镀镍碳纳米管研究进展

时间:2019-05-14 12:28:31下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《镀镍碳纳米管研究进展》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《镀镍碳纳米管研究进展》。

第一篇:镀镍碳纳米管研究进展

《高性能电磁屏蔽复合填料的制备及表征》

班级:11080801 学号:2008302929

姓名:何征 日期:2011.12.12 碳纳米管电磁屏蔽填料的研究进展

1.引言

电磁屏蔽材料是一种集结构/功能一体化的复合材料,具有优异的综合性能和电磁防护功能,其基本原理主要是基于电磁波穿过防电磁波辐射材料时,产生波反射、波吸收和电磁波在材料内的多次反射,导致电磁波能量衰减[1]。随着现代战场中各种军用设备电磁辐射功率增强,对电磁防护的要求也越来越高[2] ,需要开发出新型的电磁屏蔽复合材料。电磁屏蔽材料大多数是由单组份的高导电率或高磁导率电磁屏蔽填料均匀分散在聚合物基体中加工而成 [3]。目前常用的电磁屏蔽材料可以分为本征型和掺和型。本征型电磁屏蔽材料主要是以导电聚合物如聚苯胺、聚毗咯等与其它树脂混合组成复合涂料。掺和型电磁屏蔽涂料主要是由树脂、稀释剂、添加剂及导电填料等组成[4]。

由于碳系填料加工简单,因此常用电磁屏蔽填料,例如有炭黑、石墨、纳米石墨微片和碳纳米管等。自1991 年日本N EC 公司的S.Iijima 教授发现碳纳米管以来,由于其独特的力学、电学、光学及磁学性能引起了全球科学家的广泛关注。碳纳米管的特殊结构和介电性, 使其表现出较强的宽带微波吸收性能, 同时兼具质量轻、导电性可调、高温抗氧化性能强和稳定性好等一系列优点, 是一种有前途的微波吸收剂, 可以作为潜在的隐身材料、电磁屏蔽材料或暗室吸波材料, 在此基础上, 碳纳米管微波吸收材料的研究取得了积极的成果。2.技术研究进展

朱红[5]采用化学镀的方法对碳纳米管进行表面镀镍,T EM 观察证实了碳纳米管上已镀覆了镍层,镀层厚度约8~ 15nm。采用HP8722ES 矢量网络分析仪 测量了样品在2~ 18GHz 频率范围内的复介电常数和复磁导率。用吸收屏理论公式计算其反射损耗(R.L.)、匹配厚度(dm)及匹配频率(f m),结果表明, 随着匹配厚度的增大, 化学镀镍碳纳米管的吸收峰没有发生移动, 当匹配厚度dm = 0.2mm时, 样品最低反射损耗达-11.40dB, 对应的匹配频率f m = 15.6GHz, 而且在整个电磁波频率测试范围内, 反射损耗值均<10dB)和5.41GH z(R <-6dB)。碳纳米管表面镀镍后吸收峰值虽然变小, 但吸收峰有宽化的趋势, 这种趋势有利于制造宽频吸波材料。

王尽美等[7]利用碳纳米管一纳米管状聚苯胺复合材料,进行化学无电金属镀层。经过采用Ni、Cu和Ni—Cu复合镀层工艺试验对比,形成了纳米金属镀层复合物。通过SEM观察发现纳米结构的金属颗粒在聚苯胺分子的表面形成了均匀分布和稳定的结合,利用TG、XRD等一系列实验分析表明镀层材料具有良好的金属一纳米管状聚苯胺晶体共轭结构。通过压片法,利用波导管进行抗电磁波性能分析,电磁波的屏蔽效应达到了40dB,证明该材料在电磁屏蔽及相关电子、传感器等技术应用中,将具有良好的应用前景。

图3 纳米聚苯胺金属镀层SEM结构图

从图3可见,在纳米管状聚苯胺的表面镀铜后,铜样普遍要高。而在聚苯胺分子氧化分解后,金属材料粒子形成均匀的分布。而直接镀镍后,聚苯胺表面的仍具有良好的稳定性。金属层分布就不是很均匀,在纳米管状的材料缝隙间存在着大量的不规则的镍金属颗粒。利用镍、铜复合镀层,在聚苯胺的纳米管表面形成了非常良好的连续均匀的镀层。

赵东林[8]等用竖式炉流动法, 以二茂铁为催化剂, 噻吩为助催化剂, 苯为碳源通过催化裂解反应在1100~1200℃制备了直线形碳纳米管, 外径为20~50 nm, 内径10~30 nm, 长度50~1000 nm。用化学镀工艺在碳纳米管表面均匀包覆了Ni-P 和Ni-N 合金, 研究了它们的磁性能及其环氧树脂基复合材料在2~18 GHz的微波吸收性能。

图4 镀Ni-P 合金碳纳米管的磁滞回线

图5 400℃热处理后镀Ni-N 合金碳纳米管的磁滞回线

与纯碳纳米管相比, 镀Ni-P 合金碳纳米管复合材料的吸收峰向高频移动, 镀Ni-P 和Ni-N 合金碳纳米管经热处理后,复合材料的吸收峰向低频移动。镀Ni-P 合金碳纳米管以及镀Ni-P 和Ni-N 合金经热处理碳纳米管的矫顽力分别为304.34 Oe、81.65 Oe、183.85 Oe。随着矫顽力的增加, 在2~18 GHz, 复合材料的微波吸收峰向高频移动。在复合材料中, 碳纳米管以及镀Ni-P 和Ni-N 合金的碳纳米管作为偶极子吸收微波。

王力等[9]以自制的多壁碳纳米管为原料,利用化学镀的方法制得镀镍碳管。并用X 射线衍射仪、透射电镜、扫描电镜及能量色散谱仪对其进行了表征,结果表明:碳管表面镀镍层中x(Ni)达到68.8 %,磁性能分析表明,镀镍碳管饱和磁化强度达到13 067 Am2/kg,热处理后饱和磁化强度达到257 733 Am2/kg。最后,对其表面镀层进行了热分析。

