第一篇:2013天津中考数学试题(含答案)免费
<求解答网>祝各位考试取得优异成绩
求解答网——最大的初中题目搜索网站
<求解答网>祝各位考试取得优异成绩
求解答网——最大的初中题目搜索网站
<求解答网>祝各位考试取得优异成绩
求解答网——最大的初中题目搜索网站
<求解答网>祝各位考试取得优异成绩
求解答网——最大的初中题目搜索网站
<求解答网>祝各位考试取得优异成绩
求解答网——最大的初中题目搜索网站
<求解答网>祝各位考试取得优异成绩
求解答网——最大的初中题目搜索网站
<求解答网>祝各位考试取得优异成绩
求解答网——最大的初中题目搜索网站
<求解答网>祝各位考试取得优异成绩
求解答网——最大的初中题目搜索网站
<求解答网>祝各位考试取得优异成绩
求解答网——最大的初中题目搜索网站
<求解答网>祝各位考试取得优异成绩
求解答网——最大的初中题目搜索网站
<求解答网>祝各位考试取得优异成绩
求解答网——最大的初中题目搜索网站
<求解答网>祝各位考试取得优异成绩
求解答网——最大的初中题目搜索网站
<求解答网>祝各位考试取得优异成绩
求解答网——最大的初中题目搜索网站
第二篇:2017中考数学试题含答案
2017中考数学的备考,做试题是必要的。今天小编为大家整理了2017中考数学试题含答案。
2017中考数学试题A级 基础题
1.某省初中毕业学业考试的同学约有15万人,其中男生约有a万人,则女生约有()
A.(15+a)万人 B.(15-a)万人 C.15a万人 D.15a万人
2.若x=1,y=12,则x2+4xy+4y2的值是()
A.2 B.4 C.32 D.1
23.(2013年河北)如图125,淇淇和嘉嘉做数学游戏:
假设嘉嘉抽到牌的点数为x,淇淇猜中的结果应为y,则y=()
A.2 B.3 C.6 D.x+
34.(2012年浙江宁波)已知实数x,y满足x-2+(y+1)2=0,则x-y=()
A.3 B.-3 C.1 D.-
15.(2013年江苏常州)有3张边长为a的正方形纸片,4张边长分别为a,b(b>a)的矩形纸片,5张边长为b的正方形纸片,从其中取出若干张纸片,每种纸片至少取一张,把取出的这些纸片拼成一个正方形(按原纸张进行无空隙、无重叠拼接),则拼成的正方形的边长最长可以为()
A.a+b B.2a+b C.3a+b D.a+2b
6.(2013年湖南湘西州)图126是一个简单的数值运算程序,当输入x的值为3时,则输出的数值为______(用科学计算器计算或笔算).输入x―→平方―→-2―→÷7―→输出
7.已知代数式2a3bn+1与-3am+2b2是同类项,则2m+3n=________.8.(2013年江苏淮安)观察一列单项式:1x,3x2,5x2,7x,9x2,11x2,…,则第2013个单项式是________.9.(2012年浙江丽水)已知A=2x+y,B=2x-y,计算A2-B2.10.(2013年湖南益阳)已知a=3,b=|-2|,c=12,求代数式a2+b-4c的值.2017中考数学试题B级 中等题
11.(2012年云南)若a2-b2=14,a-b=12,则a+b的值为()
A.-12 B.12 C.1 D.2
12.(2012年浙江杭州)化简m2-163m-12得__________;当m=-1时,原式的值为________.13.(2013年辽宁鞍山)刘谦的魔术表演风靡全国,小明也学起了刘谦发明了一个魔术盒,当任意实数对(a,b)进入其中时,会得到一个新的实数:a2+b-1,例如把(3,-2)放入其中,就会得到32+(-2)-1=6.现将实数对(-1,3)放入其中,得到实数m,再将实数对(m,1)放入其中后,得到实数是________.14.若将代数式中的任意两个字母交换,代数式不变,则称这个代数式为完全对称式,如a+b+c就是完全对称式.下列三个代数式:①(a-b)2;②ab+bc+ca;③a2b+b2c+c2a.其中是完全对称式的是()
A.①② B.①③ C.②③ D.①②③
C级 拔尖题X Kb 1.C om
15.(2012年山东东营)若3x=4,9y=7,则3x-2y的值为()
A.47 B.74 C.-3 D.27
16.(2013年广东深圳十校模拟二)如图127,对于任意线段AB,可以构造以AB为对角线的矩形ACBD.连接CD,与AB交于A1点,过A1作BC的垂线段A1C1,垂足为C1;连接C1D,与AB交于A2点,过A2作BC的垂线段A2C2,垂足为C2;连接C2D,与AB交于A3点,过A3作BC的垂线段A3C3,垂足为C3……如此下去,可以依次得到点A4,A5,…,An.如果设AB的长为1,依次可求得A1B,A2B,A3B……的长,则AnB的长为(用n的代数式表示)()
A.1n B.12n C.1n+1 D.12n+1
2017中考数学试题答案
1.B 2.B 3.B 4.A
5.D 6.1 7.5 8.4025x2
9.解:A2-B2=(2x+y)2-(2x-y)2
=4x2y=8xy.10.解:当a=3,b=|-2|=2,c=12时,a2+b-4c=3+2-2=3.11.B 解析:a2-b2=(a+b)(a-b),得到14=12(a+b),即可得到a+b=12.12.m+43 1 解析:m2-163m-12=m+4m-43m-4=m+43;当m=-1时,原式=-1+43=1.13.9 14.A
15.A 解析:∵3x=4,9y=7,∴3x-2y=3x32y=3x9y=47.16.C
第三篇:安徽省中考数学试题(含答案)
2020年安徽省中考数学试题 一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A,B,C,D四个选项,其中只有一个是符合题目要求的。
1.下列各数中,比﹣2小的数是()A.﹣3 B.﹣1 C.0 D.2 2.计算(﹣a)6÷a3的结果是()A.﹣a3 B.﹣a2 C.a3 D.a2 3.下面四个几何体中,主视图为三角形的是()A. B. C. D. 4.安徽省计划到2022年建成54700000亩高标准农田,其中54700000用科学记数法表示为()A.5.47×108 B.0.547×108 C.547×105 D.5.47×107 5.下列方程中,有两个相等实数根的是()A.x2+1=2x B.x2+1=0 C.x2﹣2x=3 D.x2﹣2x=0 6.冉冉的妈妈在网上销售装饰品.最近一周,每天销售某种装饰品的个数为:11,10,11,13,11,13,15.关于这组数据,冉冉得出如下结果,其中错误的是()A.众数是11 B.平均数是12 C.方差是 D.中位数是13 7.已知一次函数y=kx+3的图象经过点A,且y随x的增大而减小,则点A的坐标可以是()A.(﹣1,2)B.(1,﹣2)C.(2,3)D.(3,4)8.