第一篇:聚羧酸系减水剂(共)
聚羧酸系减水剂
百科名片
聚羧酸系高性能减水剂(液体)是继木钙为代表的普通减水剂和以萘系为代表的高效减水剂之后发展起来的第三代高性能减水剂,是目前世界上最前沿、科技含量最高、应用前景最好、综合性能最优的一种高效减水剂。PC聚羧酸系高性能减水剂是代表当今世界技术含量最领先的减水剂产品。经与国内外同类产品性能比较表明,PC聚羧酸系高性能减水剂在技术性能指标、性价比方面都达到了当今国际先进水平。
一、性能特点
1、掺量低、减水率高:减水率可高达45%,可用于配制高强以及高性能混凝土。
2、坍落度轻时损失小:预拌混凝土2h坍落度损失小于15%,对于商品混凝土的长距离运输及泵送施工极为有利。
3、混凝土工作性好:用PC聚羧酸系高性能减水剂配制的混凝土即使在高坍落度情况下,也不会有明显的离析、泌水现象,混凝土外观颜色均一。对于配制高流动性混凝土、自流平混凝土、自密实混凝土、清水饰面混凝土极为有利。用于配制高标号混凝土时,混凝土工作性好、粘聚性好,混凝土易于搅拌。
4、混凝土收缩小:可明显降低混凝土收缩,显著提高混凝土体积稳定性及耐久性。
5、碱含量极低:碱含量≤0.2%。
6、产品稳定性好:低温时无沉淀析出。
7、产品绿色环保:产品无毒无害,是绿色环保产品,有利于可持续发展。
8、经济效益好:工程综合造价低于使用其它类型产品。
9、唯一的缺点可能就是与其他水泥和胶凝材料的适应性问题,可以这么说,聚羧酸类减水剂是所有减水剂系类中与水泥适应性最差的外加剂之一,所以在使用之前都要对水泥以及其他胶凝材料做适应性的实验来确定其性能好坏,这是很值得注意的地方!
二、技术性能
项 目(标准型)(缓凝型)
外观 浅棕色液体 浅棕色液体
密度(g/ml)1.07±0.02 1.07±0.02 固含量(%)20±2 20±2 水泥净浆流动度(基准水泥)(㎜)≥250(W/C=0.29)≥250(W/C=0.29)
pH 6~8 6~8
氯离子含量(%)≤0.02 ≤0.02 碱含量(Na2O+0.658K2O)(%)≤0.2 ≤0.2
聚羧酸系高性能减水剂混凝土性能指标
项 目(标准型)(缓凝型)
减水率(%)25~45 25~45 泌水率比(%)≤20 ≤20
坍落度增加值(㎜)>100 >100 坍落度保留值(1h)(㎜)≥160 ≥160 含气量(%)2.0~5.0 2.0~5.0
凝结时间差(min)初凝-90~+90 +150 终凝-90~+90 +150
抗压强度比(%)1d ≥180 无要求 3d ≥165 ≥155 7d ≥155 ≥145 28d ≥135 ≥130
耐久性 28d收缩率比(%)≤100 ≤100 200次快冻相对动弹模量(%)≥60 ≥60 抗氯离子渗透性(C)≤1000 ≤1000 碳化深度比(%)≤100 ≤100 钢筋锈蚀 无 无
常用掺量(%)占胶凝材料总量的0.8~1.5%
三、使用说明
1、DH-4004型聚羧酸系高性能减水剂的掺量为胶凝材料总重量的0.4%~2.5%,常用掺量为0.8%~1.5%。使用前应进行混凝土试配试验,以求最佳掺量。
2、DH-4004型聚羧酸系高性能减水剂不可与萘系高效减水剂混合使用,使用聚羧酸系高性能减水剂时必须将使用过萘系高效减水剂的搅拌机和搅拌车冲洗干净否则可能会失去减水效果。
3、使用聚羧酸系高性能减水剂时,可以直接以原液形式掺加,也可以配制成一定浓度的溶液使用,并扣除聚羧酸系高性能减水剂自身所带入的水量。
4、由于掺用聚羧酸系高性能减水剂混凝土的减水率较大,因此坍落度对用水量的敏感性较高,使用时必须严格控制用水量。
5、聚羧酸系高性能减水剂与绝大多数水泥有良好的适应性,但对个别水泥有可能出现减水率偏低,坍落度损失偏大的现象。另外,水泥的细度和储存时间也可能会影响聚羧酸系高性能减水剂的使用效果。此时,建议通过适当增大掺量或复配其它缓凝组分等方法予以解决。
6、掺用聚羧酸系高性能减水剂后,混凝土含气量有所增加(一般为2%~5%)有利于改善混凝土的和易性和耐久性,如需在蒸养混凝土中使用或有其它特殊要求,请联系我们,我们为您及时解决。
7、由于聚羧酸系高性能减水剂掺量小、减水率高,使用聚羧酸系高性能减水剂配制C45以上的各类高性能混凝土,可以大幅度降低工程成本,具有显著的技术经济效益;用于配制C45以下等级混凝土,虽然聚羧酸系高性能减水剂的成本偏高,但可以通过增加矿物掺合料用量,降低混凝土的综合成本,同样具有一定的技术经济效益。
四、作用机理
减水作用是表面活性剂对水泥水化过程所起的一种重要作用。减水剂是在不影响混凝土工作性的条件下,能使单位用水量减少;或在不改变单位用水量的条件下,可改善混凝土的工作性;或同时具有以上两种效果,又不显著改变含气量的外加剂。目前,所使用的混凝土减水剂都是表面活性剂,属于阴离子表面活性剂。