图 6 碳管及镀镍碳管的磁滞回线

图 6(a)给出了碳管镀镍前后的磁滞回线,镀镍碳管的饱和磁化强度(Ms)为13 067 Am2/kg,相对镀镍前增大了4 倍,剩余磁化强度(Mr)为2 238 Am2/kg,相对镀镍前也增加两倍多,相反矫顽力(Hc)却为镀镍前的一半,约为5.920 kA/m,软磁性增强;图5(b)是镀镍碳管热处理前后的磁滞回线,400 ℃热处理后镀镍碳管的Ms 为 257 733 Am2/kg,Mr 为36 689 Am2/kg,Hc 为9.44 kA/m。说明热处理后镀镍碳管的饱和磁化强度大大增加。

Jou[10]等研究了CNTs/聚合物复合材料中CNTs的取向、形状比质量分数和形貌对材料屏蔽性能的影响,表明该材料的SE最大值可能大于62dB。3.结语

传统的电磁屏蔽与吸波材料强调的是强衰减,而新型的材料则大多采用复合技术,突出质量轻、频带宽和性能好的特点,能满足于不同环境和应用场合的需求,因此开发和研制新一代的多频、轻质、智能型的电磁屏蔽与吸波材料必将成为日后的重点。

碳纳米管的特殊结构和介电性, 使其表现出较强的宽带微波吸收性能, 同时兼具质量轻、导电性可调、高温抗氧化性能强和稳定性好等一系列优点, 是一种有前途的微波吸收剂, 可以作为潜在的隐身材料、电磁屏蔽材料或暗室吸波材料, 因此,在以后的电磁屏蔽材料中研究中,碳纳米管将会发挥越来越重要的作用。

参考文献

[1] 肖鹏远,焦晓宁.电磁屏蔽原理及其电磁屏蔽材料制造方法的研究[J].非织造布,2010,18(5):15-19 [2] 曲兆明,王庆国.导电屏蔽复合材料的研究进展[J].材料导报,2011,25(1):138-141 [3] 秦秀兰,黄英,杜朝锋,等.电磁屏蔽涂料中导电填料的研究进展[J].材料保护,2007,40(8):62 [4] 胡飞燕.电磁屏蔽涂料研究进展[J].涂料综述,2007:12-16 [5] 朱红,於留芳,林海燕,等.化学镀镍碳纳米管的微波吸收性能研究[J].功能材料,2007,7(38):1213-1216 [6] 李建婷, 曹全喜, 姚娇艳,等.热酸氧化及镀镍对碳纳米管吸波性能的影响[J].功能材料与器件学报,2007,5(13):443-448 [7] 王进美,朱长纯,李毅,纳米管状聚苯胺金属镀覆及抗电磁波性能[J].功能材料,2005,12(36):1938-1940 [8]

[8] 赵东林 , 卢振明, 沈曾民,镀Ni-P 和Ni-N 合金碳纳米管的磁性能及其复合材料的微波吸收性能[J].复合材料学报,2009,3(21):54-58

[9] 王 力,张海燕,揭晓华,等.镀镍碳管的结构及磁性能研究[J].电 子 元 件 与 材 料,2010,11(25):18-20 [10] Jou W.S,H.Z.,Hsu C.F..A carbon nanotube polymer-baed composite with high electromagnetic shielding[J].Journal of electrical materials,2006,35(3):462-470

第二篇:5 镀镍的技术介绍

镀镍的技术介绍

一.镀镍的定义:

通过电解或化学方法在金属或某些非金属上镀上一层镍的方法,称为镀镍。镀镍分电镀镍和化学镀镍。电镀镍是在由镍盐(称主盐)、导电盐、pH缓冲剂、润湿剂组成的电解液中,阳极用金属镍,阴极为镀件,通以直流电,在阴极(镀件)上沉积上一层均匀、致密的镍镀层。从加有光亮剂的镀液中获得的是亮镍,而在没有加入光亮剂的电解液中获得的是暗镍。化学镀镍是在加有金属盐和还原剂等的溶液中,通过自催化反应在材料表面上获得镀镍层的方法。

二.电镀镍的特点、性能、用途:

1.电镀镍层在空气中的稳定性很高,由于金属镍具有很强的钝化能力,在表面能迅速生成一层极薄的钝化膜,能抵抗大气、碱和某些酸的腐蚀。

2.电镀镍结晶极其细小,并且具有优良的抛光性能。经抛光的镍镀层可得到镜面般的光泽外表,同时在大气中可长期保持其光泽。所以,电镀层常用于装饰。

3.镍镀层的硬度比较高,可以提高制品表面的耐磨性,在印刷工业中常用镀镍层来提高铅表面的硬度。

4.由于金属镍具有较高的化学稳定性,有些化工设备也常用较厚的镇镀层,以防止被介质腐蚀。镀镍层还广泛的应用在功能性方面,如修复被磨损、被腐蚀的零件,采用刷镀技术进行局部电镀。采用电铸工艺,用来制造印刷行业的电铸版、唱片模以及其它模具。厚的镀镍层具有良好的耐磨性,可作为耐磨镀层。尤其是近几年来发展了复合电镀,可沉积出夹有耐磨微粒的复合镍镀层,其硬度和耐磨性比镀镍层更高。

5.自润滑性,可用作为润滑镀层。黑镍镀层作为光学仪器的镀覆或装饰镀覆层亦都有着广泛的应用。

6.镀镍的应用面很广,可作为防护装饰性镀层,在钢铁、锌压铸件、铝合金及铜合金表面上,保护基体材料不受腐蚀或起光亮装饰作用;也常作为其他镀层的中间镀层,在其上再镀一薄层铬,或镀一层仿金层,其抗蚀性更好,外观更美。在功能性应用方面,在特殊行业的零件上镀镍约1~3mm厚,可达到修复目的。

7.在电镀中,由于电镀镍具有很多优异性能,其加工量仅次于电镀锌而居第二位,其消耗量占到镍总产量的10%左右。

三.化学镀镍的特点、性能、用途:

1.厚度均匀性,厚度均匀和均镀能力好是化学镀镍的一大特点,化学镀镍避免了电镀层由于电流分布不均匀而带来的厚度不均匀。化学镀时,只要零件表面和镀液接触,镀液中消耗的成份能及时得到补充,镀件部位的镀层厚度都基本相同,即使凹槽、缝隙、盲孔也是如此。

