第一篇:天津高考物理专题:动量和能量的综合问题
专题:动量和能量的综合问题
一、大纲解读
动量、能量思想是贯穿整个物理学的基本思想,应用动量和能量的观点求解的问题,是力学三条主线中的两条主线的结合部,是中学物理中涉及面最广,灵活性最大,综合性最强,内容最丰富的部分,以两大定律与两大定理为核心构筑了力学体系,能够渗透到中学物理大部分章节与知识点中。将各章节知识不断分化,再与动量能量问题进行高层次组合,就会形成综合型考查问题,全面考查知识掌握程度与应用物理解决问题能力,是历年高考热点考查内容,而且命题方式多样,题型全,分量重,小到选择题,填空题,大到压轴题,都可能在此出题.考查内容涉及中学物理的各个版块,因此综合性强.主要综合考查动能定理、机械能守恒定律、能量守恒定律、动量定理和动量守恒定律的运用等.相关试题可能通过以弹簧模型、滑动类模型、碰撞模型、反冲等为构件的综合题形式出现,也有可能综合到带电粒子的运动及电磁感应之中加以考查.
二、重点剖析
1.独立理清两条线:一是力的时间积累--冲量--动量定理--动量守恒;二是力的空间移位积累--功--动能定理--机械能守恒--能的转化与守恒.把握这两条主线的结合部:系统。即两个或两个以上物体组成相互作用的物体系统。动量和能量的综合问题通常是以物体系统为研究对象的,这是因为动量守恒定律只对相互作用的系统才具有意义。2.解题时要抓特征扣条件,认真分析研究对象的过程特征,若只有重力、系统内弹力做功就看是
否要应用机械能守恒定律;若涉及其他力做功,要考虑能否应用动能定理或能的转化关系建立方程;若过程满足合外力为零,或者内力远大于外力,判断是否要应用动量守恒;若合外力不为零,或冲量涉及瞬时作用状态,则应该考虑应用动量定理还是牛顿定律.
3.应注意分析过程的转折点,如运动规律中的碰撞、爆炸等相互作用,它是不同物理过程的交汇点,也是物理量的联系点,一般涉及能量变化过程,例如碰撞中动能可能不变,也可能有动能损失,而爆炸时系统动能会增加.
三、考点题型归纳:
例
1、如图所示,光滑曲面轨道的水平出口跟停在光滑水平面上的平板小车上表面相平,质量为m的小滑块从光滑轨道上某处由静止开始滑下并滑上小车,使得小车在光滑水平面上滑动。已知小滑块从高为H的位置由静止开始滑下,最终停到小车上。若小车的质量为M。g表示重力加速度,求:
(1)滑块到达轨道底端时的速度大小V0
(2)滑块滑上小车后,小车达到的最大速度V(3)该过程系统产生的内能Q(4)若滑块和车之间的动摩擦因数为μ,则车的长度至少为多少?
练
1、如图所示,木块质量m=0.4kg,它以速度v=20 m/s水平地滑上一辆静止的平板小车,已知小车质量M=1.6kg,木块与小车间的动摩擦因数为μ=0.2,木块没有滑离小车,地面光滑,g取10m/s2,求:
(1)木块相对小车静止时小车的速度;
(2)从木块滑上小车到木块相对于小车刚静止时,小车移动的距离.(3)小车至少多长
练11如图所示,质量M=1.0kg的长木板静止在光滑水平面上,在长木板的右端放一质量m=1.0kg的小滑块(可视为质点),小滑块与长木板之间的动摩擦因数μ=0.2.现用水平恒力F=6.0N向右拉长木板,使小滑块与长木板发生相对滑动,经过t=1.0s撤去力F.小滑块在运动过程中始终没有从长木板上掉下.求:
(1)撤去力F时小滑块和长木板的速度各是多大;(2)运动中小滑块距长木板右端的最大距离是多大.
例
2、如图所示,abc是光滑的轨道,其中ab是水平的,bc为与ab相切的位于竖直平面内的半圆,半径R=0.30m.质量m=0.20kg的小球A静止在轨道上,另一质量M=0.60kg、速度V=5.5m/s的小球B与小球A正碰.已知相碰后小球A经过半圆的最高点c落到轨道上距b点为L=4R处,重力加速度g取10m/s2,求:
(1)碰撞结束时,小球A和B的速度大小;
(2)试论证小球B是否能沿着半圆轨道到达c点?