水泥与水搅拌后,产生水化反应,出现一些絮凝状结构,它包裹着很多拌和水,从而降低了新拌混凝土的和易性(又称工作性,主要是指新鲜混凝土在施工中,即在搅拌、运输、浇灌等过程中能保持均匀、密实而不发生分层离析现象的性能)。施工中为了保持所需的和易性,就必须相应增加拌和水量,由于水量的增加会使水泥石结构中形成过多的孔隙,从而严重影响硬化混凝土的物理力学性能,若能将这些包裹的水分释放出来,混凝土的用水量就可大大减少。在制备混凝土的过程中,掺入适量减水剂,就能很好地起到这样的作用。
混凝土中掺入减水剂后,减水剂的憎水基团定向吸附于水泥颗粒表面,而亲水基团指向水溶液,构成单分子或多分子层吸附膜。由于表面活性剂的定向吸附,使水泥胶粒表面带有相同符号的电荷,于是在同性相斥的作用下,不但能使水泥-水体系处于相对稳定的悬浮状态,而且,能使水泥在加水初期所形成的絮凝状结构分散解体,从而将絮凝结构内的水释放出来,达到减水的目的。减水剂加入后,不仅可以使新拌混凝土的和易性改善,而且由于混凝土中水灰比有较大幅度的下降,使水泥石内部孔隙体积明显减少,水泥石更为致密,混凝土的抗压强度显著提高。减水剂的加入,还对水泥的水化速度、凝结时间都有影响。这些性质在实用中都是很重要的。
五、包装
1、DH-4004型聚羧酸系高性能减水剂, 水剂采用桶装, 粉剂为塑桶装。
2、应置于阴凉干澡处储存,避免阳光直射。
3、有效保存期为12个月,超期经试验验证合格后仍可继续使用。
DH-4004型聚羧酸系高性能减水剂(液体)
六、应用中的几点理解误区
作为最新一代的高性能外加剂,聚羧酸减水剂的工程应用日益增加。从预制混凝土构件到现浇混凝土,从自密实混凝土、清水混凝土到需要快凝早强的特殊混凝土,从铁路、桥梁、水电等领域到市政、民建工程,聚羧酸减水剂正占有越来越大的市场份额。但毕竟聚羧酸减水剂工程应用的时间还较短,对其应用技术的基础研究还相对较少,应用者大多凭厂家的宣传、凭以往经验甚至凭感觉,其中难免有一些应用乃至理解上的误区。1、聚羧酸减水剂与水泥的适应性好
常见的对聚羧酸减水剂性能的描述是:减水率高、与水泥适应性非常好、混凝土和易性好、一小时坍落度无损失等。事实上,胶凝材料成分复杂多变,从吸附一分散机理看,任何外加剂都不可能适应所有情况,聚羧酸外加剂与水泥适应性好也是与萘系减水剂相对比较而言的。
混凝土工作性,总体上可分为流动性指标和稳定性指标。掺加聚羧酸减水剂的混凝土和易性比较好,在较高的掺量或较高用水量时也不会发生明显的离析、泌水,混凝土在模板中的沉降也较小,也就是说从稳定性指标来说,聚羧酸减水剂与水泥的适应性要明显好于萘系减水剂。但从流动性指标来说,并不尽然。
(1)聚羧酸减水剂的适应性与其掺量直接相关
我们都知道,萘系减水剂掺量较高的高标号混凝土流动性较好,坍落度损失较小;但中低标号混凝土往往流动性差,坍损也较大,而适当增加掺量是改善适应性的最有效措施。聚羧酸外加剂同样如此,笔者用北京地区常用的胶凝材料和骨料配制 C30 混凝土,外加剂用巴斯夫公司聚羧酸减水剂,结果发现:减水剂掺量(折固)在 0.13 % ~0.15 %间时,混凝土都能获得较好的流动性,但坍落度损失普遍较大,不管复配哪种常用缓凝剂,加多大剂量,当减水剂掺量达到 0.16 %后,大部分混凝土 1 小时后都能保持较好的流动性。
(2)与萘系减水剂适应性差的水泥一般与聚羧酸减水剂适应性也较差
一般说来,碱含量高、铝酸盐含量高或细度高的水泥需水量大。萘系减水剂的掺量较高,坍落度损失较大,同样,用聚羧酸减水剂也有相同的规律。某些掺加萘系减水剂有滞后泌水现象的水泥,改用聚羧酸减水剂同样会泌水,但程度稍轻。若水泥由于石膏原因存在非正常坍落度损失(混凝土在出机几分钟后即失去流动性),用聚羧酸减水剂也不会有改观,只能同时补充硫酸根离子才能从根本上解决,这跟萘系减水剂是一致的。
(3)某一具体的聚羧酸产品的“适应面”不及萘系产品
萘系产品是由相同原材料在相同工艺条件下合成的结构性能相同的产品,聚羧酸减水剂是由不同种原材料在不同工艺条件下合成的具有相类似分子结构的一类产品。萘系产品的不同主要体现在原材料的品质和工艺条件的稳定性上,而聚羧酸产品的不同基于化学分子结构的不同。具体到应用上,萘系产品对不同情况的适应性更多表现在最佳掺量在一定范围内的波动或坍落度损失值的相对大小。对于某一具体聚羧酸产品,情况截然不同:如果该产品能适应混凝土材料,混凝土状态会很好,坍损也小;若不能适应混凝土材料,则结果就不是程度的不同了,而可能是完全失效,这时必须换用另一种类型的产品才能解决。事实上这样的情况经常发生,特别是用北方原材料,可能原因是水泥矿物、微量元素或助磨剂等。也就是说从“适应面”上说,某一特定的聚羧酸产品的适应性不及萘系产品。、聚羧酸减水剂太敏感,不易控制