如图,Rt△ABC中,∠C=90°,点D在AC上,∠DBC=∠A.若AC=4,cosA,则BD的长度为()A. B. C. D.4 9.已知点A,B,C在⊙O上,则下列命题为真命题的是()A.若半径OB平分弦AC,则四边形OABC是平行四边形 B.若四边形OABC是平行四边形,则∠ABC=120° C.若∠ABC=120°,则弦AC平分半径OB D.若弦AC平分半径OB,则半径OB平分弦AC 10.如图,△ABC和△DEF都是边长为2的等边三角形,它们的边BC,EF在同一条直线l上,点C,E重合.现将△ABC在直线l向右移动,直至点B与F重合时停止移动.在此过程中,设点C移动的距离为x,两个三角形重叠部分的面积为y,则y随x变化的函数图象大致为()A. B. C. D. 二、填空题(本大题共4小题,每小题5分,满分20分)11.计算:1= . 12.分解因式:ab2﹣a= . 13.如图,一次函数y=x+k(k>0)的图象与x轴和y轴分别交于点A和点B.与反比例函数y的图象在第一象限内交于点C,CD⊥x轴,CE⊥y轴.垂足分别为点D,E.当矩形ODCE与△OAB的面积相等时,k的值为 . 14.在数学探究活动中,敏敏进行了如下操作:如图,将四边形纸片ABCD沿过点A的直线折叠,使得点B落在CD上的点Q处.折痕为AP;
再将△PCQ,△ADQ分别沿PQ,AQ折叠,此时点C,D落在AP上的同一点R处.请完成下列探究:
(1)∠PAQ的大小为 °;
(2)当四边形APCD是平行四边形时,的值为 . 三、(本大题共2小题,每小题8分,满分16分)15.(8分)解不等式:1. 16.(8分)如图,在由边长为1个单位长度的小正方形组成的网格中,给出了以格点(网格线的交点)为端点的线段AB,线段MN在网格线上.(1)画出线段AB关于线段MN所在直线对称的线段A1B1(点A1,B1分别为A,B的对应点);
(2)将线段B1A1绕点B1顺时针旋转90°得到线段B1A2,画出线段B1A2. 四、(本大题共2小题,每小题8分,满分16分)17.(8分)观察以下等式:
第1个等式:(1)=2,第2个等式:(1)=2,第3个等式:(1)=2,第4个等式:(1)=2. 第5个等式:(1)=2. … 按照以上规律,解决下列问题:
(1)写出第6个等式: ;
(2)写出你猜想的第n个等式:(用含n的等式表示),并证明. 18.(8分)如图,山顶上有一个信号塔AC,已知信号塔高AC=15米,在山脚下点B处测得塔底C的仰角∠CBD=36.9°,塔顶A的仰角∠ABD=42.0°,求山高CD(点A,C,D在同一条竖直线上).(参考数据:tan36.9°≈0.75,sin36.9°≈0.60,tan42.0°≈0.90.)五、(本大题共2小题,每小题10分,满分20分)19.(10分)某超市有线上和线下两种销售方式.与2019年4月份相比,该超市2020年4月份销售总额增长10%,其中线上销售额增长43%,线下销售额增长4%.(1)设2019年4月份的销售总额为a元,线上销售额为x元,请用含a,x的代数式表示2020年4月份的线下销售额(直接在表格中填写结果);
时间 销售总额(元)线上销售额(元)线下销售额(元)2019年4月份 a x a﹣x 2020年4月份 1.1a 1.43x(2)求2020年4月份线上销售额与当月销售总额的比值. 20.(10分)如图,AB是半圆O的直径,C,D是半圆O上不同于A,B的两点,AD=BC,AC与BD相交于点F.BE是半圆O所在圆的切线,与AC的延长线相交于点E.(1)求证:△CBA≌△DAB;
(2)若BE=BF,求证:AC平分∠DAB. 六、(本题满分12分)21.(12分)某单位食堂为全体960名职工提供了A,B,C,D四种套餐,为了解职工对这四种套餐的喜好情况,单位随机抽取240名职工进行“你最喜欢哪一种套餐(必选且只选一种)”问卷调查.根据调查结果绘制了条形统计图和扇形统计图,部分信息如下:
(1)在抽取的240人中最喜欢A套餐的人数为,扇形统计图中“C”对应扇形的圆心角的大小为 °;
(2)依据本次调查的结果,估计全体960名职工中最喜欢B套餐的人数;
(3)现从甲、乙、丙、丁四名职工中任选两人担任“食品安全监督员”,求甲被选到的概率. 七、(本题满分12分)22.(12分)在平面直角坐标系中,已知点A(1,2),B(2,3),C(2,1),直线y=x+m经过点A,抛物线y=ax2+bx+1恰好经过A,B,C三点中的两点.(1)判断点B是否在直线y=x+m上,并说明理由;
(2)求a,b的值;
(3)平移抛物线y=ax2+bx+1,使其顶点仍在直线y=x+m上,求平移后所得抛物线与y轴交点纵坐标的最大值. 八、(本题满分14分)23.(14分)如图1,已知四边形ABCD是矩形,点E在BA的延长线上,AE=AD.EC与BD相交于点G,与AD相交于点F,AF=AB.(1)求证:BD⊥EC;
(2)若AB=1,求AE的长;
(3)如图2,连接AG,求证:EG﹣DGAG. 2020年安徽省中考数学参考答案与试题解析 一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A,B,C,D四个选项,其中只有一个是符合题目要求的. 1.下列各数中,比﹣2小的数是()A.﹣3 B.﹣1 C.0 D.2 【解答】解:根据两个负数,绝对值大的反而小可知﹣3<﹣2. 故选:A. 2.计算(﹣a)6÷a3的结果是()A.﹣a3 B.﹣a2 C.a3 D.a2 【解答】解:原式=a6÷a3=a3. 故选:C. 3.下面四个几何体中,主视图为三角形的是()A. B. C. D. 【解答】解:A、主视图是圆,故A不符合题意;
B、主视图是三角形,故B符合题意;
C、主视图是矩形,故C不符合题意;
D、主视图是正方形,故D不符合题意;
故选:B. 4.安徽省计划到2022年建成54700000亩高标准农田,其中54700000用科学记数法表示为()A.5.47×108 B.0.547×108 C.547×105 D.5.47×107 【解答】解:54700000用科学记数法表示为:5.47×107. 故选:D. 5.下列方程中,有两个相等实数根的是()A.x2+1=2x B.x2+1=0 C.x2﹣2x=3 D.x2﹣2x=0 【解答】解:A、△=(﹣2)2﹣4×1×1=0,有两个相等实数根;
B、△=0﹣4=﹣4<0,没有实数根;
C、△=(﹣2)2﹣4×1×(﹣3)=16>0,有两个不相等实数根;
D、△=(﹣2)2﹣4×1×0=4>0,有两个不相等实数根. 故选:A. 6.冉冉的妈妈在网上销售装饰品.最近一周,每天销售某种装饰品的个数为:11,10,11,13,11,13,15.关于这组数据,冉冉得出如下结果,其中错误的是()A.众数是11 B.平均数是12 C.方差是 D.中位数是13 【解答】解:数据11,10,11,13,11,13,15中,11出现的次数最多是3次,因此众数是11,于是A选项不符合题意;