练
2、在光滑的水平面上,一质量为mA=0.1kg的小球A,以V0=8 m/s的初速度向右运动,与质量为mB=0.2kg的静止小球B发生弹性正碰。碰后小球B滑向与水平面相切、半径为R=0.5m的竖直放置的光滑半圆形轨道,且恰好能通过最高点N后水平抛出。g=10m/s2。求:(1)碰撞后小球B的速度大小;
(2)小球B从轨道最低点M运动到最高点N的过程中所受合外力的冲量;(3)碰撞过程中系统的机械能损失。
例3:如图所示,坡道顶端距水平面高度为h,质量为m1的小物块A从坡道顶端由静止滑下,进入水平面上的滑道时无机械能损失,为使A制动,将轻弹簧的一端固定在水平滑道延长线M处的墙上,另一端与质量为m2的档板相连,弹簧处于原长时,B恰好位于滑道的末端O点。A与B碰撞时间极短,碰撞后结合在一起共同压缩弹簧。已知在OM段A、B与水平面间的动摩擦因数为μ,其余各处的摩擦不计,重力加速度为g,求:(1)物块A在档板B碰撞瞬间的速度v的大小;
(2)弹簧最大压缩时为d时的弹性势能EP(设弹簧处于原长时弹性势能为零)。
练
3、如图所示,轻弹簧的一端固定,另一端与滑块B相连,B静止在水平面上的O点,此时弹簧处于原长.另一质量与B相同的滑块A从P点以初速度v0向B滑行,经过时间t时,与B相碰,碰撞时间极短,碰后A、B粘在一起运动.滑块均可视为质点,与平面间的动摩擦因数均为μ,重力加速度为g.求:
(1)碰后瞬间,A、B共同的速度大小;
(2)若A、B压缩弹簧后恰能返回到O点并停止,求弹簧的最大压缩量;(3)整个过程中滑块B对滑块A做的功.
例
4、质量为M=6kg的木板B静止于光滑水平面上,物块A质量为m=3kg,停在B的左端.质量为m0=1kg的小球用长为R=0.8m的轻绳悬挂在固定点O上,将轻绳拉着至水平位置后,由静止释放小球,小球在最低点与A发生碰撞,碰撞时间极短且无机械能损失,物块与小球可视为质点,不计空气阻力.已知A、B间的动摩擦因数μ=0.1,重力加速度g=10m/s2.求:(1)小球与A碰撞前的瞬间,绳子对小球的拉力F的大小;
(2)为使A、B达到共同速度前A不滑离木板,木板长L至少多长.
练
4、如图所示,长R=0.6m的不可伸长的细绳一端固定在O点,另一端系着质量m2=0.1kg的小球B,小球B刚好与水平面相接触。现使质量m1=0.3kg的物块A以vo=4m/s的速度向B运动,1A与水平面间的接触面光滑。A、B碰撞后,物块A的速度变为碰前瞬间速度的,小球B能
22在竖直平面内做圆周运动。已知重力加速度g=l0m/s,A、B均可视为质点。求:
①在A与B碰撞后瞬间,小球B的速度v2的大小;
②小球B运动到圆周最高点时受到细绳的拉力大小。
1、如图所示,足够长的水平粗糙轨道与固定在水平面上的光滑弧形轨道在P点相切,质量为m的滑块B静止于P点;质量为2m的滑块A由静止开始沿着光滑弧形轨道下滑,下滑的起始位置距水平轨道的高度为h,滑块A在P点与静止的滑块B碰撞后,两滑块粘合在一起共同向左运动.两滑块均可视为质点,且与水平轨道的动摩擦因素均为P点切线水平.求:(1)滑块A到达P点与B碰前瞬间的速度大小;(2)两滑块最终停止时距P点的距离.2、如图所示,水平桌面距地面高h=0.80 m,桌面上放置两个小物块A、B,物块B置于桌面右边缘,物块A与物块B相距s=2.0 m,两物块质量mA、mB均为0.10 kg.现使物块A以速度v0=5.0 m/s向物块B运动,并与物块B发生正碰,碰撞时间极短,碰后物块B水平飞出,落到水平地面的位置与桌面右边缘的水平距离x=0.80 m.已知物块A与桌面间的动摩擦因数μ=0.40,重力加速度g取10 m/s2,物块A和B均可视为质点,不计空气阻力.求:(1)两物块碰撞前瞬间物块A速度的大小;(2)两物块碰撞后物块B水平飞出的速度大小;(3)两物块碰撞过程中系统损失的机械能.