一般而言,减水剂减水率越高,则在其有效掺量区间内拌和物流动度对掺量越敏感。因此,许多工程技术工作者凭直觉认为聚羧酸减水剂应用时太敏感,并以此强调计量、混凝土生产与控制的困难性。这样理解的前提是将减水剂折算成纯固体,看纯固体掺量的增加对混凝土流动性能的改善。举例来说:对普通标号的泵送混凝土,萘系减水剂掺量在 0.65 %~ 0.85 %的区间内能使混凝土的工作性能达到最佳,而聚羧酸减水剂(以巴斯夫公司产品为例)的掺量区间是 0.14 % ~0.18 %。萘系减水剂的掺量变化范围是 0.2 %左右,聚羧酸减水剂的掺量范围是 0.04 %左右,从这个意义上说,羧酸减水剂确实比萘系减水剂敏感的多。
第二篇:聚羧酸系高保坍型减水剂的研究
聚羧酸系高保坍型减水剂的研究
1引言
聚羧酸系外加剂与传统外加剂相比由于具有优异的分散性能、良好的坍落度保持能力已成为了世界性的研究热点和发展重点[1-3]。我国由于核电、水利、桥梁、隧道等大型基础设施的兴起,尤其是国家铁路客运专线网工程的规划实施,对高性能外加剂的市场需求持续增长。虽然聚羧酸外加剂优异的减水性能和良好坍落度保持能力已被业界广泛认可,但由于存在对水泥矿物组成、水泥细度、石膏形态和掺量、外加剂添加量和、配合比、用水量以及混凝土拌合工艺具有极高的敏感度,严重影响了现有产品在工程中的广泛应用[4-6]。特别是我国水泥种类繁多,集料质量地区差异很大,往往造成新拌混凝土坍落度损失大,难以保证混凝土的质量。
显然未来混凝土化学外加剂将受到内部建筑工业及外部资源等多方面的限制,要想解决这些问题,必须开发出适应性更强的外加剂,尤其是开发具有超强坍落度保持能力的聚羧酸外加剂就十分必要,这类外加剂既可以单独使用或和现有聚羧酸外加剂复配使用,解决现有聚羧酸外加剂高温保坍的技术难题。据报道[7]马来酸酐与异丁烯共聚物、丙烯酸交联聚合物以及梳形接枝共聚物可以用来控制坍落度损失,这些技术对于控制坍落度损失是有效的,但仍然存在坍落度保持时间不长和高温失效的缺陷,而且减水性能较差。本课题组前期针对萘系减水剂也开发了系列保坍组分[9-10],对传统萘系减水剂是非常有效的,但对聚羧酸的适应性差。
本文研究了一种新型的高坍落度保持能力聚羧酸盐外加剂(HSE),这种外加剂同目前的聚羧酸盐高效减水剂相比,具有更优异的保坍性能,尤其是夏季高温环境下以及对中、低流动性混凝土具有良好的适应性。
2理论与实验部分
2.1高保坍型聚羧酸系高效减水剂分子结构设计理念 聚羧酸盐外加剂主链化学结构中含有大量羧基、磺酸基负离子提供电斥力和吸附点,含有聚乙二醇长側链提供空间位阻效应,其分散性能的高低和坍落度保持能力和聚合物的吸附密切相关。早期吸附快,吸附量大,空间位阻效应强,则初始分散性能强;早期吸附量少,吸附速度慢,则初始分散性能差、但分散保持性能优异。
大量研究表明,混凝土拌合物液相中残存减水剂的浓度变化与坍落度损失紧密相关。当减水剂添加到水泥-水体系中,大量减水剂吸附在水泥颗粒表面或早期水化物上,它或是被水化物包围,或是与水化物反应而被消耗掉,其减水作用随时间延长而降低,水泥颗粒间斥力减小,造成水泥颗粒凝聚,这是造成掺减水剂的混凝土坍损的根本原因。因此坍落度损失的快慢主要取决于高效减水剂分散能力降低的速率。
本研究根据新拌混凝土坍落度损失原理,同时借鉴减水剂后掺法和反应性高分子的研究思路,从改变外加剂吸附行为的角度着手,设计和开发了一种具有优异坍落度保坍能力,同时又具有一定分散性能的聚羧酸系减水剂(HSE)。新型的高保坍型聚羧酸和接枝共聚物外加剂减水剂具有相似的化学结构,但接枝側链更长,羧基比例更低,同时共聚物分子结构中具有酯交联点。共聚物分子中聚乙二醇长側链提供了空间位阻效应,延缓了水泥颗粒的物理凝聚,只要少量聚合物吸附在水泥-水界面上,就能提供一定的分散性。分子中的酯键交联点在水泥碱性介质中水解,缓慢向水一水泥体系中释放出具有分散功能的低分子量共聚物,补充由于C3A、C4AF消耗的减水剂, 使体系中的减水剂始终维持在临界胶束状态, 使坍落度不损失或损失很小。
2.2 试验部分 2.2.1 试验原材料
表1试验原材料一览表
型号 化学成份 生产厂家
羧酸类接枝共聚HSE高保坍型减水剂
物
本课题组 JM-PCA(= 1 * ROMAN I)超塑化剂
42.5P.O海螺水泥
物
羧酸类接枝共聚
本公司
安徽白马山水泥厂
2.4.2试验方法(1)水泥净浆试验
试验条件及方法:水泥300g,加87ml自来水及所需高效减水剂。使用SS-160A双转双速水泥净浆搅拌机,按标准程序搅拌后,用Ø上=36mm,Ø下=64mm,高60mm的截锥圆模,在平板玻璃上测定不同时间的水泥净浆扩展度。
(2)标准条件下新拌混凝土性能
外加剂减水率、含气量、凝结时间试验方法参照GB8076-97《混凝土外加剂》的相关规定执行;坍落度及坍落度损失参照JC473-2001《混凝土泵送剂》相关规定执行。
(3)高温环境下新拌混凝土性能
高温混凝土试验测试了中、低坍落度混凝土的损失情况。预先将水泥、砂、石子放到高温室预热,同时试验用水也进行预热到指定温度,混凝土搅拌完毕后放入高温室,不同的时间测试其坍落度变化情况。
(4)吸附性能测试