将这7个数据从小到大排列后,处在中间位置的一个数是11,因此中位数是11,于是D符合题意;
(11+10+11+13+11+13+15)÷7=12,即平均数是12,于是选项B不符合题意;
S2[(10﹣12)2+(11﹣12)2×3+(13﹣12)2×2+(15﹣12)2],因此方差为,于是选项C不符合题意;
故选:D. 7.已知一次函数y=kx+3的图象经过点A,且y随x的增大而减小,则点A的坐标可以是()A.(﹣1,2)B.(1,﹣2)C.(2,3)D.(3,4)【解答】解:A、当点A的坐标为(﹣1,2)时,﹣k+3=2,解得:k=1>0,∴y随x的增大而增大,选项A不符合题意;
B、当点A的坐标为(1,﹣2)时,k+3=﹣2,解得:k=﹣5<0,∴y随x的增大而减小,选项B符合题意;
C、当点A的坐标为(2,3)时,2k+3=3,解得:k=0,选项C不符合题意;
D、当点A的坐标为(3,4)时,3k+3=4,解得:k0,∴y随x的增大而增大,选项D不符合题意. 故选:B. 8.如图,Rt△ABC中,∠C=90°,点D在AC上,∠DBC=∠A.若AC=4,cosA,则BD的长度为()A. B. C. D.4 【解答】解:∵∠C=90°,AC=4,cosA,∴AB,∴,∵∠DBC=∠A. ∴cos∠DBC=cos∠A,∴,故选:C. 9.已知点A,B,C在⊙O上,则下列命题为真命题的是()A.若半径OB平分弦AC,则四边形OABC是平行四边形 B.若四边形OABC是平行四边形,则∠ABC=120° C.若∠ABC=120°,则弦AC平分半径OB D.若弦AC平分半径OB,则半径OB平分弦AC 【解答】解:A、如图,若半径OB平分弦AC,则四边形OABC不一定是平行四边形;
原命题是假命题;
B、若四边形OABC是平行四边形,则AB=OC,OA=BC,∵OA=OB=OC,∴AB=OA=OB=BC=OC,∴∠ABO=∠OBC=60°,∴∠ABC=120°,是真命题;
C、如图,若∠ABC=120°,则弦AC不平分半径OB,原命题是假命题;
D、如图,若弦AC平分半径OB,则半径OB不一定平分弦AC,原命题是假命题;
故选:B. 10.如图,△ABC和△DEF都是边长为2的等边三角形,它们的边BC,EF在同一条直线l上,点C,E重合.现将△ABC在直线l向右移动,直至点B与F重合时停止移动.在此过程中,设点C移动的距离为x,两个三角形重叠部分的面积为y,则y随x变化的函数图象大致为()A. B. C. D. 【解答】解:如图1所示:当0<x≤2时,过点G作GH⊥BF于H. ∵△ABC和△DEF均为等边三角形,∴△GEJ为等边三角形. ∴GHEJx,∴yEJ•GHx2. 当x=2时,y,且抛物线的开口向上. 如图2所示:2<x≤4时,过点G作GH⊥BF于H. yFJ•GH(4﹣x)2,函数图象为抛物线的一部分,且抛物线开口向上. 故选:A. 二、填空题(本大题共4小题,每小题5分,满分20分)11.计算:1= 2 . 【解答】解:原式=3﹣1=2. 故答案为:2. 12.分解因式:ab2﹣a= a(b+1)(b﹣1). 【解答】解:原式=a(b2﹣1)=a(b+1)(b﹣1),故答案为:a(b+1)(b﹣1)13.如图,一次函数y=x+k(k>0)的图象与x轴和y轴分别交于点A和点B.与反比例函数y的图象在第一象限内交于点C,CD⊥x轴,CE⊥y轴.垂足分别为点D,E.当矩形ODCE与△OAB的面积相等时,k的值为 2 . 【解答】解:一次函数y=x+k(k>0)的图象与x轴和y轴分别交于点A和点B,令x=0,则y=k,令y=0,则x=﹣k,故点A、B的坐标分别为(﹣k,0)、(0,k),则△OAB的面积OA•OBk2,而矩形ODCE的面积为k,则k2=k,解得:k=0(舍去)或2,故答案为2. 14.在数学探究活动中,敏敏进行了如下操作:如图,将四边形纸片ABCD沿过点A的直线折叠,使得点B落在CD上的点Q处.折痕为AP;
再将△PCQ,△ADQ分别沿PQ,AQ折叠,此时点C,D落在AP上的同一点R处.请完成下列探究:
(1)∠PAQ的大小为 30 °;
(2)当四边形APCD是平行四边形时,的值为. 【解答】解:(1)由折叠的性质可得:∠B=∠AQP,∠DAQ=∠QAP=∠PAB,∠DQA=∠AQR,∠CQP=∠PQR,∠D=∠ARQ,∠C=∠QRP,∵∠QRA+∠QRP=180°,∴∠D+∠C=180°,∴AD∥BC,∴∠B+∠DAB=180°,∵∠DQR+∠CQR=180°,∴∠DQA+∠CQP=90°,∴∠AQP=90°,∴∠B=∠AQP=90°,∴∠DAB=90°,∴∠DAQ=∠QAP=∠PAB=30°,故答案为:30;
(2)由折叠的性质可得:AD=AR,CP=PR,∵四边形APCD是平行四边形,∴AD=PC,∴AR=PR,又∵∠AQP=90°,∴QRAP,∵∠PAB=30°,∠B=90°,∴AP=2PB,ABPB,∴PB=QR,∴,故答案为:. 三、(本大题共2小题,每小题8分,满分16分)15.(8分)解不等式:1. 【解答】解:去分母,得:2x﹣1>2,移项,得:2x>2+1,合并,得:2x>3,系数化为1,得:x. 16.(8分)如图,在由边长为1个单位长度的小正方形组成的网格中,给出了以格点(网格线的交点)为端点的线段AB,线段MN在网格线上.(1)画出线段AB关于线段MN所在直线对称的线段A1B1(点A1,B1分别为A,B的对应点);
(2)将线段B1A1绕点B1顺时针旋转90°得到线段B1A2,画出线段B1A2. 【解答】解:(1)如图线段A1B1即为所求.(2)如图,线段B1A2即为所求. 四、(本大题共2小题,每小题8分,满分16分)17.(8分)观察以下等式:
第1个等式:(1)=2,第2个等式:(1)=2,第3个等式:(1)=2,第4个等式:(1)=2. 第5个等式:(1)=2. … 按照以上规律,解决下列问题:
(1)写出第6个等式:(1)=2 ;
(2)写出你猜想的第n个等式:(1)=2(用含n的等式表示),并证明. 【解答】解:(1)第6个等式:(1)=2;
(2)猜想的第n个等式:(1)=2. 证明:∵左边2右边,∴等式成立. 故答案为:(1)=2;