3、如图所示,质量为M=2kg的足够长的小平板车静止在光滑水平面上,车的一端静止着质量为MA=2kg的物体A(可视为质点)。一个质量为m=20g的子弹以500m/s的水平速度射穿A后,速度变为100m/s(子弹不会落在车上),最后物体A静止在车上。若物体A与小车间的动摩擦因数μ=0.5。则(取g=10m/s2)(1)平板车最后的速度是多大?(2)子弹射穿物体A过程中系统损失的机械能为多少?(3)A在平板车上滑行的距离为多少?
4、如图,质量为m的b球用长h的细绳悬挂于水平轨道BC的出口C处。质量也为m的小球a,从距BC高h的A处由静止释放,沿ABC光滑轨道滑下,在C处与b球正碰并与b粘在一起。已知BC轨道距地面的高度为0.5h,悬挂b球的细绳能承受的最大拉力为2.8mg。试问:
(1)a与b球碰前瞬间的速度多大?
(2)a、b两球碰后,细绳是否会断裂?若细绳断裂,小球在DE水平面上的落点距C的水平距离是多少?若细绳不断裂,小球最高将摆多高?
5、如图所示,长为L的不可伸长的绳子一端固定在O点,另一端系质量为m的小球,小球静止在光滑水平面上.现用大小为F水平恒力作用在另一质量为2m的物块上,使其从静止开始向右运动,一段时间后撤去该力,物块与小球发生正碰后速度变为原来的一半,小球恰好能在竖直平面内做圆周运动.已知重力加速度为g,小球和物体均可视为质点,试求:(1)小物块碰撞前速度V0的大小;(2)碰撞过程中系统损失的机械能;(3)恒力F作用时间.6、如图所示,内壁粗糙、半径R=0.4 m的四分之一圆弧轨道AB在最低点B与光滑水平轨道BC相切.质量m=0.2 kg的小球b左端连接一轻质弹簧,静止在光滑水平轨道上,另一质量m1=0.2 kg的小球a自圆弧轨道顶端由静止释放,运动到圆弧轨道最低点B时对轨道的压力为小球a重力的2倍,忽略空气阻力,重力加速度g=10 m/s2求:(1)小球a由A点运动到B点的过程中,摩擦力做功Wf;
(2)小球a通过弹簧与小球b相互作用的过程中,弹簧的最大弹性势能Ep;
(3)小球a通过弹簧与小球b相互作用的整个过程中,弹簧对小球b的冲量I的大小.