称取重10g水泥试样加入到各种浓度的接枝共聚物溶液20 ml中,摇动充分混合后置于恒温箱中(20℃),5min后,用吸滤器滤出液体部分,采用高速离心机离心分离滤液(转速13000r/min,5min),收集离心管上部清液作浓度测定。采用总有机碳分析(analyticjena Co.multi N/C 3100)来测定滤液中有机碳的含量,从分散剂添加总量中减去滤液中通过有机碳(扣除空白浆体中有机碳)计算出的分散剂量就得到分散剂被胶凝材料颗粒吸附的吸附量(表观吸附量)。
3结果与讨论 3.1净浆性能
表2 水泥净浆流动度经时变化(试验温度30℃)
外加剂 流动度变化mm×mm JM-PCA(= 1 * HSE/% ROMAN I)/%
n
0mi
30min
60min
n
120mi0.30 0.20 0.10 0.15 0.20 - - - 0.15 0.10 0.05 0.20
72 265 216 168 258
230 175 252 232 225 242
265 220 245 238 242 210
268 225 206 221 235 165 净浆试验结果见表2,单掺HSE外加剂的初始净浆流动度很小,然而过了30分钟后净浆流动度突然变大,并且在60分钟和120分钟之间达到最大值。与此同时掺JM-PCA(= 1 * ROMAN I)的水泥净浆流动度随时间的延长,有所下降。当HSE和JM-PCA(= 1 * ROMAN I)复配使用,掺量略有提高,但流动度随时间延长还反而增加,说明HSE初始减水效果一般,但对降低流动度损失却是十分有利的。
3.2标准条件下新拌混凝土性能
表3实验结果表明:初始净浆性能和混凝土性能之间没有明显的相关性,掺HSE的净浆即使不流动,但仍然具有20%左右的减水率。净浆损失和混凝土坍落度损失之间具有良好的相关性。按照JC473-2001《混凝土泵送剂》标准进行检测,新拌混凝土但随时间的延长,不但坍落度增加而且扩展度也是增加。
表3 HSE减水率及坍落度保持性能评价(试验温度20℃)
掺量 /% 减水率 WR/%
量
含气凝结时间
坍落度(cm)/扩展度(cm)
/h:min
/%
凝
初
凝
终
n
0mi
60min
in
90m
9:20.18 14.8
2.1
0
9:40.24 19.5
2.5
10:0.30 25.2
2.3
12:35
13:05
13:40
21.0/45
21.5/49
20.5/42 2 7
21.5/
4/42
22.5/
5/45
23.5/6
/65
20.5
21.5
23.53.3高温环境下混凝土试验
表4中、低流动度混凝土坍落度经时变化(试验温度30℃)
外加剂 坍落度经时损失/cm
JM-PCA(= 1 * HSE/%
ROMAN I)/%
0min
60min
90min 0.28 0.15 0.10 -
- 0.08 0.13 0.18
14.0 14..5 16.8 17.5
15.0 15.8 14.3 9.0
13.8 13.2 12.5 6.5 对于大流动度混凝土坍落度保持相对容易,而核电工程往往采用中、低流动性混凝土,对坍落度保持性能要求很高,因此考察中、低流动性混凝土在高温下保坍性能就具有重要的现实意义。本试验混凝土配合比为C:F:S:G大:G小:W=290:60:756:680:453:175(C:水泥,F:粉煤灰,S:砂子,G大:大石子,G小:小石子),通过调整减水剂掺量,控制初始坍落度为12~18cm,测定1小时和90min后的坍落度损失情况,试验结果见表4。实验结果表明:用HSE高保坍减水剂配置的混凝土虽随时间的延长,不但坍落度增加而且扩展度也是增加的,但其掺量较高。而相比之下采用JM-PCA(= 1 * ROMAN I)配制中、低流动性混凝土,在高温环境下坍落度损失很大,60min已经就损失了50%以上。当掺采用HSE和JM-PCA(= 1 * ROMAN I)复配可以达到在较低掺量下具有较长时间的坍落度保持能力。3.4机理分析
2.0Adsorption amount/mg.g-11.51.0 HSE JM-PCA(I)0.50.001234-1Admixture dosage /mg.g5
图1 不同聚羧酸盐外加剂的吸附行为
图1是水泥颗粒随聚羧酸盐外加剂浓度变化的吸附曲线。显然HSE减水剂具有比JM-PCA(= 1 * ROMAN I)较低的吸附趋向。对于JM-PCA(= 1 * ROMAN I)高效减水剂,掺量在0.5~3.0mg.g-1范围内,水泥粒子的吸附量不断增加,且增加的速度较快;掺量在3.0~5.0mg.g-1的范围内,吸附量也在增加,但增加的速度变缓。而对于HSE高效减水剂,在整个掺量范围内,吸附率都不超过30%,掺量在0.5~1.5mg.g-1范围内,水泥粒子的吸附量随掺量增加而增加,且增加的幅度较慢;掺量在1.5~5.0mg.g-1的范围内,吸附量基本不在增加。因此当提高HSE外加剂的掺量后,大量的外加剂残留在孔隙溶液中,使体系中的减水剂始终维持在临界胶束状态。此外HSE分子结构中具有较大空间位阻的长侧链,延缓了水泥颗粒的物理凝聚,只要少量聚合物吸附在水泥-水界面上,就能提供一定的分散性。而且随时间的推移,具有架桥结构的羧酸盐在水泥碱性溶液中架桥部分被切断,变成了具有分散性能的聚合物分子,从而被水泥粒子吸附,使坍落度不损失或损失很小。