(1)=2. 18.(8分)如图,山顶上有一个信号塔AC,已知信号塔高AC=15米,在山脚下点B处测得塔底C的仰角∠CBD=36.9°,塔顶A的仰角∠ABD=42.0°,求山高CD(点A,C,D在同一条竖直线上).(参考数据:tan36.9°≈0.75,sin36.9°≈0.60,tan42.0°≈0.90.)【解答】解:由题意,在Rt△ABD中,tan∠ABD,∴tan42.0°0.9,∴AD≈0.9BD,在Rt△BCD中,tan∠CBD,∴tan36.9°0.75,∴CD≈0.75BD,∵AC=AD﹣CD,∴15=0.15BD,∴BD=100米,∴CD=0.75BD=75(米),答:山高CD为75米. 五、(本大题共2小题,每小题10分,满分20分)19.(10分)某超市有线上和线下两种销售方式.与2019年4月份相比,该超市2020年4月份销售总额增长10%,其中线上销售额增长43%,线下销售额增长4%.(1)设2019年4月份的销售总额为a元,线上销售额为x元,请用含a,x的代数式表示2020年4月份的线下销售额(直接在表格中填写结果);
时间 销售总额(元)线上销售额(元)线下销售额(元)2019年4月份 a x a﹣x 2020年4月份 1.1a 1.43x 1.04(a﹣x)(2)求2020年4月份线上销售额与当月销售总额的比值. 【解答】解:(1)∵与2019年4月份相比,该超市2020年4月份线下销售额增长4%,∴该超市2020年4月份线下销售额为1.04(a﹣x)元. 故答案为:1.04(a﹣x).(2)依题意,得:1.1a=1.43x+1.04(a﹣x),解得:xa,∴0.2. 答:2020年4月份线上销售额与当月销售总额的比值为0.2. 20.(10分)如图,AB是半圆O的直径,C,D是半圆O上不同于A,B的两点,AD=BC,AC与BD相交于点F.BE是半圆O所在圆的切线,与AC的延长线相交于点E.(1)求证:△CBA≌△DAB;
(2)若BE=BF,求证:AC平分∠DAB. 【解答】(1)证明:∵AB是半圆O的直径,∴∠ACB=∠ADB=90°,在Rt△CBA与Rt△DAB中,∴Rt△CBA≌Rt△DAB(HL);
(2)解:∵BE=BF,由(1)知BC⊥EF,∴∠E=∠BFE,∵BE是半圆O所在圆的切线,∴∠ABE=90°,∴∠E+∠BAE=90°,由(1)知∠D=90°,∴∠DAF+∠AFD=90°,∵∠AFD=∠BFE,∴∠AFD=∠E,∴∠DAF=90°﹣∠AFD,∠BAF=90°﹣∠E,∴∠DAF=∠BAF,∴AC平分∠DAB. 六、(本题满分12分)21.(12分)某单位食堂为全体960名职工提供了A,B,C,D四种套餐,为了解职工对这四种套餐的喜好情况,单位随机抽取240名职工进行“你最喜欢哪一种套餐(必选且只选一种)”问卷调查.根据调查结果绘制了条形统计图和扇形统计图,部分信息如下:
(1)在抽取的240人中最喜欢A套餐的人数为 60,扇形统计图中“C”对应扇形的圆心角的大小为 108 °;
(2)依据本次调查的结果,估计全体960名职工中最喜欢B套餐的人数;
(3)现从甲、乙、丙、丁四名职工中任选两人担任“食品安全监督员”,求甲被选到的概率. 【解答】解:(1)在抽取的240人中最喜欢A套餐的人数为240×25%=60(人),则最喜欢C套餐的人数为240﹣(60+84+24)=72(人),∴扇形统计图中“C”对应扇形的圆心角的大小为360°108°,故答案为:60、108;
(2)估计全体960名职工中最喜欢B套餐的人数为960336(人);
(3)画树状图为:
共有12种等可能的结果数,其中甲被选到的结果数为6,∴甲被选到的概率为. 七、(本题满分12分)22.(12分)在平面直角坐标系中,已知点A(1,2),B(2,3),C(2,1),直线y=x+m经过点A,抛物线y=ax2+bx+1恰好经过A,B,C三点中的两点.(1)判断点B是否在直线y=x+m上,并说明理由;
(2)求a,b的值;
(3)平移抛物线y=ax2+bx+1,使其顶点仍在直线y=x+m上,求平移后所得抛物线与y轴交点纵坐标的最大值. 【解答】解:(1)点B是在直线y=x+m上,理由如下:
∵直线y=x+m经过点A(1,2),∴2=1+m,解得m=1,∴直线为y=x+1,把x=2代入y=x+1得y=3,∴点B(2,3)在直线y=x+m上;
(2)∵直线y=x+1与抛物线y=ax2+bx+1都经过点(0,1),且B、C两点的横坐标相同,∴抛物线只能经过A、C两点,把A(1,2),C(2,1)代入y=ax2+bx+1得,解得a=﹣1,b=2;
(3)由(2)知,抛物线为y=﹣x2+2x+1,设平移后的抛物线为y=﹣x2+px+q,其顶点坐标为(,q),∵顶点仍在直线y=x+1上,∴q1,∴q1,∵抛物线y=﹣x2+px+q与y轴的交点的纵坐标为q,∴q1(p﹣1)2,∴当p=1时,平移后所得抛物线与y轴交点纵坐标的最大值为. 八、(本题满分14分)23.(14分)如图1,已知四边形ABCD是矩形,点E在BA的延长线上,AE=AD.EC与BD相交于点G,与AD相交于点F,AF=AB.(1)求证:BD⊥EC;
(2)若AB=1,求AE的长;
(3)如图2,连接AG,求证:EG﹣DGAG. 【解答】(1)证明:∵四边形ABCD是矩形,点E在BA的延长线上,∴∠EAF=∠DAB=90°,又∵AE=AD,AF=AB,∴△AEF≌△ADB(SAS),∴∠AEF=∠ADB,∴∠GEB+∠GBE=∠ADB+∠ABD=90°,即∠EGB=90°,故BD⊥EC,(2)解:∵四边形ABCD是矩形,∴AE∥CD,∴∠AEF=∠DCF,∠EAF=∠CDF,∴△AEF∽△DCF,∴,即AE•DF=AF•DC,设AE=AD=a(a>0),则有a•(a﹣1)=1,化简得a2﹣a﹣1=0,解得或(舍去),∴AE.(3)如图,在线段EG上取点P,使得EP=DG,在△AEP与△ADG中,AE=AD,∠AEP=∠ADG,EP=DG,∴△AEP≌△ADG(SAS),∴AP=AG,∠EAP=∠DAG,∴∠PAG=∠PAD+∠DAG=∠PAD+∠EAP=∠DAE=90°,∴△PAG为等腰直角三角形,∴EG﹣DG=EG﹣EP=PGAG.
第四篇:(14)年中考数学试题(含答案) (3)
浙江省2014年初中毕业生学业考试(金华卷)
数
学
试
题
卷
满分为120分,考试时间为120分钟
一、选择题(本题有10小题,每小题3分,共30分)
1.在数1,0,-1,-2中,最小的数是
A.1
B.0
C.-1
D.-2
【答案】D.
2.如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线。能解释这一实际应用的数学知识是
A.两点确定一条直线
B.两点之间线段最短[来源:Zxxk.Com]
C.垂线段最短
D.在同一平面内,过一点有且只有一条直线与已知直线垂直
【答案】A
3.一个几何体的三视图如图所示,那么这个几何体是
【答案】D.
4.一个布袋里装有5个球,其中3个红球,2个白球,每个球除颜色外其它完全相同,从中任意摸出一个球,是红球的概率是
A.B.C.D.【答案】D.
5.在式子,,中,可以取2和3的是
A.B.C.D.【答案】C.