第二篇:物理动量简单小结
1. 冲量
物体所受外力和外力作用时间的乘积;矢量;过程量;I=Ft;单位是N·s。2. 动量
物体的质量与速度的乘积;矢量;状态量;p=mv;单位是kg ·m/s;1kg ·m/s=1 N·s。3. 动量守恒定律
一个系统不受外力或者所受外力之和为零,这个系统的总动量保持不变。4. 动量守恒定律成立的条件
系统不受外力或者所受外力的矢量和为零;内力远大于外力;如果在某一方向上合外力为零,那么在该方向上系统的动量守恒。5. 动量定理
系统所受合外力的冲量等于动量的变化;I=mv末-mv初。6. 反冲
在系统内力作用下,系统内一部分物体向某方向发生动量变化时,系统内其余部分物体向相反的方向发生动量变化;系统动量守恒。7. 碰撞
物体间相互作用持续时间很短,而物体间相互作用力很大;系统动量守恒。8. 弹性碰撞
如果碰撞过程中系统的动能损失很小,可以略去不计,这种碰撞叫做弹性碰撞。9. 非弹性碰撞
碰撞过程中需要计算损失的动能的碰撞;如果两物体碰撞后黏合在一起,这种碰撞损失的动能最多,叫做完全非弹性碰撞
第三篇:2012高考物理知识要点总结教案:动量
2012高考物理知识要点总结教案:动量
动 量
知识要点:
一、冲量
1、冲量:作用在物体上的力和力的作用时间的乘积叫做冲量。表示为I=F·t。
2、冲量是个矢量。它的方向与力的方向相同。
3、冲量的单位:在国际单位制中,冲量的单位是牛顿·秒(N·S)。
4、物体受到变力作用时,可引入平均作用力的冲量。IF·t。
要点:
1、冲量是力的时间积累量,是与物体运动过程相联系的量。冲量的作用效果是使物体动量发生改变,因此冲量的大小和方向只与动量的增量直接发生联系,而与物体动量没有什么直接必然联系。
2、冲量是矢量,因而可用平行四边形法则进行合成和分解。合力的冲量总等于分力冲量的矢量和。
二、动量
1、动量:物体质量与它的速度的乘积叫做动量。表示为P。mv
2、动量是矢量,它的方向与物体的速度方向相同。
3、动量的单位:在国际单位制中,动量的单位为千克·米/秒(kg·m/s)。
要点:
1、动量与物体的速度有瞬时对应的关系。说物体的动量要指明是哪一时刻或哪一个位置时物体的动量。所以动量是描述物体瞬时运动状态的一个物理量。动量与物体运动速度有关,但它不能表示物体运动快慢,两个质量不同的物体具有相同的速度,但不具有相同的动量。
2、当物体在一条直线上运动时,其动量的方向可用正负号表示。
3、动能与动量都是描述物体运动状态的物理量,但意义不同。物体动能增量与力的空间积累量——功相联系,而物体动量的增量则与力的时间积累量——冲量相联系。
三、动量定理
四、1、物体受到冲量的作用,将引起它运动状态的变化,具体表现为动量的变化。
2、动量定理:物体所受的合外力的冲量等于物体动量的增量。用公式表示为:
Ft·Pvmv 2P1m21合要点:
1、在中学阶段,动量定理的研究对象是一个物体。不加声明,应用动量定理时,总是以地面为参照系,即P1,P2,P都是相对地面而言的。
2、动量定理是矢量式,它说明合外力的冲量与物体动量变化,不仅大小相等,而且方向相同。在应用动量定理解题时,要特别注意各矢量的方向,若各矢量方向在一条直线上,可选定一个正方向,用正负号表示各矢量的方向,就把矢量运算简化为代数运算。
3、动量定理和牛顿
变速直线运动或曲线运动的情况,就更为简便。
四、动量守恒定律
1、动量守恒定律内容:系统不受外力或所受外力的合力为零,这个系统的总动量就保持不变。用公式表示为:
或 m PPPPvmvmvmv121211221122
2、动量守恒定律的适用范围:动量守恒定律适用于惯性参考系。无论是宏观物体构成的宏观系统,还是由原子及基本粒子构成的微观系统,只要系统所受合外力等于零,动量守恒定律都适用。
3、动量守恒定律的研究对象是物体系。物体之间的相互作用称为物体系的内力,系统之外的物体的作用于该系统内任一物体上的力称为外力。内力只能改变系统中个别物体的动量,但不能改变系统的总动量。只有系统外力才能改变系统的总动量。