4结语
根据新拌混凝土坍落度损失原理,同时借鉴减水剂后掺法和反应性高分子的研究思路,从改变外加剂吸附行为的角度着手,成功开发了一种具有优异坍落度保坍能力,同时又具有一定分散性能的聚羧酸盐高效减水剂(HSE)。HSE不但对于大流动性混凝土具有良好的保坍性能,而且对于初始坍落度为12~18cm的中、低流动性混凝土也具有良好的保坍效果;不但在常温下,而且在夏季高温环境下也仍然具有良好的坍落度保持能力;不但可以单独作为减水剂使用,而且可以和现有聚羧酸外加剂复配使用,解决现有聚羧酸盐与部分水泥或集料不相适应的难题,促进聚羧酸盐外加剂的推广和普及。
第三篇:高减水型聚羧酸减水剂的研究
高减水型改性醚类聚羧酸减水剂的试验研
究
陈超
长沙加美乐素化工有限公司,长沙,410000
摘要:
以改性聚醚、丙烯酸、AMPS等为原料,长沙加美乐素化工有限公司研发合成了一种高减水型聚羧酸减水剂,该减水剂相较萘系及市售聚羧酸减水剂具有更高的减水率且坍落度损失较小,具有很高的性价比。
关键词
高减水型聚羧酸减水剂;聚羧酸减水剂;减水率。
0引言
聚羧酸减水剂作为新一代的减水剂产品,相较传统萘系相比具有掺量低、减水率高、保坍性好、引气适中等特点,目前市场占有率正逐步增加。本文以丙烯酸、甲基丙烯磺酸钠、AMPS、改性聚醚等原料合成了一种高减水型聚羧酸减水剂,该产品较市面上聚羧酸减水剂产品减水率更高,性价比优异。
1实验部分
1.1原材料及仪器
改性聚醚(TPEG),工业级;丙烯酸(AA),工业级;甲基丙烯磺酸钠(MAS),工业级;2-丙烯酰胺基-2-甲基丙磺酸(AMPS),工业级;复合引发剂;恒温水浴锅;恒流泵;搅拌器;四口烧瓶等。1.2减水剂的合成
AMPS与MAS投入备好底水的四口烧瓶中于一定温度下加入活性剂聚合,一定时间后加入改性聚醚于四口烧瓶中,于一定温度下搅拌溶解,升温至反应温度后投入一定量的与复合引发剂,并滴加AA与分子量调节剂。滴加完成后保温1小时老化,反应结束,于50度下加入液碱中和至中性。1.3减水剂性能测试
(1)水泥净浆流动度测试及胶砂流动度测试,参见GB/T 8077-2000《混凝土外加剂匀质性实验方法》进行实验。
(2)混凝土性能测试,参见GB 8076-2008《混凝土外加剂》进行实验。
2结果与讨论
2.1水泥净浆流动度实验
下表为萘系与市售聚羧酸减水剂与本工艺合成品的水泥净浆流动度对比实验,其中本实验所采用的水泥为中材PO42.5水泥。
由表可以看出,萘系减水剂掺量大,且流动性随时间延长而减小,且1小时后无流动度;市面对比产品相较萘系减水率有很大提高净浆流动度,但1小时损失较大,但本工艺合
成品净浆流动度相较前两种样品均有很大的提升,且60分钟后略有增大,净浆流动度保持性能良好。
表1水泥净浆流动度对比实验
减水剂种类 萘系
市面聚羧酸减水剂 本工艺合成品
2.2胶砂流动度对比试验
表2为萘系与市售聚羧酸减水剂与本工艺合成品的胶砂流动度对比实验,其中本实验所采用的水泥为中材PO42.5水泥,基准砂。
表2胶砂流动度对比实验
减水剂种类
萘系
市面聚羧酸减水剂 本工艺合成品 减水剂掺量
0min
1.4 0.5 0.5
200 200 240
胶砂流动度 30min 160 180 225
60min 0 150 210 减水剂掺量
1.0 0.3 0.3
水泥净浆流动度
0min 235 240 270
30min 135 220 280
60min 0 185 280
由图2可以看出萘系减水剂胶砂流动度初期不大且损失很快,经过一小时后已经没有流动度;市售聚羧酸减水剂有较高的减水率且经时损失均匀,但1小时后损失较大;本工艺合成减水剂减水率明显提高,一小时损失较少。2.3混凝土减水率及强度实验
表3为萘系减水剂与市售减水剂及本工艺和成品的减水率对比实验,混凝土配合比为C 290 :F 60 :G 1085 :S 785 :W 165。
表3混凝土减水率及抗压强度对比实验
减水剂 品种 空白 萘系 市售 合成品
本实验采用材料分别为中材PO42.5水泥、河砂、卵石、矿料掺合物包括粉煤灰、矿粉等。由表可见本工艺合成品减水率明显高于萘系及市售产品,性能优异。2.4混凝土坍落度损失对比实验
表4为萘系减水剂与市售减水剂及本工艺和成品的减水率对比实验,混凝土配合比为
用水量 /(kg/m3)190 159 142 134 0 0.6
坍落度 /mm 180 175 175 180
减水率 /% 0 16.3 25.3 29.5
3d 20.3 31.8 28.6 29.9
抗压强度 7d 29.7 39.1 41.2 40.8