2.镀件不会渗氢,没有氢脆,化学镀镍后不需要除氢。

3.很多材料和零部件的功能如耐蚀、抗高温氧化性等比电镀镍好。

4.可沉积在各种材料的表面上,例如:钢镍基合金、锌基合金、铝合金、玻璃、陶瓷、塑料、半导体等材料的表面上,从而为提高这些材料的性能创造了条件。

5.不需要一般电镀所需的直流电机或控制设备。

6.热处理温度低,只要在400℃以下经不同保温时间后,可得到不同的耐蚀性和耐磨性,因此,特别适用于形状复杂,表面要求耐磨和耐蚀的零部件的功能性镀层等。

四.镀镍的类型:

1.普通镀镍(暗镀)

普通电镀又称暗镍工艺,根据镀液的性能和用途,普通镀镍可以分为低浓度的预液,普通镀液,瓦特液和滚镀液等。预镀液:经预镀可保证镀层与铜铁基体和随后的镀铜层结合力良好。普通液:该镀液的导电性好,可在较低温度下电镀,节省能源,使用比较方便。瓦特液:满足小零件的电镀,但镀液必须要有良好的导电性和覆盖能力。

2.光亮镍

镀光亮镍有很多优点,不仅可以省去繁重的抛光工序,节约电镀和抛光材料,还能提高镀层的硬度,便于实现自动化生产,但是光亮镀镍层中含硫,内应力和脆性较大,耐蚀性不如镀暗镍层,为了克服这些缺点,可采用多层镀镍工艺,使镀层的机械性能和耐蚀性得到显著的改善。

3.高硫镍

高硫镍一般含量为0.12~~0.25%。这种镍具有比铜,铜锡合,暗镍,光亮镍,半光亮镍,铬等都高的电化学活性。高硫镍镀层主要用于钢,锌合金基体的防保-装饰性组合镀层的中间层,其原理是上层光亮镍比下层半亮镍含硫量高,因而使两层间的电位差到100~~140mV,这样使双层镍由单层镍的纵向腐蚀转变为横向腐蚀,构成对钢铁基体的电化学保护作用。

4.镍封

镍封是在一般光亮镍液中加入直径在0.01~~1um之间的不溶性固体微粒(Sio2等),在适当的共沉积促进剂帮助下,使这些微粒与镍共沉积而形成复合镀镍层。当在这种复合镀镍层表上沉积铬层时,由于复合镀镍层表面上的固体微粒不导电,铬不能沉积在微粒表面上,因而在整个镀铬层上的形成大量微孔,即形成微孔铬层。表面存大的大量微孔,可在很大程度上消除普通铬层中存的巨大内应力,因而减少了镀层的应力腐蚀,尤为重要的是铬层上的大量微孔,将铬层下面的镍层大面积地暴露出来,在腐蚀介质的作用下,铬与镍组成腐蚀电池,铬层为阴极,微孔处暴露的镍层为阳极而遭腐蚀,从而改变了大阴极小阳极的腐蚀模式,使得腐蚀电流几乎被分散到整个镀镍层上,从而防止了产生大而深的直贯基体金属的少量腐蚀沟纹和凹坑,并使镀层的腐蚀速度减小,且向横向发展,因而保护了基体金属,显著的提高了镀层的耐腐蚀性能。

5.缎面镍

缎面镍又叫缎状镍。缎面镍与镍封工艺没有本质的区别。它具绸缎状的外观,镀铬后不会像光亮镍镀层镀铬那样有闪光,因而人眼注视后不会觉得疲劳,可以作为避免光线反射的防眩镀层。这类镀层在汽车反光镜,车辆内部注视零件,医疗手术器械,机床零件,眼镜镜框等表面已得到广泛应用。

6.高应力镍

在特定的镀镍液中加入适量的添加剂,能获得应力较大的容易龟裂成微裂纹的镍层,这种镍层,叫做高应力镍。高应力镍是在光亮镍的表面上再镀一层1um左右的镍层。由于高应力镍的内应力大,所以在它的表面按常规再镀0.2~~0.3um的普通铬层后,在铬层与高应力镍应力的相互作用处,高应力镍层即产生大量微裂纹,并导致铬层表面也形成均匀的微裂纹。与镍封一样﹐铬层成为微间断铬,只是由高应力得到的是微间断铬,在腐蚀介质的作用下,这些裂纹部位殂成无数个微电池,使腐蚀电流分散在微裂纹处,从而使整个镀层的耐蚀性能得到明显的提高。

7.镀多层镍

镀多层镍是在同一基体上,选用不同的镀液成分及工艺条件,获得二层或三层的镀镍层,目的是在不增加镍层厚度或减低镍层的基础上,增加镍层的耐蚀能力。目前在生产上应用较多的多层镍/铬组合层休系有:

1)双层镍:半光亮镍/光亮镍/铬

2)三层镍:①半光亮镍/高硫镍/光亮镍/铬,②半光亮镍/光亮镍/镍封/铬(微孔铬),③半光亮镍/光亮镍/高应力镍/铬(微裂纹铬)

8.氨基磺酸盐镀镍

氨基磺酸盐镀镍的主要优点是所得到的电镀层应力低,镀液沉积速度快,但价格较贵,用于电铸和印刷电路板镀金前镀镍。

9.柠檬酸盐镀镍

柠檬酸盐镀镍工艺主要用于锌压铸件的电镀。主要的维护措施是:控制硫酸镍与柠檬酸盐之比在1:1.1~1.2,温度不可过高,以防止柠檬酸盐分解,严格控制pH值,零件入槽进采用冲击电流(2~3A/dm2)以保证结合力良好。柠檬酸盐镀镍应用还不广,成功生产的厂家不多。

第三篇:镍基高温合金材料研究进展汇总

镍基高温合金材料研究进展

姓名:李义锋 镍基高温合金材料概述

高温合金是指以铁、镍、钴为基,在高温环境下服役,并能承受严酷的机械应力及具有良好表面稳定性的一类合金[1]。高温合金一般具有高的室温和高温强度、良好的抗氧化性和抗热腐蚀性、优异的蠕变与疲劳抗力、良好的组织稳定性和使用的可靠性[2]。因此,高温合金既是航空、航天发动机高温部件的关键材料,又是舰船、能源、石油化工等工业领域不可缺少的重要材料,已成为衡量一个国家材料发展水平的重要标志之一。