要点:
1、在中学阶段常用动量守恒公式解决同一直线上运动的两个物体相互作用的问题,在这种情况下应规定好正方向,v方向由正、负号表示。、v、v、v1212
2、两个物体构成的系统如果在某个方向所受合外力为零,则系统在这个方向上动量守恒。
3、碰撞、爆炸等过程是在很短时间内完成的,物体间的相互作用力(内力)很大,远大于外力,外力可忽略。碰撞、爆炸等作用时间很短的过程可以认为动量守恒。
五、碰撞
1、碰撞:碰撞现象是指物体间的一种相互作用现象。这种相互作用时间很短,并且在作用期间,外力的作用远小于物体间相互作用,外力的作用可忽略,所以任何碰撞现象发生前后的系统总动量保持不变。
2、正碰:两球碰撞时,如果它们相互作用力的方向沿着两球心的连线方向,这样的碰撞叫正碰。
3、弹性正碰、非弹性正碰、完全非弹性正碰:
①如果两球在正碰过程中,系统的机械能无损失,这种正碰为弹性正碰。
②如果两球在正碰过程中,系统的机械能有损失,这样的正碰称为非弹性正碰。
③如果两球正碰后粘合在一起以共同速度运动,这种正碰叫完全非弹性正碰。
4、弹性正确分析:
①过程分析:弹性正碰过程可分为两个过程,即压缩过程和恢复过程。见下图。
②规律分析:弹性正碰过程中系统动量守恒,机械能守恒(机械能表现为动能)。则有下式:
mvmvmvmv①11221122 11212212 mvmvvvm②1122m11222222 解得v1m1m2v12m2v2m1m2
mmv2mv21211v 2mm12 mm讨论:①当m即mv,vv1、2交换速度。②当v12时,v20时,1221碰后,两球同向运动。0,v02mm2v2mv11v,v11,若mm,则v1mm212mm21121mm若m则v,即碰后1球反向运动,2球沿1球原方向运动。当m0,v012,2112时,v1v1,v20即m2不动,m1被反弹回来。
六、反冲运动
1、反冲运动:静止或运动的物体通过分离出一部分物体,使另一部分向反方向运动的现象叫反冲运动。
2、反冲运动是由于物体系统内部的相互作用而造成的,是符合动量守恒定律的。
第四篇:高考物理《冲量、动量和动量定理》复习教案
冲量、动量和动量定理
一、要点
【 要点一 冲量 】 1.下列说法中正确的是
()A.一质点受两个力作用且处于平衡状态(静止或匀速),这两个力在同一段时间内的冲量一定相同
B.一质点受两个力作用处于平衡状态(静止或匀速),这两个力在同一段时间内做的功或者都为零,或者大小相等符号相反
C.在同样的时间内,作用力和反作用力的功大小不一定相等,但正负号一定相反 D.在同样的时间内,作用力和反作用力的功大小一定相等,正负号不一定相反
答案 B 【 要点二
动量 】
2.质量是1 kg的钢球,以5 m/s的速度水平向右运动,碰到墙壁后以3 m/s的速度被反向弹回,钢球的动量改变多少? 若钢球以2 3 m/s的速度,与水平面成30°角落到粗糙地面相碰后弹起,弹起速度大小为2 m/s,方向与水平面成60°角,判别钢球的动量改变量的方向.答案kg•m/s,方向水平向左kg•m/s,与竖直方向成30°角 【 要点三
动量定理 】
3.排球运动是一项同学们喜欢的体育运动.为了了解排球的某些性能,某同学让排球从距地面高h1=1.8 m处自由落下,测出该排球从开始下落到第一次反弹到最高点所用时间为t=1.3 s,第一次反弹的高度为h2=1.25 m.已知排球的质量为m=0.4 kg,g取10 m/s2,不计空气阻力.求:(1)排球与地面的作用时间.(2)排球对地面的平均作用力的大小.答案(1)0.2 s(2)26 N
二、题型
【 题型1 应用动量定理解释现象 】
例1.一个笔帽竖直放在桌面上的纸条上,要求把纸条从笔帽下抽出,如果缓慢拉出纸条笔帽必倒,若快速拉出纸条,笔帽可能不倒.以下判断正确的是
()A.缓慢拉动纸条时,笔帽受到的冲量小