28d 39.5 47.6 55.2 55.6 掺量/% 0.12 0.12
C 290 :F 60 :G 1085 :S 785 :W 165。由表可见本工艺合成的减水剂坍落度损失较市面减水剂也有明显提高。
表4混凝土坍落度损失对比实验
减水剂种类
萘系 市面聚羧酸产品 本工艺合成品
3合成背景及作用机理分析
研究表明,聚羧酸减水剂是一种分子结构为梳型、可由带羧酸盐基(—COOH)、磺酸盐基(—SO3)、聚氧乙烯侧链基(PEO)的单体以一定的比例在水溶液中聚合所得的产物。其特点是主链为带多个极性较强集团疏水性短主链,侧链带较多亲水性集团的长侧链。现今研究中也多采用MAS、AMPS等制备聚羧酸减水剂。然此方法多见于单体为聚醚APEG及MPEGMA中,在改性聚醚中并不常见。本合成研究表明,在现今主流产品TPEG中加入一定比例的MAS、AMPS,并佐以一定的反应方式下,合成的改性醚类聚羧酸减水剂具有较高的减水效果及较小的坍落度损失,在当今市场应用中体现出很高的优势。
分析其作用机理如下:磺酸基为带有负电的活性集团,在于水泥颗粒作用时能包裹于水泥颗粒表面起到静电排斥的作用,使水泥颗粒分散开来从而提高分散性;AMPS本身带有磺酸基且易行成长侧链提供空间位阻作用,有利于水泥颗粒之间的隔离;同时改性聚醚本身优越的减水与保坍性及较高的反应活性使得几种发挥减水作用的集团的性能得以体现;通过两步聚合,即先合成长侧链的方式使得侧链的长度及稳定性更能满足性能需求的同时提高了转化率。由以上几种因素共同促进了本合成减水剂减水率的较大提升。4总结与结论
实验表明本工艺合成的聚羧酸减水剂具有较高的减水率,相比萘系及市售聚羧酸减水剂具有较大的优越性,在净浆、砂浆及混凝土中都有很好的体现。且本工艺合成品坍落度损失不大,性价比优异。5展望
聚羧酸减水剂作为现今发展前沿的减水剂品种,其合成路线的研究有着广阔的背景。学者可尝试不同途径及方法开发出具有特色的减水剂产品,以满足现在日益高涨的市场需求。冬季温度较低,萘系减水剂因为其结晶问题将逐渐淡出冬季市场,聚羧酸减水剂将广泛应用。但是聚羧酸减水剂因为羧基的缓凝效果,在冬季应用存在着凝结时间等一些列问题,同时成本问题也不可忽视,这些都将成为研究方向得以突破。减水剂掺量
0.8 0.14 0.14
0min 200 200 220
坍落度 30min 120 180 210
60min 0 170 210
作者简介:陈超,(1988年-),女,长沙加美乐素化工有限公司高级研发技术员,从事聚羧酸减水剂合成及产品研发。
公司简介:长沙加美乐素化工有限公司,是一家以聚羧酸减水剂为主导产品的建材公司,从过去导现
在,一直立足于领先科技,为客户度身订造高品质产品,满足市场需求,开启化学剂外加剂应用的最大潜能。
公司地址:湖南省长沙市芙蓉区车站北路48号新天会议中心6楼。
第四篇:聚羧酸分子结构
聚羧酸高效减水剂的分子设计与合成及性能
摘 要:依据减水剂的作用机理,用自制单体设计、合成一种新型聚羧酸盐减水剂,得出其最佳合成配方及工艺为:m(马来酸酐):m(丙烯酸聚乙二醇单酯):m(丙烯基磺酸钠)=1:3:2.4;选用1%的k2 s2o8为引发剂、反应温度85℃、反应时间6 h。试制产品性能测试结果表明:该聚羧酸减水剂具有优良的分散能力、和易性好,其最佳掺量为0.3%,能显著减小水泥净浆的流动度经时损失。经红外光谱分析表明,合成产物的分子结构与设计的分子结构基本一致。
优质的高效减水剂能降低混凝土的水灰比,减小混凝土的塌落度损失,提高和易性、赋予混凝土高密实度和优异施工性能。在众多系列减水剂中,聚羧酸类减水剂适应范围广,具有高减水性、低塌落度损失、低掺量、环保等优点。
依 据目前对减水剂的认识和理解,减水剂是通过表面活性作用、络合作用、静电排斥力和立体排斥力等来阻碍或破坏水泥颗粒的絮凝结构。高性能减水剂的理想结 构应该是高分子的聚合物,线性、多支链、疏水基团和亲水基团相间,疏水基链轻且短,亲水基链重且长。在水泥浆体中犹如梳子,疏水基牢牢地钉在水泥颗粒表 面,封闭包裹住水泥粒子,而亲水基团伸向水溶液,既有产生静电排斥力的基团,又有产生立体排斥力的基团。聚羧酸盐减水剂分子结构设计
用丙烯酸聚乙二醇单酯(pa)、马来酸酐(m)、丙烯基磺酸钠(sas)3种单体共聚合成聚羧酸盐减水剂。聚合物的分子结构如下:
使用高效减水剂,不仅要求能提高新拌混凝土的和易性及减水性,同时要提高耐冻性和较小的塌落度损失,所以,减水剂分子量要适当,相对分子质量应该控制在1 000-5 000。2 实 验
2.1 实验材料
聚乙二醇、对苯二酚,ar.上海化学试剂公司;十二烷基苯磺酸、无水亚硫酸钠、氯丙烯,ar.西安三浦精细化工厂;丙烯酸、马来酸酐,ar.上海天原化工厂;水泥,32.5级普通硅酸盐水泥,秦岭水泥厂。
2.2 合成方法
2.2.1 丙烯酸聚乙二醇单酯(pa)的制备