6.如图,点A(t,3)在第一象限,OA与x轴所夹的锐角为,则t的值是
A.1
B.1.5
C.2
D.3[来源:学科网]
【答案】C.
7.把代数式分解因式,结果正确的是
A.B.C.D.【答案】C.
8.如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到
△A’B’C,连结AA’,若∠1=20°,则∠B的度数是[来源:Zxxk.Com]
A.70°
B.65°
C.60°
D.55°
【答案】B.
9.如图是二次函数的图象,使≤1成立的的取值范围是
A.-1≤≤3
B.≤-1
C.≥1
D.≤-1或≥3
【答案】D.
10.一张圆心角为45°的扇形纸板和圆形纸板按如图方式分别剪得一个正方形,边长都为1,则扇形和圆形纸板的面积比是
A.B.C.D.【答案】A.
二、填空题(本题有6小题,每小题4分,共24分)
11.写出一个解为≥1的一元一次不等式
▲
【答案】(答案不唯一).12.分式方程的解是
▲
【答案】
13.小明从家跑步到学校,接着马上原路步行回家。如图是小明离家的路程(米)与时间(分)的函数图象,则小明回家的速度是每分钟步行
▲
米
【答案】80.14.小亮对60名同学进行节水方法选择的问卷调查(每人选择一项),人数统计如图。如果绘制成扇形统计图,那么表示“一水多用”的扇形圆心角的度数是
▲
【答案】240°.15.如图,矩形ABCD中,AB=8,点E是AD上一点,有AE=4,BE的垂直平分线交BC的延长线于点点F,连结EF交CD于点G,若G是CD的中点,则BC的长是
▲
【答案】7.16.如图2是装有三个小轮的手拉车在“爬”楼梯时的侧面示意图,定长的轮架杆OA,OB,OC抽象为线段,有OA=OB=OC,且∠AOB=120°,折线NG-GH-HE-EF表示楼梯,GH,EF是水平线,NG,HE是铅直线,半径相等的小轮子⊙A,⊙B与楼梯两边都相切,且AO∥GH。
(1)如图2①,若点H在线段OB上,则的值是
▲
(2)如果一级楼梯的高度,点H到线段OB的距离满足条件
≤3cm,那么小轮子半径的取值范围是
▲
【答案】(1);(2).[来
三、解答题(本题有8小题,共66分,各小题都必须写出解答过程)
17.(本题6分)
计算:
【答案】4.[来源:学科网]
18.(本题6分)
先化简,再求值:,其中
【答案】7.19.(本题6分)
在棋盘中建立如图所示的直角坐标系,三颗棋子A,O,B的位置如图,它们的坐标分别是(-1,1),(0,0)和(1,0)。
(1)如图2,添加棋子C,使A,O,B,C四颗棋子成为一个轴对称图形,请在图中画出该图形的对称轴;
(2)在其它格点位置添加一颗棋子P,使A,O,B,P成为一个轴对称图形,请直接写出棋子P的位置的坐标(写出2个即可)。
20.(本题8分)
一种长方形餐桌的四周可坐6人用餐,现把若干张这样的餐桌按如图方式进行拼接。
(1)若把4张、8张这样的餐桌拼接起来,四周分别可坐多少人?
(2)若用餐的人数有90人,则这样的餐桌需要多少张?
【答案】(1)18,34;(2)22.21.(本题8分)
九(3)班为了组队参加学校举行的“五水共治”知识竞赛,在班里选取了若干名学生,分成人数相同的甲乙两组,进行了四次“五水共治”模拟竞赛,成绩优秀的人数和优秀率分别绘制成如下统计图。
根据统计图,解答下列问题:
(1)第三次成绩的优秀率是多少?并将条形统计图补充完整;[来源:学科网]
(2)已求得甲组成绩优秀人数的平均数,方差,请通过计算说明,哪一组成绩优秀的人数较稳定?
【答案】(1)65%,(2)甲组,22.(本题10分)
合作学习
如图,矩形ABOD的两边OB,OD都在坐标轴的正半轴上,OD=3,另两边与反比例函数的图象分别相交于点E,F,且DE=2,过点E作EH⊥轴于点H,过点F作FG⊥EH于点G。回答下列问题:
①该反比例函数的解析式是什么?
②当四边形AEGF为正方形时,点F的坐标是多少?
(1)阅读合作学习内容,请解答其中的问题;
(2)小亮进一步研究四边形AEGF的特征后提出问题:“当AE>EG时,矩形AEGF与矩形DOHE能否全等?能否相似?”
针对小亮提出的问题,请你判断这两个矩形能否全等?直接写出结论即可;这两个矩形能否相似?若能相似,求出相似比;若不能相似,试说明理由。
【答案】(1)①;②;(2)这两个矩形不能全等,这两个矩形的相似比为.23.(本题10分)
等边三角形ABC的边长为6,在AC,BC边上各取一点E,F,连结AF,BE相交于点P
(1)若AE=CF,①求证:AF=BE,并求∠APB的度数;
②若AE=2,试求AP•AF的值;
(2)若AF=BE,当点E从点A运动到点C时,试求点P经过的路径的长。
【答案】(1)①证明,120°;②12;(2).24.(本题12分)
如图,直角梯形ABCO的两边OA,OC在坐标轴的正半轴上,BC∥轴,OA=OC=4,以直线为对称轴的抛物线过A,B,C三点。
(1)求该抛物线的函数解析式;
(2)已知直线的解析式为,它与轴交于点G,在梯形ABCD的一边上取点P。
①当时,如图1,点P是抛物线对称轴与BC的交点,过点P作PH⊥直线于点H,连结OP,试求△OPH的面积;
②当时,过点P分别作轴,直线的垂线,垂足为E,F。是否存在这样的点P,使以P,E,F为顶点的三角形是等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由。
【答案】(1);(2)①;②存在,或或.