B.缓慢拉动纸条时,纸对笔帽水平作用力小,笔帽也可能不倒 C.快速拉动纸条时,笔帽受到冲量小
D.快速拉动纸条时,纸条对笔帽水平作用力小
答案 C 【 题型2 动量定理的简单应用 】
例2.一质量为m的小球,以初速度 0沿水平方向射出,恰好垂直地射到一倾角为30°的固定斜面上,并立即反方向弹回.已知反弹速度的大小是入射速度大小的 ,求在碰撞中斜面对小球的冲量大小.答案
m 0
第五篇:2010高考物理二轮复习动量、动量守恒定律及应用教案
高中物理辅导网http://www.xiexiebang.com/ 专题十二 动量、动量守恒定律及应用 教案
一、专题要点
1.动量:动量是状态量,因为V是状态量,动量是失量,其方向与物休动动方向相同。2.动量的变化ΔP是失量,其方向与速度的变化ΔV的方向相同。
求解方法:求解动量的变化时遵循平行四边形定则。
(1)若初末动量在同一直线上,则在选定正方向的前提下,可化失量运算为代数运算。(2)若初末动量不在同一直线上,则运算遵循平行四边形定则。3.动量守恒定律
(1)内容:一个系统不受外力或者所受外力之和为零,这个系统的总动量保持不变。(2)适用范围:动量守恒定律是自然界中普遍适用的规律,既适用宏观低速运动的物体,也适用微观高速运动的粒子。大到宇宙天体间的相互作用,小到微观粒子的相互作用,无不遵守动量守恒定律,它是解决爆炸、碰撞、反冲及复杂的相互作用的物体系统类问题的基本规律。
(3)动量守恒的条件为:①充分且必要条件:系统不受外力或所受外力为零。②近似守恒:虽然系统所受外力之和不为零,但系统内力远远大于外力,此时外力可以忽略不计,如:爆炸和碰撞。
4.动量守恒定律的表达式
(1)
p=p意义:系统相互作用前的总动量p等于相互作用后的总动量p’(从守恒的角度列式).
(2)∆p =p/-p=0意义:系统总动量的增量等于零(从增量角度列式).(3)对相互作用的两个物体组成的系统:
①p1+p2=p1/ +p2/ 或者m1v1 +m2v2=m1v1/+m2v2/意义:两个物体作用前的动量的矢量和等于作用后的动量的矢量和.
②p1-p1=一(p2-p2)或者∆p1=一∆p2或者∆p1+∆p2=0 意义:两物体动量的变化大小相等,方向相反. 5. 弹性碰撞与非弹性碰撞
形变完全恢复的叫弹性碰撞;形变完全不恢复的叫完全非弹性碰撞;而一般的碰撞其形变不能够完全恢复。机械能不损失的叫弹性碰撞;机械能损失最多的叫完全非弹性碰撞;而一般的碰撞其机械能有所损失。///
京翰教育中心http://www.xiexiebang.com/
高中物理辅导网http://www.xiexiebang.com/ 6.碰撞过程遵守的规律——应同时遵守三个原则
/①系统动量守恒m1v1/m2v2m1v1m2v2
②系统动能不增12m1v1/212m2v2/212m1v1212m2v2
2③实际情景可能:碰前、碰后两个物体的位置关系(不穿越)和速度关系应遵循客观实际.如甲物追乙物并发生碰撞,碰前甲的速度必须大于乙的速度,碰后甲的速度必须小于、等于乙的速度或甲反向运动.
二、考纲要求
考点
要求 Ⅱ
说明 动量守恒定律只限于一维情况
考点解读
本章的重点内容:唯一的二级要求是动量及其守恒定律,本专题和前面的3-4模块有共同特点是题目教简单,但为了照顾知识点的覆盖面,会出现一个大题中在套二、三个小题的情况 动量、动量守恒定律及其应用
弹性碰撞和非弹性碰撞、反冲运动 Ⅰ 验证动量守恒定律(实验、探究)Ⅰ
三、教法指引
此专题复习时,可以先让学生完成相应的习题,在精心批阅之后以题目带动知识点,进行适当提炼讲解。要求学生强加记忆。这一专题的题目还是较难的,虽然只有一个二级要求,但是此专题的内容涉及受力分析、过程分析等二轮复习时还是要稳扎稳打,从基本知识出发
四、知识网络
京翰教育中心http://www.xiexiebang.com/
高中物理辅导网http://www.xiexiebang.com/
五、典例精析