在整个高温合金领域中,镍基高温合金占有特殊重要的地位。与铁基和钴基高温合金相比,镍基高温合金具有更高的高温强度和组织稳定性,广泛应用于制作航空喷气发动机和工业燃气轮机的热端部件。现代燃气涡轮发动机有50%以上质量的材料采用高温合金,其中镍基高温合金的用量在发动机材料中约占40%。镍基合金在中、高温度下具有优异综合性能,适合长时间在高温下工作,能够抗腐蚀和磨蚀,是最复杂的、在高温零部件中应用最广泛的、在所有超合金中许多冶金工作者最感兴趣的合金。镍基高温合金主要用于航空航天领域950-1050℃下工作的结构部件,如航空发动机的工作叶片、涡轮盘、燃烧室等。因此,研究镍基高温合金对于我国航天航空事业的发展具有重要意义。

镍基高温合金是以镍为基体(含量一般大于50)、在650~1000℃范围内具有较高的强度和良好的抗氧化、抗燃气腐蚀能力的高温合金[2]。它是在Cr20Ni80合金基础上发展起来的,为了满足1000℃左右高温热强性(高温强度、蠕变抗力、高温疲劳强度)和气体介质中的抗氧化、抗腐蚀的要求,加入了大量的强化元素,如W、Mo、Ti、Al、Nb、Co等,以保证其优越的高温性能。除具有固溶强化作用,高温合金更依靠Al、Ti等与Ni形成金属问化合物γ′相(Ni3A1或Ni3Ti等)的析出强化和部分细小稳定MC、M23C6碳化物的晶内弥散强化以及B、Zr、Re等对晶界起净化、强化作用。添加Cr的目的是进一步提高高温合金抗氧化、抗高温腐蚀性能。镍基高温合金具有良好的综合性能,目前已被广泛地用于航空航天、汽车、通讯和电子工业部门。随着对镍基合金潜在性能的发掘,研究人员对其使用性能提出了更高的要求,国内外学者已开拓了针对镍基合金的新加工工艺如等温锻造、挤压变形、包套变形等。

镍基高温合金的发展历程

镍基高温合金在整个高温合金领域占有特殊重要的地位,它的开发和使用始于20世纪30年代末期,是在喷气式飞机的出现对高温合金的性能提出更高要求的背景下发展起来的。英国于1941年首先生产出镍基合金Nimonic75(Ni--20Cr-0.4Ti),为了提高蠕变强度又添加铝,研制出Ni-monic80(Ni--20Cr--2.5Ti一1.3Al)。美国于40年代中期,苏联于40年代后期,中国于50年代中期也研制出镍基高温合金。

镍基高温合金的发展包括两个方面:合金成分的改进和生产工艺的革新。50年代初,真空熔炼技术的发展为炼制含高铝和钛的镍基合金创造了条件;50年代后期,采用熔模精密铸造工艺,发展出一系列具有良好高温强度的铸造合金;60年代中期发展出性能更好的定向结晶和单晶高温合金以及粉末冶金高温合金;为了满足舰船和工业燃气轮机的需要,60年代以来还发展出一批抗热腐蚀性能较好、组织稳定的高铬镍基合金。在从40年代初到70年代末大约40年的时间内,镍基合金的工作温度从700℃提高到1100℃,平均每年提高10℃左右。镍基高温合金的发展趋势如图l所示。

图1 镍基高温合金的发展趋势

镍基高温合金的发展趋势是耐高温能力更强的单晶高温合金。单晶高温合金由于其优异的高温力学I生能得到了广泛应用。至今,单晶高温合金已经发展到第四代。使用温度接近合金熔点80-90%的第三代镍基单晶高温合金代表了上个世纪末高温合金发展的最高水平。目前,更加优良的第四代单晶的研制已经取得了初步进展[3]。2000年后出现了第四代单晶高温合金,例如MC-NG,EPM-102和TMS-162,它们的特征是都添加了钌元素[4]。一个现代单晶涡轮叶片的成本是等重量的微合金钢的数百倍,不仅反映出构成单晶高温合金元素}向贵重或稀缺,更显示出所用工艺的先进程度。镍基高温合金的性能研究

(一)力学性能

20世纪70年代,B.H.Kean等做持久实验时发现,以挤压比16:1挤压In-100合金,在1040℃ 的实验温度下得到1330%的延伸率,并认为这与合金中析出的第二相粒子控制晶粒长大有关。粉末高温合金由于其细晶组织而较易得到超塑性,如In-l00、In-713、U-700等镍基高温合金可以通过粉末冶金的方法获得超塑性,其延伸率可以达到1000%[5]。利用快速凝固法也可以实现高温合金晶粒的微细化,从而得到组织超塑性现象。

毛雪平等[6]在500~600℃高温条件下对镍基合金C276进行了拉伸力学试验,并分析了温度对弹性模量、屈服应力、断裂强度以及延伸率的影响,发现镍基合金C276在高温下具有屈服流变现象和良好的塑性。

(二)氧化行为

在高温条件下,抗氧化性靠Al2O3。和Cr2O2。保护膜提供,因此镍基合金必须含有这两种元素之一或两者都有,尤其是当强度不是合金主要要求时,要特别注意合金的抗高温氧化性能和热腐蚀性能,高温合金的氧化性能随合金元素含量的不同而千差万别,尽管高温合金的高温氧化行为很复杂,但通常仍以氧化动力学和氧化膜的组成变化来表征高温合金的抗氧化能力。赵越等[7]在研究K447在700~950℃ 的恒温氧化行为时发现其氧化动力学符合抛物线规律:在900℃以下为完全抗氧化级,在900~950℃为抗氧化级,而且K447氧化膜分为3层,外层是疏松的Cr2O3。和TiO2。的混合物,并含有少量的NiO及NiCr2O4尖晶石;中间层是Cr2O3;内氧化物层是Al2O3。并含有少量TiN,随着温度的升高,表面氧化物的颗粒变大,导致表面层疏松,氧化反应加速进行。