第五篇:陕西省中考数学试题(含答案解析)
2020年陕西省中考数学试卷(共25题,满分120)一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的)1.﹣18的相反数是()A.18 B.﹣18 C. D. 2.若∠A=23°,则∠A余角的大小是()A.57° B.67° C.77° D.157° 3.2019年,我国国内生产总值约为990870亿元,将数字990870用科学记数法表示为()A.9.9087×105 B.9.9087×104 C.99.087×104 D.99.087×103 4.如图,是A市某一天的气温随时间变化的情况,则这天的日温差(最高气温与最低气温的差)是()A.4℃ B.8℃ C.12℃ D.16℃ 5.计算:(x2y)3=()A.﹣2x6y3 B.x6y3 C.x6y3 D.x5y4 6.如图,在3×3的网格中,每个小正方形的边长均为1,点A,B,C都在格点上,若BD是△ABC的高,则BD的长为()A. B. C. D. 7.在平面直角坐标系中,O为坐标原点.若直线y=x+3分别与x轴、直线y=﹣2x交于点A、B,则△AOB的面积为()A.2 B.3 C.4 D.6 8.如图,在▱ABCD中,AB=5,BC=8.E是边BC的中点,F是▱ABCD内一点,且∠BFC=90°.连接AF并延长,交CD于点G.若EF∥AB,则DG的长为()A. B. C.3 D.2 9.如图,△ABC内接于⊙O,∠A=50°.E是边BC的中点,连接OE并延长,交⊙O于点D,连接BD,则∠D的大小为()A.55° B.65° C.60° D.75° 10.在平面直角坐标系中,将抛物线y=x2﹣(m﹣1)x+m(m>1)沿y轴向下平移3个单位.则平移后得到的抛物线的顶点一定在()A.第一象限 B.第二象限 C.第三象限 D.第四象限 二、填空题(共4小题,每小题3分,计12分)11.计算:(2)(2)= . 12.如图,在正五边形ABCDE中,DM是边CD的延长线,连接BD,则∠BDM的度数是 . 13.在平面直角坐标系中,点A(﹣2,1),B(3,2),C(﹣6,m)分别在三个不同的象限.若反比例函数y(k≠0)的图象经过其中两点,则m的值为 . 14.如图,在菱形ABCD中,AB=6,∠B=60°,点E在边AD上,且AE=2.若直线l经过点E,将该菱形的面积平分,并与菱形的另一边交于点F,则线段EF的长为 . 三、解答题(共11小题,计78分.解答应写出过程)15.(5分)解不等式组:
16.(5分)解分式方程:1. 17.(5分)如图,已知△ABC,AC>AB,∠C=45°.请用尺规作图法,在AC边上求作一点P,使∠PBC=45°.(保留作图痕迹.不写作法)18.(5分)如图,在四边形ABCD中,AD∥BC,∠B=∠C.E是边BC上一点,且DE=DC.求证:AD=BE. 19.(7分)王大伯承包了一个鱼塘,投放了2000条某种鱼苗,经过一段时间的精心喂养,存活率大致达到了90%.他近期想出售鱼塘里的这种鱼.为了估计鱼塘里这种鱼的总质量,王大伯随机捕捞了20条鱼,分别称得其质量后放回鱼塘.现将这20条鱼的质量作为样本,统计结果如图所示:
(1)这20条鱼质量的中位数是,众数是 .(2)求这20条鱼质量的平均数;
(3)经了解,近期市场上这种鱼的售价为每千克18元,请利用这个样本的平均数.估计王大伯近期售完鱼塘里的这种鱼可收入多少元? 20.(7分)如图所示,小明家与小华家住在同一栋楼的同一单元,他俩想测算所住楼对面商业大厦的高MN.他俩在小明家的窗台B处,测得商业大厦顶部N的仰角∠1的度数,由于楼下植物的遮挡,不能在B处测得商业大厦底部M的俯角的度数.于是,他俩上楼来到小华家,在窗台C处测得大厦底部M的俯角∠2的度数,竟然发现∠1与∠2恰好相等.已知A,B,C三点共线,CA⊥AM,NM⊥AM,AB=31m,BC=18m,试求商业大厦的高MN. 21.(7分)某农科所为定点帮扶村免费提供一种优质瓜苗及大棚栽培技术.这种瓜苗早期在农科所的温室中生长,长到大约20cm时,移至该村的大棚内,沿插杆继续向上生长.研究表明,60天内,这种瓜苗生长的高度y(cm)与生长时间x(天)之间的关系大致如图所示.(1)求y与x之间的函数关系式;
(2)当这种瓜苗长到大约80cm时,开始开花结果,试求这种瓜苗移至大棚后.继续生长大约多少天,开始开花结果? 22.(7分)小亮和小丽进行摸球试验.他们在一个不透明的空布袋内,放入两个红球,一个白球和一个黄球,共四个小球.这些小球除颜色外其它都相同.试验规则:先将布袋内的小球摇匀,再从中随机摸出一个小球,记下颜色后放回,称为摸球一次.(1)小亮随机摸球10次,其中6次摸出的是红球,求这10次中摸出红球的频率;
(2)若小丽随机摸球两次,请利用画树状图或列表的方法,求这两次摸出的球中一个是白球、一个是黄球的概率. 23.(8分)如图,△ABC是⊙O的内接三角形,∠BAC=75°,∠ABC=45°.连接AO并延长,交⊙O于点D,连接BD.过点C作⊙O的切线,与BA的延长线相交于点E.(1)求证:AD∥EC;
(2)若AB=12,求线段EC的长. 24.(10分)如图,抛物线y=x2+bx+c经过点(3,12)和(﹣2,﹣3),与两坐标轴的交点分别为A,B,C,它的对称轴为直线l.(1)求该抛物线的表达式;
(2)P是该抛物线上的点,过点P作l的垂线,垂足为D,E是l上的点.要使以P、D、E为顶点的三角形与△AOC全等,求满足条件的点P,点E的坐标. 25.(12分)问题提出(1)如图1,在Rt△ABC中,∠ACB=90°,AC>BC,∠ACB的平分线交AB于点D.过点D分别作DE⊥AC,DF⊥BC.垂足分别为E,F,则图1中与线段CE相等的线段是 . 问题探究(2)如图2,AB是半圆O的直径,AB=8.P是上一点,且2,连接AP,BP.∠APB的平分线交AB于点C,过点C分别作CE⊥AP,CF⊥BP,垂足分别为E,F,求线段CF的长. 问题解决(3)如图3,是某公园内“少儿活动中心”的设计示意图.已知⊙O的直径AB=70m,点C在⊙O上,且CA=CB.P为AB上一点,连接CP并延长,交⊙O于点D.连接AD,BD.过点P分别作PE⊥AD,PF⊥BD,重足分别为E,F.按设计要求,四边形PEDF内部为室内活动区,阴影部分是户外活动区,圆内其余部分为绿化区.设AP的长为x(m),阴影部分的面积为y(m2). ①求y与x之间的函数关系式;