题型1.(子弹射木块题型)矩形滑块由不同材料的上下两层固体组成,将其放在光滑的水平面上,质量为m的子弹以速度v水平射向滑块 若射中上层子弹刚好不穿出,若射中下层子弹刚好能嵌入,那么()
A.两次子弹对滑块做的功一样多
B.两次滑块所受冲量一样大
C.子弹嵌入上层时对滑块做功多
D.子弹嵌入上层时滑块所受冲量大 解:设固体质量为M,根据动量守恒定律有:
mv(Mm)v'
由于两次射入的相互作用对象没有变化,子弹均是留在固体中,因此,固体的末速度是一样的,而子弹对滑块做的功等于滑块的动能变化,对滑块的冲量等于滑块的动量的变化,因此A、B选项是正确的。
规律总结:解决这样的问题,还是应该从动量的变化角度去思考,其实,不管是从哪个地方射入,相互作用的系统没有变化,因此,动量和机械能的变化也就没有变化。
题型2.(动量守恒定律的判断)把一支枪水平固定在小车上,小车放在光滑的水平地面上,枪发射出子弹时,关于枪、子弹、车的下列说法正确的是()
A.枪和子弹组成的系统动量守恒 B.枪和车组成的系统动量守恒
C.只有忽略不计子弹和枪筒之间的摩擦,枪、车和子弹组成的系统的动量才近似守恒 D.枪、子弹、车组成的系统动量守恒
解:本题C选项中所提到的子弹和枪筒之间的摩擦是系统的内力,在考虑枪、子弹、车组成的系统时,这个因素是不用考虑的 根据受力分析,可知该系统所受合外力为0,符合动量守恒的条件,故选D
规律总结:判断系统是否动量守恒时,一定要抓住守恒条件,即系统不受外力或者所受合外力为0。
题型3.(碰撞中过程的分析)如图所示,位于光滑水平桌面上的小滑块A和B都可视作质点,质量相等。B与轻质弹簧相连。设B静止,A以某一初速度向B运动并与弹簧发生碰撞。在整个碰撞过程中,弹簧具有的最大弹性势能等于()
京翰教育中心http://www.xiexiebang.com/
高中物理辅导网http://www.xiexiebang.com/ A.A的初动能 B.A的初动能的1/2 C.A的初动能的1/3
A B D.A的初动能的1/4
解: 解决这样的问题,最好的方法就是能够将两个物体作用的过程细化。具体分析如右图,开始A物体向B运动,如右上图;接着,A与弹簧接触,稍有作用,弹簧即有形变,分别对A、B物体产生如右中图的作用力,对A的作用力的效果就是产生一个使A减速的加速度,对B的作用力的效果则是产生一个使B加速的加速度。如此,A在减速,B在加速,一起向右运动,但是在开始的时候,A的速度依然比B的大,所以相同时间内,A走的位移依然比B大,故两者之间的距离依然在减小,弹簧不断压缩,弹簧产生的作用力越来越大,对A的加速作用和对B的加速作用而逐渐变大,于是,A的速度不断减小,B的速度不断增大,直到某个瞬间两个物体的速度一样,如右下图。过了这个瞬间,由于弹簧的压缩状态没有发生任何变化,所以对两个物体的作用力以及力的效果也没有变,所以A要继续减速,B要继续加速,这就会使得B的速度变的比A大,于是A、B物体之间的距离开始变大。因此,两个物体之间的距离最小的时候,也就是弹簧压缩量最大的时候,也就是弹性势能最大的时候,也就是系统机械能损失最大的时候,就是两个物体速度相同的时候。
根据动量守恒有mv2mv',根据能量守恒有求解的EP122Aa1v1Ba2v2Aa’1v’1Ba’2v’2AB 12mv2122mv'EP,以上两式联列
2mv,可见弹簧具有的最大弹性势能等于滑块A原来动能的一半,B正确
规律总结:处理带有弹簧的碰撞问题,认真分析运动的变化过程是关键,面对弹簧问题,一定要注重细节的分析,采取“慢镜头”的手段。
题型4.(动量守恒定律的适用情景)小型迫击炮在总质量为1000kg的船上发射,炮弹的质量为2kg.若炮弹飞离炮口时相对于地面的速度为600m/s,且速度跟水平面成45°角,求发射炮弹后小船后退的速度?
解:发射炮弹前,总质量为1000kg的船静止,则总动量Mv=0.
发射炮弹后,炮弹在水平方向的动量为mv1'cos45°,船后退的动量为(M-m)v2'.