(三)疲劳行为

在实际应用中,各种零部件在承受着高温、高应力的作用时,尤其在启动、加速或减速过程中,快速加热或冷却引起的各种瞬间热应力和机械应力叠加在一起,致使其局部区域发生塑性变形而产生疲劳影响零件寿命,故要研究其高温疲劳行为。何卫锋等在研究激光冲击工艺对GH742镍基高温合金疲劳性能的影响时发现,激光冲击强化能延长镍基高温合金抗拉疲劳寿命316倍以上,延长振动疲劳寿命214倍,强化后残余压应力影响层深度达110mm。郭晓光等在研究铸造镍基高温合金K435室温旋转弯曲疲劳行为时发现,在应力比R=-1,转速为5000r/min(8313Hz)和实验室静态空气介质环境下,K435合金室温旋转弯曲疲劳极限为220MPa,裂纹主要萌生在试样表面或近表面缺陷处,断口主要由裂纹萌生区、裂纹稳态扩展区和瞬间断裂区组成。黄志伟等在研究铸造镍基高温合金M963的高温低周疲劳行为时发现,由于高温氧化作用在相同的总应变幅下,M963合金在低应变速率下具有较短的寿命;因为该合金的强度高、延性低,形变以弹性为主,M963合金具有较低的塑性应变幅和较低的过渡疲劳寿命。于慧臣等[8]朝在研究一种定向凝固镍基高温合金的高温低周疲劳行为时发现,由于合金在不同温度范围内具有不同的微观变形机制,温度对合金的变形有明显影响,在760℃以下合金呈现循环硬化,而在850℃和980℃时则表现为循环软化。

(四)高温蠕变行为

当温度T≥(0.3~0.5)Tm时,材料在恒定载荷的持续作用下,发生与时间相关的塑性变形。实际上是因为在高温下原子热运动加剧,使位错从障碍中解放出来从而引起蠕变。水丽等在对一种镍基单晶合金的拉伸蠕变特征进行分析时发现,在980~1020℃、200~280MPa条件下蠕变曲线均由初始、稳态及加速蠕变阶段组成;在拉伸蠕变期间γ′强化相由初始的立方体形态演化为与应力轴垂直的N-型筏形状;初始阶段位错在基体的八面体滑移系中运动;稳态阶段不同柏氏矢量的位错相遇,发生反应形成位错网;蠕变末期,应力集中致使大量位错在位错网破损处切人筏状7相是合金发生蠕变断裂的主要原因。李楠等在研究热处理对一种镍基单晶高温合金高温蠕变性能的影响时发现,尺寸为0.4 m左右、规则排列的立方γ′相具有较好的高温蠕变性能,而较小的γ′相和较大的γ′相均不利于合金在高温下的蠕变性能,二次时效处理对提高合金高温蠕变强度的作用不大,筏形组织的完善程度影响合金高温下的蠕变性能,二次γ′相不利于提高合金高温蠕变性能。镍基高温合金的强化研究

(一)热处理

热处理对合金第二相粒子γ′相的形成、形态和稳定性有重要影响,探索合适的热处理制度对控制和稳定合金的微观组织、提高合金的高温性能有着积极的意义。经过长期反复研究证实,时效强化的实质是从过饱和固溶体中析出许多非常细小的沉淀物颗粒,形成一些体积很小的溶质原子富集区。在时效处理前进行固溶处理时,必须严格控制加热温度,以便使溶质原子能最大限度地固溶到固溶体中,同时又不致使合金熔化。在进行人工时效处理时,必须严格控制加热温度和保温时间,才能得到比较理想的强化效果;生产中有时采用分段时效,即先在室温或比室温稍高的温度下保温一段时间,然后在更高的温度下再保温一段时间。

(二)表面处理

由于镍基高温合金成分十分复杂,含有铬、铝等活泼元素,高温合金零件表面在氧化或热腐蚀环境中表现为表面化学不稳定,同时经机械加工而制成的零件表面留下加工硬化或残余应力等表面缺陷,这对高温合金零件的化学性能和力学性能都带来十分不利的影响。为了消除这些影响,常采用表面防护、喷丸处理、表面晶粒细化以及表面改性等措施。喷丸强化是工业上常用的提高疲劳性能的表面改性工艺技术。高玉魁等发现喷丸强化可以延长DD6单晶高温合金在高温下的疲劳寿命,而且随着温度升高,疲劳寿命增益系数下降。在实际应用中发现喷丸处理对材料强化效果不佳,对合金疲劳性能改善甚微,现急需一种效果更好的强化方法来取代喷丸,随着高能脉冲激光器制造水平的提高而发展起来的激光冲击强化技术无疑是一种理想的替代方式,通过强激光诱导的冲击波在金属表层引入残余压应力,从而抑制疲劳裂纹的萌生和发展,是一种新型的金属表面强化技术。

(三)合金元素

镍基高温合金能溶解较多的合金元素,如Cr、W、Mo、Co、Si、Fe、A1、Ti、B、Nb、Ta、Hf等。这些合金元素加入到基体中可以产生合金强化效应,影响镍基高温合金的性能,改善合金的组织。

在镍基合金中添加微量稀土元素,能提高合金的热加工性能和抗氧化性能。周永军等I-在研究稀土对镍基高温合金性能影响的电子理论中发现,稀土与杂质硫相互吸引,其结果是分散和固定部分杂质,可以改善合金高温性能。

最近的研究发现,加入碳可以净化合金液,改善合金的抗腐蚀性能,并且可以减少再结晶的几率,碳的微量加入还有利于降低合金缩孔含量。刘丽荣等在研究碳对一种单晶镍基高温合金铸态组织的影响时发现,随着碳含量的增加,合金的初熔温度逐渐降低,共晶数量和尺寸减小,碳化物数量逐渐增多,碳化物的形态从斑点状变为斑点状和骨架状相结合的网状结构,一次枝晶间距变化较大,而二次枝晶间距变化不大,W和AI元素的偏析降低,Ta和Mo元素的偏析增大。