②按照“少儿活动中心”的设计要求,发现当AP的长度为30m时,整体布局比较合理.试求当AP=30m时.室内活动区(四边形PEDF)的面积. 2020年陕西省中考数学试卷答案解析 一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的)1.﹣18的相反数是()A.18 B.﹣18 C. D. 【解答】解:﹣18的相反数是:18. 故选:A. 2.若∠A=23°,则∠A余角的大小是()A.57° B.67° C.77° D.157° 【解答】解:∵∠A=23°,∴∠A的余角是90°﹣23°=67°. 故选:B. 3.2019年,我国国内生产总值约为990870亿元,将数字990870用科学记数法表示为()A.9.9087×105 B.9.9087×104 C.99.087×104 D.99.087×103 【解答】解:990870=9.9087×105,故选:A. 4.如图,是A市某一天的气温随时间变化的情况,则这天的日温差(最高气温与最低气温的差)是()A.4℃ B.8℃ C.12℃ D.16℃ 【解答】解:从折线统计图中可以看出,这一天中最高气温8℃,最低气温是﹣4℃,这一天中最高气温与最低气温的差为12℃,故选:C. 5.计算:(x2y)3=()A.﹣2x6y3 B.x6y3 C.x6y3 D.x5y4 【解答】解:(x2y)3. 故选:C. 6.如图,在3×3的网格中,每个小正方形的边长均为1,点A,B,C都在格点上,若BD是△ABC的高,则BD的长为()A. B. C. D. 【解答】解:由勾股定理得:AC,∵S△ABC=3×33.5,∴,∴,∴BD,故选:D. 7.在平面直角坐标系中,O为坐标原点.若直线y=x+3分别与x轴、直线y=﹣2x交于点A、B,则△AOB的面积为()A.2 B.3 C.4 D.6 【解答】解:在y=x+3中,令y=0,得x=﹣3,解得,∴A(﹣3,0),B(﹣1,2),∴△AOB的面积3×2=3,故选:B. 8.如图,在▱ABCD中,AB=5,BC=8.E是边BC的中点,F是▱ABCD内一点,且∠BFC=90°.连接AF并延长,交CD于点G.若EF∥AB,则DG的长为()A. B. C.3 D.2 【解答】解:∵E是边BC的中点,且∠BFC=90°,∴Rt△BCF中,EFBC=4,∵EF∥AB,AB∥CG,E是边BC的中点,∴F是AG的中点,∴EF是梯形ABCG的中位线,∴CG=2EF﹣AB=3,又∵CD=AB=5,∴DG=5﹣3=2,故选:D. 9.如图,△ABC内接于⊙O,∠A=50°.E是边BC的中点,连接OE并延长,交⊙O于点D,连接BD,则∠D的大小为()A.55° B.65° C.60° D.75° 【解答】解:连接CD,∵∠A=50°,∴∠CDB=180°﹣∠A=130°,∵E是边BC的中点,∴OD⊥BC,∴BD=CD,∴∠ODB=∠ODCBDC=65°,故选:B. 10.在平面直角坐标系中,将抛物线y=x2﹣(m﹣1)x+m(m>1)沿y轴向下平移3个单位.则平移后得到的抛物线的顶点一定在()A.第一象限 B.第二象限 C.第三象限 D.第四象限 【解答】解:∵y=x2﹣(m﹣1)x+m=(x)2+m,∴该抛物线顶点坐标是(,m),∴将其沿y轴向下平移3个单位后得到的抛物线的顶点坐标是(,m3),∵m>1,∴m﹣1>0,∴0,∵m31<0,∴点(,m3)在第四象限;
故选:D. 二、填空题(共4小题,每小题3分,计12分)11.计算:(2)(2)= 1 . 【解答】解:原式=22﹣()2 =4﹣3 =1. 12.如图,在正五边形ABCDE中,DM是边CD的延长线,连接BD,则∠BDM的度数是 144° . 【解答】解:因为五边形ABCDE是正五边形,所以∠C108°,BC=DC,所以∠BDC36°,所以∠BDM=180°﹣36°=144°,故答案为:144°. 13.在平面直角坐标系中,点A(﹣2,1),B(3,2),C(﹣6,m)分别在三个不同的象限.若反比例函数y(k≠0)的图象经过其中两点,则m的值为 ﹣1 . 【解答】解:∵点A(﹣2,1),B(3,2),C(﹣6,m)分别在三个不同的象限,点A(﹣2,1)在第二象限,∴点C(﹣6,m)一定在第三象限,∵B(3,2)在第一象限,反比例函数y(k≠0)的图象经过其中两点,∴反比例函数y(k≠0)的图象经过B(3,2),C(﹣6,m),∴3×2=﹣6m,∴m=﹣1,故答案为:﹣1. 14.如图,在菱形ABCD中,AB=6,∠B=60°,点E在边AD上,且AE=2.若直线l经过点E,将该菱形的面积平分,并与菱形的另一边交于点F,则线段EF的长为 2 . 【解答】解:如图,过点A和点E作AG⊥BC,EH⊥BC于点G和H,得矩形AGHE,∴GH=AE=2,∵在菱形ABCD中,AB=6,∠B=60°,∴BG=3,AG=3EH,∴HC=BC﹣BG﹣GH=6﹣3﹣2=1,∵EF平分菱形面积,∴FC=AE=2,∴FH=FC﹣HC=2﹣1=1,在Rt△EFH中,根据勾股定理,得 EF2. 故答案为:2. 三、解答题(共11小题,计78分.解答应写出过程)15.(5分)解不等式组:
【解答】解:,由①得:x>2,由②得:x<3,则不等式组的解集为2<x<3. 16.(5分)解分式方程:1. 【解答】解:方程1,去分母得:x2﹣4x+4﹣3x=x2﹣2x,解得:x,经检验x是分式方程的解. 17.(5分)如图,已知△ABC,AC>AB,∠C=45°.请用尺规作图法,在AC边上求作一点P,使∠PBC=45°.(保留作图痕迹.不写作法)【解答】解:如图,点P即为所求. 18.(5分)如图,在四边形ABCD中,AD∥BC,∠B=∠C.E是边BC上一点,且DE=DC.求证:AD=BE. 【解答】证明:∵DE=DC,∴∠DEC=∠C. ∵∠B=∠C,∴∠B=∠DEC,∴AB∥DE,∵AD∥BC,∴四边形ABED是平行四边形. ∴AD=BE. 19.(7分)王大伯承包了一个鱼塘,投放了2000条某种鱼苗,经过一段时间的精心喂养,存活率大致达到了90%.他近期想出售鱼塘里的这种鱼.为了估计鱼塘里这种鱼的总质量,王大伯随机捕捞了20条鱼,分别称得其质量后放回鱼塘.现将这20条鱼的质量作为样本,统计结果如图所示:
(1)这20条鱼质量的中位数是 1.45kg,众数是 1.5kg .(2)求这20条鱼质量的平均数;
(3)经了解,近期市场上这种鱼的售价为每千克18元,请利用这个样本的平均数.估计王大伯近期售完鱼塘里的这种鱼可收入多少元? 【解答】解:(1)∵这20条鱼质量的中位数是第10、11个数据的平均数,且第10、11个数据分别为1.4、1.5,∴这20条鱼质量的中位数是1.45(kg),众数是1.5kg,故答案为:1.45kg,1.5kg.(2)1.45(kg),∴这20条鱼质量的平均数为1.45kg;