在 三口瓶中加入一定量的聚乙二醇、十二烷基苯磺酸、对苯二酚。110~120℃时开始加人丙烯酸,滴加完毕后,于120℃恒温2.5 h。将反应液减压蒸出副产物水,在此温度下反应2 h,脱出水分的速度明显减慢;130℃恒温,至真空反应得出水的量与理论值接近时为反应终点;在真空条件下降温至40℃以下,出料得成品。
2.2.2 丙烯基磺酸钠(sas)的制备
在三口瓶中加人一定量的蒸馏水、无水亚硫酸钠,加热搅拌使其溶解,在45℃时开始加人氯丙烯,滴加完毕后,升温至47℃反应3 h;将反应物减压,在40℃时蒸干,然后加入无水乙醇洗涤,趁热抽滤;将滤液减压,在40℃时蒸至近干,倒出置于烧杯中结晶。
2.2.3 马来酸酐(m)一pa—sas共聚物的合成在三口瓶中加入蒸馏水、马来酸酐,加热搅拌使其溶解,当温度达到60℃时开始加人pa和sas溶液,同时加人过硫酸盐。滴加完后升温至85℃反应3~5 h,出料即为目标减水剂。
2.3 性能测试方法
2.3.1 水泥和易性
在100 g基准水泥中掺人0.3%(质量比,下同)的减水剂,同时加入29 g水观察和易性。然后将水的加量增加至35 g,观察和易性,再将减水剂的掺量增至0.5%,观察和易性及流动性。
2.3.2 水泥净浆流动度
按 照gb 8077—87对不同单体配比及不同引发剂用量所得的减水剂进行水泥净浆流动度测试。在100 g水泥中加人0.3%减水剂,同时加人29 g水,依次选取3个不同位置测量水泥净浆铺展直径,求平均值即为水泥净浆流动度。然后将水的加人量增至35 g,减水剂增至0.5%,再次测试流动度。
2.4 红外光谱分析
取合成的减水剂试样,经过无水乙醇反复洗涤,干燥,溴化钾压片,采用德国布鲁克公司的vector-22型傅立叶红外光谱仪进行结构分析,并与设计结构相比较。结果与讨论
3.1 影响合成pa单体的因素
3.1.1 酸醇比对pa酯化率的影响
丙烯酸与聚乙二醇的用量比是影响酯化反应的主要因素。图1是pa酯化率随丙烯酸与聚乙二醇的比(物质的量比,酸醇比)的变化曲线。从图1可看出,酸醇比为1.2:1.0时,pa酯化率最大。
阻聚剂用量对酯化率的影响由于丙烯酸为不饱和酸,在反应过程中丙烯酸单体之间及丙烯酸单体与丙烯酸聚乙二醇单酯之间易发生热聚合,所以需加阻聚剂。如图2所示,随着阻聚剂加入量的增加,生成pa的酯化率先提高后降低,故确定阻聚剂的最佳加人量为反应单体总质量的0.6%。
催化剂用量对图3是用十二烷基苯磺酸作催化剂时,其用量对pa酯化率的影响。
由图3可知,催化剂加入量越大,反应速度越快,酯化率也越高。但催化剂的加入量大于1.0%时(相对于单体总质量),对酯化率的影响已经较小,故确定十二烷基苯磺酸的用量为1.0%。
3酯化反应时间对酯化率的影响 由图4可见,酯化反应时间对酯化反应的影响程度随着反应时间的延长而增大,当反应时间至6 h时,酯化率达89.4%,但继续延长反应时间对酯化率的影响已经不大,酯化率变化不再明显,此时酯化反应已基本完成,故本实验确定适宜的反应时间为6 h。
3.1酯化反应温度对酯化率的影响
反应温度是影响反应速率的重要因素。由于所用的醇为高级醇,空间位阻较大,因而反应速度较慢。为提高反应速率,应提高反应体系的温度,但同时也应避免在 反应过程中产生热聚合现象。为此采用逐步升温方法,以保持反应在正常回流下,温度不应超过丙烯酸的沸点(140 ℃)。本实验采用减压装置及时移走酯化反应过程中产生的水,以提高酯化程度。不用苯、甲苯或环己烷等有毒试剂作携水剂,减少催化剂、阻聚剂等试剂的用量。同时,保证了较高的产率及纯度,是一种有效制备此单体的方法。
上述试验结果表明,合成pa的最佳配比为:丙烯酸与聚乙二醇的物质的量比为1.2:1.0,阻聚剂的用量为单体总质量的0.6%,催化剂的用量为单体总 质量的1.0%;最佳工艺条件为:采用分段升温方法,于110~140℃ 回流条件下反应6 h。采用该配比及工艺,pa酯化率可达89.4%以上,产物在水中有极好的溶解性,并且实验有很好的重现性。3.2 影响合成的因素
反应物料比对sas产率的影响
氯丙烯与亚硫酸钠的用量比是影响反应的主要因素,制备时应首先考虑。图5是反应时间5 h、反应温度45~47℃时,氯丙烯与亚硫酸钠的比(物质的量比)对sas产率影响的曲线。
由图5可见,随着氯丙烯与亚硫酸钠的物质的量比的增加,sas的产率增大。由于反应是在液相中进行,氯丙烯极易挥发,氯丙烯适当过量可补充损失,从而提高sas产率。故选用氯丙烯与亚硫酸钠的比为1.2:1进行反应。
3.2.2 反应时间对sas产率的影响
图6是氯丙烯与亚硫酸钠的物质的量比为1.2:
1、反应温度为47℃ 时,反应时间对sas产率的影响曲线。
由图6可见,sas的产率随反应时间的延长先增大后减小。这是由于反应时间超过4 h后,反应物料受热时间过长,部分单体和产物发生了聚合。故确定反应时间以4 h为宜。
3.2.3反应温度对产率的影响 图7是氯丙烯与亚硫酸钠的物质的量比为1.2:
1、反应时间为4 h时,反应温度对sas产率的影响曲线。