为了保持合金的组织稳定性,第二、三代单晶高温合金在提高难熔金属元素的同时不得不降低元素Cr的含量,含量的持续降低会损害合金的抗氧化、抗腐蚀性能,在第四代镍基单晶高温合金中,引入新的合金元素Ru,能够提高镍基高温合金的液相线温度,提高合金的高温蠕变性能和组织稳定性,与第三代单晶高温合金相似,第四代单晶高温合金中Cr的质量分数仍然较低,为2 ~4。目前国内外对高Cr+Ru镍基高温合金的研究还非常有限。石立鹏等[9]在研究高Ru和高 对镍基高温合金组织稳定性的影响时发现,高Cr能促进TCP相形成,而高Ru的添加在高合金中可以有效地抑制TCP相的析出,从而提高组织稳定性。

Al、Ti和Ta元素都是近年来发展的单晶高温合金中的重要元素。A1和Ti是 相形成元素,同时Ti也是MC碳化物形成元素;Ta能置换一部分Al和Ti而进入γ′相,同时也与碳形成稳定的TaC,在只有微量碳的单晶高温合金中绝大多数Ta几乎都进入γ′相。因此,A1、Ti和Ta是γ′相形成和强化元素,其含量能够决定合金的强化相7 的百分含量及其强化程度。镍基高温合金的发展趋势

从用途和发展的角度分析,镍基高温合金的发展趋势必向高强度、抗热腐蚀性、密度小的方向发展。

(1)追求高强度。通过添加适量的Al、Ti、Ta,保证γ′强化相的数量.加人大量的W、Mo、Re等难熔金属元素,也是提高强度的有效途径。但是为了维持良好的组织稳定性,不析出σ、υ等有害相,而在新一代合金中通过加入Ru来提高合金的组织稳定性。

(2)发展抗热腐蚀性能优越的单晶合金。通过添加适量的W、Ta等难熔金属,保证高的Cr含量。

(3)发展密度小的单晶合金。从航空发动机设计的角度考虑,密度大的合金难有作为,特别是对动叶片,在非常大的离心力下是不适合的。为此,要发展密度小的单晶高温合金,如CMSX-

6、RR2000、TMS-61、A

3、ONERA M-3等,其中的RR2000单晶合金实际上是在IN100(K17)合金基础上发展的,密度为7.87g/cm3[10]。参考文献

[1] C.T.Sims.Superalloys:Genesis and Character.Superalloy Ⅱ .New York:John

Wiley&Sons,1987.3—26.

[2] 黄乾尧,李汉康.高温合金.北京:冶金工业出版社,2000.1.

[3] 殷凤仕.熔体处理和热处理对M963合金微观结构及力学性能的影响.[学位论文].中国科

学院研究生院.2003 [4] R.C.Reed.The Superalloy Fundamentals and Applications.Gambridge University Press,2006.19—20.

[5] 汪大年.金属塑性成形原理EM].北京:机械工业出版社,1982 [6] 毛雪平,王岗,张立殷,等.镍基合金C276高温拉伸力学性能的试验分析[J].动力工程,2009,29(7):699 [7] 赵越,杨功显,袁超,等.铸造镍基高温合金K447的高温氧化行为口].腐蚀科学与防护

技术,2007,27(1):1 [8] 于慧臣,李影,张国栋,等.一种定向凝固镍基高温合金的高温低周疲劳行为[J].失效分

析与预防,2008,3(1):1 [9] 石立鹏,王万波,冯强,等.高Ru和高cr对镍基高温合金组织稳定性的影响[J].北京科技

大学学报,2008,30(12):1362 [10] 谢锡善,董建新,胡尧和,等.铁镍基高温耐蚀合金的研究与发展_J].世界钢铁,2009(1):50

第四篇:20131219_铝表面镀镍的检测标准

金属表面镀镍的检测标准

化学镀镍的质量检测主要分为以下六种:

一、外观

按主要表面的外观可为光亮、半光亮或无光泽。除另有规定,当用目视检查,表面应均匀,不应有麻点、裂纹、起泡、分层或结瘤等缺陷。

二、表面粗糙度

如果需方规定了粗糙度,应按GB-3505的规定进行测定。镀层的表面粗糙度一般不会优于镀前基体的表面粗糙度。

三、厚度

主要表面镀覆的自催化镍合金和底层的最小厚度及测量方法应由需方规定。膜厚为电镀检测基本项目,使用基本工具为萤光膜厚仪(X-RAY),其原理是使用X射线照射镀层,收集镀层返回的能量光谱,膜厚一般为0.02mm,最大不超过0.03mm.四、弯曲试验

将试样沿直径最小为12mm的或试样厚度4倍的心轴绕180°用4倍的放大镜检查,有无脱皮,起泡。

五、硬度

如果需方要求硬度值,应按GB 9790规定的方法,在热处理后测量,其结果应在需方规定的硬度值的±10%以内。

用中华铅笔以45度角并且以1mm/s的速度向前推进,擦试后镀层不能有划痕;其中:UV镀测试:3H铅笔,500g力。真空镀:2H铅笔,500g力。水镀测试:1H铅笔,200g力

六、镀层的耐蚀性

参照ASTM-B-117进行,如果需要,需方应规定镀层的耐蚀性及其试验和评价方法。

七.镀层附着力

将3M胶纸粘贴在刀切100格(每小格为1mm×1mm)的电镀层表面,用橡皮擦在其上面来回磨擦,使其完全密贴后,以45度方向迅速撕开,镀层需无脱落现象。如目视无法观察清楚,可使用10倍显微镜观察; a)不可有掉落金属粉末及补胶带粘起之现象。b)不可有金属镀层剥落之现象。c)不可有起泡之现象 八.高低温试验

ABS底材温度设定为60度,PC底材温度设定为90度,湿度90%-95%,测试时间6小时,看镀层有无拱起,起泡或脱落; 九.盐雾测试

使用温度为35度,浓度5%的盐水,喷雾8小时,共3回;看镀层有无起反应;