(3)18×1.45×2000×90%=46980(元),答:估计王大伯近期售完鱼塘里的这种鱼可收入46980元. 20.(7分)如图所示,小明家与小华家住在同一栋楼的同一单元,他俩想测算所住楼对面商业大厦的高MN.他俩在小明家的窗台B处,测得商业大厦顶部N的仰角∠1的度数,由于楼下植物的遮挡,不能在B处测得商业大厦底部M的俯角的度数.于是,他俩上楼来到小华家,在窗台C处测得大厦底部M的俯角∠2的度数,竟然发现∠1与∠2恰好相等.已知A,B,C三点共线,CA⊥AM,NM⊥AM,AB=31m,BC=18m,试求商业大厦的高MN. 【解答】解:如图,过点C作CE⊥MN于点E,过点B作BF⊥MN于点F,∴∠CEF=∠BFE=90°,∵CA⊥AM,NM⊥AM,∴四边形AMEC和四边形AMFB均为矩形,∴CE=BF,ME=AC,∠1=∠2,∴△BFN≌△CEM(ASA),∴NF=EM=31+18=49,由矩形性质可知:EF=CB=18,∴MN=NF+EM﹣EF=49+49﹣18=80(m). 答:商业大厦的高MN为80m. 21.(7分)某农科所为定点帮扶村免费提供一种优质瓜苗及大棚栽培技术.这种瓜苗早期在农科所的温室中生长,长到大约20cm时,移至该村的大棚内,沿插杆继续向上生长.研究表明,60天内,这种瓜苗生长的高度y(cm)与生长时间x(天)之间的关系大致如图所示.(1)求y与x之间的函数关系式;
(2)当这种瓜苗长到大约80cm时,开始开花结果,试求这种瓜苗移至大棚后.继续生长大约多少天,开始开花结果? 【解答】解:(1)当0≤x≤15时,设y=kx(k≠0),则:20=15k,解得k,∴y;
当15<x≤60时,设y=k′x+b(k≠0),则:,解得,∴y,∴;
(2)当y=80时,80,解得x=33,33﹣15=18(天),∴这种瓜苗移至大棚后.继续生长大约18天,开始开花结果. 22.(7分)小亮和小丽进行摸球试验.他们在一个不透明的空布袋内,放入两个红球,一个白球和一个黄球,共四个小球.这些小球除颜色外其它都相同.试验规则:先将布袋内的小球摇匀,再从中随机摸出一个小球,记下颜色后放回,称为摸球一次.(1)小亮随机摸球10次,其中6次摸出的是红球,求这10次中摸出红球的频率;
(2)若小丽随机摸球两次,请利用画树状图或列表的方法,求这两次摸出的球中一个是白球、一个是黄球的概率. 【解答】解:(1)小亮随机摸球10次,其中6次摸出的是红球,这10次中摸出红球的频率;
(2)画树状图得:
∵共有16种等可能的结果,两次摸出的球中一个是白球、一个是黄球的有2种情况,∴两次摸出的球中一个是白球、一个是黄球的概率. 23.(8分)如图,△ABC是⊙O的内接三角形,∠BAC=75°,∠ABC=45°.连接AO并延长,交⊙O于点D,连接BD.过点C作⊙O的切线,与BA的延长线相交于点E.(1)求证:AD∥EC;
(2)若AB=12,求线段EC的长. 【解答】证明:(1)连接OC,∵CE与⊙O相切于点C,∴∠OCE=90°,∵∠ABC=45°,∴∠AOC=90°,∵∠AOC+∠OCE=180°,∴∴AD∥EC(2)如图,过点A作AF⊥EC交EC于F,∵∠BAC=75°,∠ABC=45°,∴∠ACB=60°,∴∠D=∠ACB=60°,∴sin∠ADB,∴AD8,∴OA=OC=4,∵AF⊥EC,∠OCE=90°,∠AOC=90°,∴四边形OAFC是矩形,又∵OA=OC,∴四边形OAFC是正方形,∴CF=AF=4,∵∠BAD=90°﹣∠D=30°,∴∠EAF=180°﹣90°﹣30°=60°,∵tan∠EAF,∴EFAF=12,∴CE=CF+EF=12+4. 24.(10分)如图,抛物线y=x2+bx+c经过点(3,12)和(﹣2,﹣3),与两坐标轴的交点分别为A,B,C,它的对称轴为直线l.(1)求该抛物线的表达式;
(2)P是该抛物线上的点,过点P作l的垂线,垂足为D,E是l上的点.要使以P、D、E为顶点的三角形与△AOC全等,求满足条件的点P,点E的坐标. 【解答】解:(1)将点(3,12)和(﹣2,﹣3)代入抛物线表达式得,解得,故抛物线的表达式为:y=x2+2x﹣3;
(2)抛物线的对称轴为x=﹣1,令y=0,则x=﹣3或1,令x=0,则y=﹣3,故点A、B的坐标分别为(﹣3,0)、(1,0);
点C(0,﹣3),故OA=OC=3,∵∠PDE=∠AOC=90°,∴当PD=DE=3时,以P、D、E为顶点的三角形与△AOC全等,设点P(m,n),当点P在抛物线对称轴右侧时,m﹣(﹣1)=3,解得:m=2,故n=22+2×2﹣5=5,故点P(2,5),故点E(﹣1,2)或(﹣1,8);
当点P在抛物线对称轴的左侧时,由抛物线的对称性可得,点P(﹣4,5),此时点E坐标同上,综上,点P的坐标为(2,5)或(﹣4,5);
点E的坐标为(﹣1,2)或(﹣1,8). 25.(12分)问题提出(1)如图1,在Rt△ABC中,∠ACB=90°,AC>BC,∠ACB的平分线交AB于点D.过点D分别作DE⊥AC,DF⊥BC.垂足分别为E,F,则图1中与线段CE相等的线段是 CF、DE、DF . 问题探究(2)如图2,AB是半圆O的直径,AB=8.P是上一点,且2,连接AP,BP.∠APB的平分线交AB于点C,过点C分别作CE⊥AP,CF⊥BP,垂足分别为E,F,求线段CF的长. 问题解决(3)如图3,是某公园内“少儿活动中心”的设计示意图.已知⊙O的直径AB=70m,点C在⊙O上,且CA=CB.P为AB上一点,连接CP并延长,交⊙O于点D.连接AD,BD.过点P分别作PE⊥AD,PF⊥BD,重足分别为E,F.按设计要求,四边形PEDF内部为室内活动区,阴影部分是户外活动区,圆内其余部分为绿化区.设AP的长为x(m),阴影部分的面积为y(m2). ①求y与x之间的函数关系式;
②按照“少儿活动中心”的设计要求,发现当AP的长度为30m时,整体布局比较合理.试求当AP=30m时.室内活动区(四边形PEDF)的面积. 【解答】解:(1)∵∠ACB=90°,DE⊥AC,DF⊥BC,∴四边形CEDF是矩形,∵CD平分∠ACB,DE⊥AC,DF⊥BC,∴DE=DF,∴四边形CEDF是正方形,∴CE=CF=DE=DF,故答案为:CF、DE、DF;
(2)连接OP,如图2所示:
∵AB是半圆O的直径,2,∴∠APB=90°,∠AOP180°=60°,∴∠ABP=30°,同(1)得:四边形PECF是正方形,∴PF=CF,在Rt△APB中,PB=AB•cos∠ABP=8×cos30°=84,在Rt△CFB中,BFCF,∵PB=PF+BF,∴PB=CF+BF,即:4CFCF,解得:CF=6﹣2;
(3)①∵AB为⊙O的直径,∴∠ACB=∠ADB=90°,∵CA=CB,∴∠ADC=∠BDC,同(1)得:四边形DEPF是正方形,∴PE=PF,∠APE+∠BPF=90°,∠PEA=∠PFB=90°,∴将△APE绕点P逆时针旋转90°,得到△A′PF,PA′=PA,如图3所示:
则A′、F、B三点共线,∠APE=∠A′PF,∴∠A′PF+∠BPF=90°,即∠A′PB=90°,∴S△PAE+S△PBF=S△PA′BPA′•PBx(70﹣x),在Rt△ACB中,AC=BCAB70=35,∴S△ACBAC2(35)2=1225,∴y=S△PA′B+S△ACBx(70﹣x)+1225x2+35x+1225;
②当AP=30时,A′P=30,PB=AB﹣AP=70﹣30=40,在Rt△A′PB中,由勾股定理得:A′B50,∵S△A′PBA′B•PFPB•A′P,∴50×PF40×30,解得:PF=24,∴S四边形PEDF=PF2=242=576(m2),∴当AP=30m时.室内活动区(四边形PEDF)的面积为576m2.