时,抓住这一点,就可以就能算出顺水从甲地到乙地的所用的时间,这样就能算出甲乙两地的路程。列式为 284 × 2=20(千米)2 0 × 2 =40(千米)40 ÷(4 × 2)=5(小时)28 × 5=140(千米)。

(9)还原问题:已知某未知数,经过一定的四则运算后所得的结果,求这个未知数的应用题,我们叫做还原问题。

解题关键:要弄清每一步变化与未知数的关系。

解题规律:从最后结果 出发,采用与原题中相反的运算(逆运算)方法,逐步推导出原数。

根据原题的运算顺序列出数量关系,然后采用逆运算的方法计算推导出原数。

解答还原问题时注意观察运算的顺序。若需要先算加减法,后算乘除法时别忘记写括号。

例 某小学三年级四个班共有学生 168 人,如果四班调 3 人到三班,三班调 6 人到二班,二班调 6 人到一班,一班调 2 人到四班,则四个班的人数相等,四个班原有学生多少人?

分析:当四个班人数相等时,应为 168 ÷ 4,以四班为例,它调给三班 3 人,又从一班调入 2 人,所以四班原有的人数减去 3 再加上 2 等于平均数。四班原有人数列式为 168 ÷ 4-2+3=43(人)

一班原有人数列式为 168 ÷ 4-6+2=38(人);二班原有人数列式为 168 ÷ 4-6+6=42(人)三班原有人数列式为 168 ÷ 4-3+6=45(人)。

(10)植树问题:这类应用题是以“植树”为内容。凡是研究总路程、株距、段数、棵树四种数量关系的应用题,叫做植树问题。

解题关键:解答植树问题首先要判断地形,分清是否封闭图形,从而确定是沿线段植树还是沿周长植树,然后按基本公式进行计算。

解题规律:沿线段植树

棵树=段数+1

棵树=总路程÷株距+1

株距=总路程÷(棵树-1)

总路程=株距×(棵树-1)

沿周长植树

棵树=总路程÷株距

株距=总路程÷棵树

总路程=株距×棵树

例 沿公路一旁埋电线杆 301 根,每相邻的两根的间距是 50 米。后来全部改装,只埋了201 根。求改装后每相邻两根的间距。

分析:本题是沿线段埋电线杆,要把电线杆的根数减掉一。列式为 50 ×(301-1)÷(201-1)=75(米)

潼南县玉溪镇小学校

(11)盈亏问题:是在等分除法的基础上发展起来的。他的特点是把一定数量的物品,平均分配给一定数量的人,在两次分配中,一次有余,一次不足(或两次都有余),或两次都不足),已知所余和不足的数量,求物品适量和参加分配人数的问题,叫做盈亏问题。

解题关键:盈亏问题的解法要点是先求两次分配中分配者没份所得物品数量的差,再求两次分配中各次共分物品的差(也称总差额),用前一个差去除后一个差,就得到分配者的数,进而再求得物品数。

解题规律:总差额÷每人差额=人数

总差额的求法可以分为以下四种情况:

潼南县玉溪镇小学校

平行四边形的底a用表示,高用h表示,面积用s表示。

s=ah

三角形的底用a表示,高用h表示,面积用s表示。

s=ah/2

梯形的上底用a表示,下底b用表示,高用h表示,中位线用m表示,面积用s表示。

s=(a+b)h/2 s=mh

圆的半径用r表示,直径用d表示,周长用c表示,面积用s表示。

c=∏d=2∏r s=∏ r²

扇形的半径用r表示,n表示圆心角的度数,面积用s表示。

s=∏ nr²/360

长方体的长用a表示,宽用b表示,高用h表示,表面积用s表示,体积用v表示。

v=sh

s=2(ab+ah+bh)v=abh

正方体的棱长用a表示,底面周长c用表示,底面积用s表示,体积用v表示.s=6a²

v=a³

圆柱的高用h表示,底面周长用c表示,底面积用s表示,体积用v表示.s侧=ch

s表=s侧+2s底

v=sh

圆锥的高用h表示,底面积用s表示,体积用v表示.v=sh/3 用字母表示数的写法

数字和字母、字母和字母相乘时,乘号可以记作“.”,或者省略不写,数字要写在字母的前面。

当“1”与任何字母相乘时,“1”省略不写。

在一个问题中,同一个字母表示同一个量,不同的量用不同的字母表示。

用含有字母的式子表示问题的答案时,除数一般写成分母,如果式子中有加号或者减号,要先用括号把含字母的式子括起来,再在括号后面写上单位的名称。

4将数值代入式子求值

* 把具体的数代入式子求值时,要注意书写格式:先写出字母等于几,然后写出原式,再把数代入式子求值。字母表示的是数,后面不写单位名称。

* 同一个式子,式子中所含字母取不同的数值,那么所求出的式子的值也不相同。

二、简易方程

(一)方程和方程的解

1方程:含有未知数的等式叫做方程。

注意方程是等式,又含有未知数,两者缺一不可。

方程和算术式不同。算术式是一个式子,它由运算符号和已知数组成,它表示未知数。方程是一个等式,在方程里的未知数可以参加运算,并且只有当未知数为特定的数值时,方程才成立。

方程的解:使方程左右两边相等的未知数的值,叫做方程的解。

三、解方程

解方程,求方程的解的过程叫做解方程。

四、列方程解应用题

潼南县玉溪镇小学校列方程解应用题的意义

* 用方程式去解答应用题求得应用题的未知量的方法。

列方程解答应用题的步骤

* 弄清题意,确定未知数并用x表示;

* 找出题中的数量之间的相等关系;

* 列方程,解方程;

* 检查或验算,写出答案。

3列方程解应用题的方法

* 综合法:先把应用题中已知数(量)和所设未知数(量)列成有关的代数式,再找出它们之间的等量关系,进而列出方程。这是从部分到整体的一种 思维过程,其思考方向是从已知到未知。

* 分析法:先找出等量关系,再根据具体建立等量关系的需要,把应用题中已知数(量)和所设的未知数(量)列成有关的代数式进而列出方程。这是从整体到部分的一种思维过程,其思考方向是从未知到已知。

4列方程解应用题的范围

小学范围内常用方程解的应用题:

a一般应用题;

b和倍、差倍问题;

c几何形体的周长、面积、体积计算; d 分数、百分数应用题;

e 比和比例应用题。

比和比例

1比的意义和性质

(1)比的意义

两个数相除又叫做两个数的比。

“:”是比号,读作“比”。比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。

同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商。

比值通常用分数表示,也可以用小数表示,有时也可能是整数。

比的后项不能是零。

根据分数与除法的关系,可知比的前项相当于分子,后项相当于分母,比值相当于分数值。

(2)比的性质

比的前项和后项同时乘上或者除以相同的数(0除外),比值不变,这叫做比的基本性质。

(3)

求比值和化简比

求比值的方法:用比的前项除以后项,它的结果是一个数值可以是整数,也可以是小数或分数。

根据比的基本性质可以把比化成最简单的整数比。它的结果必须是一个最简比,即前、后项是互质的数。

(4)比例尺

图上距离:实际距离=比例尺

要求会求比例尺;已知图上距离和比例尺求实际距离;已知实际距离和比例尺求图上距离。

线段比例尺:在图上附有一条注有数目的线段,用来表示和地面上相对应的实际距离。

(5)按比例分配

在农业生产和日常生活中,常常需要把一个数量按照一定的比来进行分配。这种分配的方法通常叫做按比例分配。

方法:首先求出各部分占总量的几分之几,然后求出总数的几分之几是多少。

比例的意义和性质

(1)比例的意义

表示两个比相等的式子叫做比例。

潼南县玉溪镇小学校

组成比例的四个数,叫做比例的项。

两端的两项叫做外项,中间的两项叫做内项。

(2)比例的性质

在比例里,两个外项的积等于两个两个内向的积。这叫做比例的基本性质。

(3)解比例

根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个数比例中的另外一个未知项。求比例中的未知项,叫做解比例。

正比例和反比例

(1)成正比例的量

两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,他们的关系叫做正比例关系。

用字母表示y/x=k(一定)

(2)成反比例的量

两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,他们的关系叫做反比例关系。

用字母表示x×y=k(一定)

潼南县玉溪镇小学校

(2)计算公式

c=2(a+b)s=ab 2正方形

(1)特征:

四条边都相等,四个角都是直角的四边形。有4条对称轴。(2)计算公式

c=4a s=a²

3三角形

(1)特征

由三条线段围成的图形。内角和是180度。三角形具有稳定性。三角形有三条高。

(2)计算公式

s=ah/2

(3)分类

按角分

锐角三角形 :三个角都是锐角。

直角三角形 :有一个角是直角。等腰三角形的两个锐角各为45度,它有一条对称轴。

钝角三角形:有一个角是钝角。

按边分

不等边三角形:三条边长度不相等。

等腰三角形:有两条边长度相等;两个底角相等;有一条对称轴。

等边三角形:三条边长度都相等;三个内角都是60度;有三条对称轴。

4平行四边形

(1)

特征

两组对边分别平行的四边形。

相对的边平行且相等。对角相等,相邻的两个角的度数之和为180度。平行四边形容易变形。

(2)计算公式

s=ah 5 梯形

(1)特征

只有一组对边平行的四边形。

中位线等于上下底和的一半。

等腰梯形有一条对称轴。

(2)公式

s=(a+b)h/2=mh 6 圆

(1)圆的认识

平面上的一种曲线图形。

圆中心的一点叫做圆心。一般用字母o表示。

半径:连接圆心和圆上任意一点的线段叫做半径。一般用r表示。

在同一个圆里,有无数条半径,每条半径的长度都相等。

通过圆心并且两端都在圆上的线段叫做直径。一般用d表示。

同一个圆里有无数条直径,所有的直径都相等。

同一个圆里,直径等于两个半径的长度,即d=2r。

潼南县玉溪镇小学校

圆的大小由半径决定。圆有无数条对称轴。

(2)圆的画法

把圆规的两脚分开,定好两脚间的距离(即半径);

把有针尖的一只脚固定在一点(即圆心)上;

把装有铅笔尖的一只脚旋转一周,就画出一个圆。

(3)圆的周长

围成圆的曲线的长叫做圆的周长。

把圆的周长和直径的比值叫做圆周率。用字母∏表示。

(4)圆的面积

圆所占平面的大小叫做圆的面积。

(5)计算公式

d=2r r=d/2 c=∏d c=2∏r

s=∏r²

7扇形

(1)

扇形的认识

一条弧和经过这条弧两端的两条半径所围成的图形叫做扇形。

圆上AB两点之间的部分叫做弧,读作“弧AB”。

顶点在圆心的角叫做圆心角。

在同一个圆中,扇形的大小与这个扇形的圆心角的大小有关。

扇形有一条对称轴。

(2)计算公式

s=n∏r²/360 8环形

(1)特征

由两个半径不相等的同心圆相减而成,有无数条对称轴。

(2)计算公式

s=∏(R²-r²)