十.耐磨测试

施加500g力,用于被测产品来回试擦50次,往返为一次,不能变色,脱镀及露底材; 十一.耐热冲击测试

零下1度的水中浸泡30分钟,然后在常温浸泡2分钟,在70度中浸泡30分钟为一个回合,看镀层有无拱起,起泡或脱落。

第五篇:碳纳米管综述(本站推荐)

江南大学硕士作业

碳纳米管改性高分子材料研究进展

昱1,刘崇崇1,刘

杰1

(1.江南大学 纺织服装学院,江苏 无锡 214122)

摘 要 碳纳米管作为一种力学、电学、让热学性能优异的一维纳米材料,日渐成为下一代的纳米聚合物复合体系的增强材料.本文在对碳纳米管简要介绍的基础之上,对近年来其用于高分子材料的改性方面的研究进展进行综述.关键词 碳纳米管;高分子;改性

碳纳米管(carbon nanotubes,CNTs),又称巴基管,属于富勒碳系,由单层或多层石墨片围绕同一中心轴按一定的螺旋角卷曲而成的无缝纳米级管结构.其两端通常被由五元环和七元环参与形成的半球形大富勒烯分子封住,每层纳米管的管壁是一个由碳原子通过sp2杂化与周围3个碳原子完全键合后所构成的六边形网络平面所围成的圆柱面(图1).CNT根据管状物的石墨片层数可以分为单壁碳纳米管(single—walled carbon nanotubes,SWNTs)和多壁碳纳米管(multi—walled carbon nanotubes,MWNTs).一些缺陷部位(图2),这些缺陷部位存在大量的悬挂键,这些悬挂键的活性较高,在一定的条件下可以与外来氧原子结合生成碳一氧键.这是碳

[1]

纳米管用于高分子材料改性的理论基础.(a)碳纳米管表面缺陷处羧基化(b)十八胺与碳纳米管

缺陷处反应

图2碳纳米管表面缺陷处功能化反应

图1 碳纳米管结构示意图

目前,对碳纳米管的研究已取得瞩目成就,无论是结构、性能,还是应用,人们已对碳纳米

本文对近年来碳纳米管用 管有了较全面的认识.

于高分子材料的改性研究进展进行了简要介绍.碳纳米管是优秀的一维介质,由于其特殊的结构,π电子能在管壁上高速传递,而不能在径向上运动.故碳纳米管具有特殊的电学性能.碳纳米管由卷曲的石墨片构成,具有石墨导热率高和巨大长径比的特点,因而其又是优良的热传导材料.碳纳米管的杨氏模量可达1.8TPa,力学性能优秀,因此可用于许多新型超强复合材料的设计.碳纳米管的端帽部由活性相对较高的碳一碳五元环组成,这些碳一碳键在受到强氧化剂攻击时较易断裂;另外,碳纳米管管壁通常还存在 聚酯酰胺碳纳米管复合材料

多壁碳纳米管的力学性能优异,因此它可用

于许多新型超强复合材料设计.而且近年来多壁碳纳米管的价格已大为下降,原料也已相对丰富,可以预见碳纳米管和高分子材料复合研究也将更加广泛.聚酯酰胺具有良好的机械性能和降解性,而利用碳纳米管可以改善聚合物的机械

[2]

性能.何毅,徐中浩,余辉等人,用改进的原位聚合法,在聚合过程中结合超声波分散以及碳

江南大学硕士作业

纳米管加入时间的选择,并对原位聚合的聚酯酰胺碳纳米管材料进行了,包括聚合材料的热性能、机械性能、吸水和降解性能在内的各项指标的研究.结果发现,合成的MWNTs/PEA纳米复合材料拉伸力学性能随着MWNT含量改变存在明显变化,复合材料的断裂伸长率变化趋势和其抗张断裂强度一致,MWNTs的含量为 0.7%时,复合材料的力学性能达到较优水平.而另一方面,MWNTs的加入,对材料在空气中耐热性能又存在负面影响,当MWNTs含量为0.7%时, MWNTs/PEA纳米复合材料耐热性最差,而其在碱性溶液中降解速度也相应降低.2 碳纳米管对酯交换反应的影响

碳纳米管作为一种新的各向异性的一维纳米材料,其特殊的高弹模量、拉伸强度和弹性回复能力已逐渐成为下一代的纳米聚合物复合体系的增强材料.扬州大学孙玉荣[3]等人在聚对苯二甲酸丙二醇酯和聚对苯二甲酸丁二醇酯酯交换反应的共混体系中,加入表面改性的碳纳米管参与共混,对其表面酸性或碱性的官能团可能参与或是催化酯交换反应,探讨了影响共混体系酯交换反应的程度并最终影响共混体系的相行为.其研究结果表明,与表面羟基化的碳纳米管(OH-CNT)相比,表面羧基化的碳纳米管(COOH-CNT)能够更均匀的分散于PTT/PBT共混基体中;少量表面改性的碳纳米管的引入可有效地增加了聚对苯二甲酸丙二醇酯和聚对苯二甲酸丁二醇酯的酯交换反应程度,不过随碳纳米管含量的增加导致的体系黏度的上升会使酯交换反应程度下降;与OH-CNT相比,COOH-CNT能够更好的促进酯交换反应(如图3所示);COOH-CNT的引入使聚对苯二甲酸丙二醇酯和聚对苯二甲酸丁二醇酯共混体系烦人结晶能力有所下降且表现出双重结晶峰行为.图3 加入COOH-CNTs与OH-CNTs的改性材料H NMR测试结果 高性能碳纤维的碳纳米管修饰

随着航空航天、武器装备和其他尖端科技技术的快速发展,高性能炭纤维(CF)作为先进复合材料最重要的增强体,在军机、导弹、运载火箭、卫星飞行器以及风力发电叶片等领域发挥着不可替代的作用.哈尔滨工业大学的刘秀影,宋英,李存梅,王福平等人[4]将具有大量胺基活性基团的聚酰胺-胺树状分子(PAMAM)接枝到酸氧化处理后的碳纳米管表面,然后利用酰化反应将羧基化后的多壁碳纳米管通过化学键合方式接枝到PAMAM修饰的表面,并对该种新型增强体的表面官能团、表面形貌、表面润湿性及其复合材料界面剪切强度进行研究.研究结果发现, 采用聚酰胺-胺化学修饰方法制备的CNTs接枝CF新型增强体,当CNTs接枝量为15%时,样品表面粗糙度、表面能分别比CF原丝提高了180%、300%.当CNTs接枝量为15%时,复合材料的界面剪切强度提高了178%.然而在CF改性过程中,由于受到酸的刻蚀作用使其本体强度降低,但随着CNTs接枝量增加,其拉伸强度呈现先增加后减小的趋势,且在接枝量为15%时,CF新型增强体的拉伸强度比CF原丝提高了22%(见图4).江南大学硕士作业