京翰教育中心http://www.xiexiebang.com/
高中物理辅导网http://www.xiexiebang.com/ 据动量守恒定律有
0=mv1'cos45°+(M-m)v2'.
取炮弹的水平速度方向为正方向,代入已知数据解得
规律总结:取炮弹和小船组成的系统为研究对象,在发射炮弹的过程中,炮弹和炮身(炮和船视为固定在一起)的作用力为内力.系统受到的外力有炮弹和船的重力、水对船的浮力.在船静止的情况下,重力和浮力相等,但在发射炮弹时,浮力要大于重力.因此,在垂直方向上,系统所受到的合外力不为零,但在水平方向上系统不受外力(不计水的阻力),故在该方向上动量守恒.
题型5.(多物体多过程动量守恒)两块厚度相同的木块A和B,并列紧靠着放在光滑的水平面上,其质量分别为mA=2.0kg,mB=0.90kg.它们的下底面光滑,上表面粗糙.另有质量mC=0.10kg的铅块C(其长度可略去不计)以vC=10m/s的速度恰好水平地滑到A的上表面(见图),由于摩擦,铅块最后停在本块B上,测得B、C的共同速度为v=0.50m/s,求:木块A的速度和铅块C离开A时的速度.
解:设C离开A时的速度为vC,此时A、B的共同速度为vA,对于C刚要滑上A和C刚离开A这两个瞬间,由动量守恒定律知
mCvC=(mA+mB)vA+mCv'C
(1)以后,物体C离开A,与B发生相互作用.从此时起,物体A不再加速,物体B将继续加速一段时间,于是B与A分离.当C相对静止于物体B上时,C与B的速度分别由v'C和vA变化到共同速度v.因此,可改选C与B为研究对象,对于C刚滑上B和C、B相对静止时的这两个瞬间,由动量守恒定律知
mCv'C+mBvA=(mB+mC)v
(2)由(l)式得
mCv'C=mCvC-(mA+mB)vA
代入(2)式
mCv'C-(mA+mC)vA+mBvA=(mB+mC)v.
京翰教育中心http://www.xiexiebang.com/
高中物理辅导网http://www.xiexiebang.com/ 得木块A的速度
所以铅块C离开A时的速度
题型6.(人船模型)在静止的湖面上有一质量M=100kg的小船,船上站立质量m=50kg的人,船长L=6m,最初人和船静止.当人从船头走到船尾(如图),船后退多大距离?(忽略水的阻力)解:选地球为参考系,人在船上行走,相对于地球的平均速度为(L-x)/t,船相对于地球后退的平均速度为x/t,系统水平方向动量守恒方程为
LxtxtmMmmM()0
故
xL1.2m
规律总结:错解:由船和人组成的系统,当忽略水的阻力时,水平方向动量守恒.取人前进的方向为正方向,设t时间内人由船头走到船尾,则人前进的平均速度为L/t,船在此时间内后退了x距离,则船后退的平均速度为x/t,水平方向动量守恒方程为
LtxtmMmM()0
故
xL3m
这一结果是错误的,其原因是在列动量守恒方程时,船后退的速度x/t是相对于地球的,而人前进的速度L/t是相对于船的。相对于不同参考系的速度代入同一公式中必然要出错.
京翰教育中心http://www.xiexiebang.com/
高中物理辅导网http://www.xiexiebang.com/ 题型7.(动量守恒中速度的相对性)一个静止的质量为M的原子核,放射出一个质量为m的粒子,粒子离开原子核时相对于核的速度为v0,原子核剩余部分的速率等于()
解:取整个原子核为研究对象。由于放射过程极为短暂,放射过程中其他外力的冲量均可不计,系统的动量守恒.放射前的瞬间,系统的动量p1=0,放射出粒子的这一瞬间,设剩余部分对地的反冲速度为v',并规定粒子运动方向为正方向,则粒子的对地速度v=v0-v',系统的动量
p2=mv-(M-m)v'=m(v0-v')-(M-m)v'.
由p1=p2,即
0=m(v0-v)-(M-m)v'=mv0-Mv'.
故选C。
规律总结:运用动量守恒定律处理问题,既要注意参考系的统一,又要注意到方向性。
京翰教育中心http://www.xiexiebang.com/