9轴对称图形

(1)特征

如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。折痕所在的这条直线叫做对称轴。

正方形有4条对称轴,长方形有2条对称轴。

等腰三角形有2条对称轴,等边三角形有3条对称轴。

等腰梯形有一条对称轴,圆有无数条对称轴。

菱形有4条对称轴,扇形有一条对称轴。

三 立体图形

(一)长方体

特征

六个面都是长方形(有时有两个相对的面是正方形)。

相对的面面积相等,12条棱相对的4条棱长度相等。

有8个顶点。

相交于一个顶点的三条棱的长度分别叫做长、宽、高。

潼南县玉溪镇小学校

两个面相交的边叫做棱。

三条棱相交的点叫做顶点。

把长方体放在桌面上,最多只能看到三个面。

长方体或者正方体6个面的总面积,叫做它的表面积。计算公式

s=2(ab+ah+bh)V=sh V=abh

(二)正方体

特征

六个面都是正方形

六个面的面积相等

12条棱,棱长都相等

有8个顶点

正方体可以看作特殊的长方体

计算公式

S表=6a²

v=a³

(三)圆柱

1圆柱的认识

圆柱的上下两个面叫做底面。

圆柱有一个曲面叫做侧面。

圆柱两个底面之间的距离叫做高。

进一法:实际中,使用的材料都要比计算的结果多一些,因此,要保留数的时候,省略的位上的是4或者比4小,都要向前一位进1。这种取近似值的方法叫做进一法。2计算公式

s侧=ch

s表=s侧+s底×2 v=sh/3

(四)圆锥

圆锥的认识

圆锥的底面是个圆,圆锥的侧面是个曲面。

从圆锥的顶点到底面圆心的距离是圆锥的高。

测量圆锥的高:先把圆锥的底面放平,用一块平板水平地放在圆锥的顶点上面,竖直地量出平板和底面之间的距离。

把圆锥的侧面展开得到一个扇形。2计算公式

v= sh/3

(五)球

认识

球的表面是一个曲面,这个曲面叫做球面。

球和圆类似,也有一个球心,用O表示。

从球心到球面上任意一点的线段叫做球的半径,用r表示,每条半径都相等。

通过球心并且两端都在球面上的线段,叫做球的直径,用d表示,每条直径都相等,直径的长度等于半径的

潼南县玉溪镇小学校

倍,即d=2r。

计算公式

潼南县玉溪镇小学校

(1)根据图纸的大小,画出两条互相垂直的射线。

(2)在水平射线上,适当分配折线的位置,确定直线的宽度和间隔。

(3)在与水平射线垂直的深线上根据数据大小的具体情况,确定单位长度表示多少。

(4)按照数据的大小描出各点,再用线段顺次连接起来,并注明数量。

3扇形统计图

用整个圆的面积表示总数,用扇形面积表示各部分所占总数的百分数。

优点:很清楚地表示出各部分同总数之间的关系。

制扇形统计图的一般步骤:

(1)先算出各部分数量占总量的百分之几。

(2)再算出表示各部分数量的扇形的圆心角度数。

(3)取适当的半径画一个圆,并按照上面算出的圆心角的度数,在圆里画出各个扇形。

(4)在每个扇形中标明所表示的各部分数量名称和所占的百分数,并用不同颜色或条纹把各个扇形区别开。

下载小学六年级总复习数的认识知识点word格式文档
下载小学六年级总复习数的认识知识点.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    小学六年级英语总复习知识点归纳之六

    小学六年级英语总复习知识点归纳之六(话题21-24) (21)正在发生的事情:现在进行的动作和发生的事 be doing something 1) I’m/You’re/He’s /She’s /We’re/They’re (not)......

    六年级语文总复习知识点集

    1~6年级基础知识总复习成语 1.寓言成语 杞人忧天愚公移山井底之蛙滥竽充数自相矛盾守株待兔 2.神话传说成语 夸父追日女娲补天精卫填海海市蜃楼天衣无缝牛郎织女 3.历史故......

    小学数学知识点汇总(总复习)

    小学数学知识点汇总 ①加数+加数=和 和-一个加数=另一个加数 ②被减数-减数=差 被减数-差=减数 差+减数=被减数 ③因数×因数=积 积÷一个因数=另一个因数 ④被除数÷除数=商 被除数÷商=......

    总复习知识点(大全)

    1第一单元 一、字、词复习伶俐 婉转 吩咐 清澈 包袱 毒蛇 搭救 狡猾 隐蔽 赏赐 安葬 乐器 凄凉 头帕 披毡 山寨 矫健 摔跤 嫉妒 唉声叹气 口干舌燥 聪明伶俐 粗枝大叶 旷野......

    北师大版六年级数学下册总复习——数的认识

    基础达标卷(总复习——数的认识)六年级数学下(BS)时间:90分钟满分:100分题号一二三四五总分得分一、填空。(28分)1.在15、0.33……、8.25、0、0.6、0.423、π这七个数中,自然数有,小数有,循......

    六年级万以内数的认识总复习教学设计

    六年级万以内数的认识总复习教学设计 教学内容:万以内数的认识复习学习目标: 、 通过复习,使学生正确掌握万以内数的读法、写法、数的组成、大小比较等有关知识;2、 通过整理,使......

    《数的认识》总复习教学设计

    《数的认识》总复习教学设计 ◆您现在正在阅读的《数的认识》总复习教学设计文章内容由收集!本站将为您提供更多的精品教学资源!《数的认识》总复习教学设计教学目标:1、比较......

    小学六年级总复习奥数_火车过桥问题

    火车过桥问题 火车在行驶中,经常发生过桥与通过隧道,两车对开错车与快车超越慢车等情况,在分析题目的时候一定得结合着图来进行【经典例题】 例题1:一列火车经过南京长江大桥,大......