图5 PANI和PANI/Ni/CNTs的FTIR

结语

纳米管可看作是石墨烯片按照一定的角度卷曲而成的纳米级无缝管状物,根据层数不同可分为多壁碳纳米管和单壁碳纳米管.由于碳纳米管管壁中的碳原子采用的是sp2杂化,因此碳纳米管沿轴向具有高模量和高强度,可用于增强复

而碳纳米管圆筒状弯曲会导 合材料的力学性能;图4 CNTs接枝量对拉伸强度的影响 致量子限域和σ-π再杂化,这种再杂化结构特

点以及π电子离域结构赋予了碳纳米管特异的光、电、磁、热、化学和力学性质. 4 导电碳纳米管复合材料

就目前而言,人们对碳纳米管已经有了比较导电复合材料在航空领域有重要应用,可为全面的认识,也取得了一定的进展,但是碳纳米敏感的电子控制设备免受电磁干扰提供屏蔽.聚管的管径尺寸太小、表面缺陷多、团聚严重等问合物基碳系复合材料拥有优异的屏蔽特性,它可题一直影响着其在实际工业生产中的应用.如何作为轻质电磁屏蔽材料,取代飞机上某些金属部进一步深入研究,解决好这些问题,制备出更多件,减轻机身重量.聚苯胺(PANI)由于合成简单、性能优异并可大规模生产应用的复合型材料,是价格低廉、耐高温、抗氧化性能好以及电导率较今后研究和发展的方向.高等特点,已经成为近年来国内外研究的热点.西北工业大学的何征,齐暑华,邱华,秦云川[5]

参考文献

等人, 首先成功制备了Ni/CNTs,而后以盐酸

[1] 剑洪,吴双泉,何传新,卓海涛,朱才镇,李翠华,张黔玲.为掺杂剂、过硫酸铵为氧化剂,使用化学氧化法

碳纳米管和碳微米管的结构、性质及其应用.深圳大学学原位聚合制备PANI.之后使用溶液共混法制备

报:理工版.[J]2013.1:1-11 了PANI/Ni/CNTs复合材料,并利用透射电镜

[2] 毅,徐中浩,余辉,杨志伟,罗光文,可降解聚酯酰胺纳米观察了Ni/CNTs的微观形貌,测试了复合材料

复合材料的制备与表征.西南石油大学学报:自然科学的电导率,利用经典渗虑理论对其进行了理论分

版.[J].2013.02 析.[3] 德峰,孙玉蓉,周卫东,张明.碳纳米管对聚酯相容结果发现了使用溶液共混法制备PANI/Ni

共混体系酯交换反应的影响.[J].高分子学报.2011(12)/CNTs复合材料的FTIR曲线中“电子状态带峰”

[4] 刘秀影,宋英,李存梅,王福平.炭纤维表面接枝碳增强明显(见图5),材料内部形成良好导电网

纳米管对复合材料界面性能的影响.[J].2012.12:455-460 络,且随着Ni/CNTs颗粒含量增加,复合材料

[5] 何征,齐暑华,邱华,秦云川.导电聚苯胺镀镍碳纳米管的电导率也相应增加.复合材料的制备与研究.航空材料学报.[J]2013.8:53-57

下载镀镍碳纳米管研究进展word格式文档
下载镀镍碳纳米管研究进展.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    碳纳米管的应用

    碳纳米管的应用 摘要: 简述了碳纳米管的基本性能和主要制备方法综述了碳纳米管应用研究的领域和进展展望了碳纳米管的应用前景。 关 键 词:碳纳米管,制备,应用 一、碳纳米管的基......

    碳纳米管论文5则范文

    碳纳米管 前言:碳纳米管作为一维纳米材料,重量轻,六边形结构连接完美,具有许多异常的力学、电学和化学性能。近些年随着碳纳米管及纳米材料研究的深入其广阔的应用前景也不断地......

    电刷镀实验报告

    篇一:电刷度实验报告重庆机电职业技术学院 专业班级:姓 名:学 号:任课老师:成 绩: 实 验 报 告 09级模具设计与制造2班 文 鸽 1260720120948 孙 智 富 一.概述 通过在课堂上对电......

    镍铁生产工艺

    四川冶金研究院备忘录1、江苏明铸国际贸易有限公司计划在印尼苏拉威西岛MOROWALI地区(青山矿山和INCO工厂区域)的建立80立方的镍铁高炉,配套工程包括小的焦化厂、洗煤厂等;用海......

    镍项目实施方案(合集)

    镍项目实施方案泓域咨询机构摘要全球镍资源 69%用于不锈钢生产,在相当长一段时间内不锈钢仍将是镍资源第一大下游应用。2018 年全球镍资源 69%用于不锈钢生产,动力锂电池占比......

    化学镀镍报告格式

    化学镀镍磷项目可行性研究报告核心提示:化学镀镍磷项目投资环境分析,化学镀镍磷项目背景和发展概况,化学镀镍磷项目建设的必要性,化学镀镍磷行业竞争格局分析,化学镀镍磷行业财务......

    镍阀门介绍

    镍阀门介绍 1.镍阀门概述 镍及镍合金耐蚀阀门耐工况介质腐蚀针对性强、应用性价比高被广泛应用于化学、石油化工、冶金、原子能、海洋开发。电厂脱硫等工业领域输送管线控制......

    传授电刷镀经验

    传授电刷镀经验 来源:www.xiexiebang.com 日期:2010-10-5 11:50:44 浏览次数:581 第一节电刷镀 一、概述 (一)电刷镀技术的原理及特征 电刷镀技术也称选择镀技术,简称刷镀,是一种......