由图7可见,随着反应温度的升高,sas的产率增大,但温度超过47 ℃时,氯丙烯发生聚合,实验失败。故确定反应温度为47 ℃。由图5~图7分析得出:当出现回流时开始滴加氯丙烯,要严格控制温度不超过47 ℃。sas的最佳配比及合成工艺条件为:氯丙烯与亚硫酸钠的物质的量比为1.2:1,反应温度47℃,反应时间4 h。此条件下sas的产率为92.9%。
3.3.3影响水泥净浆和易性的因素
图8实验分析了减水剂的反应温度为81℃、反应时间5h、引发剂(nh4)2s2o8用量1%的条件下,聚合单体配比(质量比)对水泥净浆和易性的影响;m(m):m(pa):m(sas)为1:3:2
4、反应时间5 h、引发剂(nh4)2s2o8用量1%条件下,反应温度对水泥净浆和易性的影响;m(m):m(pa):m(sas)为1:3:2
4、反应温度81℃、反应时间5 h下,引发剂用量对水泥净浆和易性的影响;m(m):m(pa):m(sas)为1:3:2
4、引发剂k2s2o8用量1%,反应温度为85℃下,反应时间对水泥净浆和易性的影响。
由图8可知,应选m(m):m(pa):m(sas)为1:3:2.4,1%的k2s2 o8做引发剂,反应温度为85 ℃,反应时间6 h。减水剂对水泥净浆流动度的影响
选取和易性最好的减水剂进行水泥净浆流动性检测,图9为不同掺量减水剂对水泥净浆经时流动度的影响。
由图9可知,m—pa—sas共聚物减水剂具有优异的分散能力。掺量0.5%时,水泥净浆经时流动度最大为29.7 cm(60 min);掺量0.3%时,经时流动度最大为26.2 cm(30 min);减水剂掺量为0.3%时较掺量为0.5%时的水泥净浆流动度经时变化小。
3.5 红外光谱分析
取和易性最好的减水剂进行红外光谱分析,结果见图10。
图10中,3 386 cm-1 和530 cm-1处是羟基的明显特征吸收峰;1 059 cm-1处是醚键的特征吸收峰;1 220—1 126cm-1 处是羧酸酐的特征峰;1 722 cm-1 处为酯基的特征吸收峰,在3 000~3 200 cm-1没有峰出现,说明烯类c=c键不存在,未聚合的单体残留很少。表明,产品的结构与原先设计的减水剂分子基本结构相符,验证了m—pa—sas共聚物减水剂分子结构设计的合理性。结论
(1)该减水剂的最佳合成配比及工艺为:m(m):m(pa):m(sas)为1:3:2.4,选用1%的k2s2o8做引发剂,反应温度85℃,反应时间6 h。
(2)水泥净浆试验结果表明,m—pa—sas共聚物减水剂具有优异的分散能力,其最佳掺量为0.3%,可使水泥净浆流动度达到25 cm以上,经时变化显著减小。
第五篇:聚羧酸高效减水剂的低温合成技术及性能研究
聚羧酸高效减水剂的低温合成技术及性能研究
---青岛鼎昌新材料 引言近年来,混凝土外加剂的生产已经朝着高性能、无污染方向发展。以聚羧酸系为代表的第三代高性能减水剂大量应用于大型建设工程。该类减水剂的主要优点是掺量低、减水率高、高分散性、高保坍性、引言
近年来,混凝土外加剂的生产已经朝着高性能、无污染方向发展。以聚羧酸系为代表的第三代高性能减水剂大量应用于大型建设工程。该类减水剂的主要优点是掺量低、减水率高、高分散性、高保坍性、引气量小、不泌水等,是配制高强度、高耐久性、大流态等高性能混凝土的首选减水剂,并被国内外公认为环保型高性能减水剂,对此类减水剂的合成研究是当前混凝土外加剂研究领域的最热门课题之一。
目前,聚羧酸合成技术已经比较成熟、稳定,但仍存在着合成温度比较高(60 ~80 ℃),整个反应时间比较长(5 ~7 h),生产效率低的问题对于在低温条件下、高效合成减水剂的工艺罕见报道,因此开发出一种合成温度低、反应时间短的合成方法显得尤为重要。本研究从降低聚合反应的温度(20 ~25 ℃)入手,以异戊烯醇聚氧乙烯醚、甲基丙烯磺酸钠、丙烯酸、复合引发剂 E 等为原料,在较短反应时间内(2 h),通过自由基共聚合反应合成聚羧酸高效减水剂,实现一种聚羧酸减水剂的低温合成技术。试验
2. 1 主要原料和设备
异戊烯醇聚氧乙烯醚(TPEG2400),工业品;甲基丙烯磺酸钠(SAMS),化学纯;丙烯酸(AA),工业品;去离子水,工业品;氢氧化钠,分析纯;引发剂 E。
DF-101S 集热式磁力搅拌(河南智诚仪器有限公司);DW-1 型电动搅拌器(江苏省金坛市医疗仪器厂);分析天平(上海精密仪器有限公司);NJ-160A 水泥净浆搅拌机(无锡市建鼎建工仪器厂);蠕动泵(保定创锐泵业有限公司)。2. 2 聚羧酸减水剂的制备
一定量的 TPEG2400 单体和 SAMS 置入四口烧瓶中,加入适量的去离子水,开启蠕动泵,于2 h 内匀速滴加引发溶剂 E 及 AA 水溶液,反应过程中温度保持在 20 ~25 ℃,滴加完成后,用 w(NaOH)=40% 的水溶液调节体系 pH 值至中性,即得聚羧酸产品。2. 3 产品性能测试
水泥净浆流动度与 1 h 经时流动度的测量,按照 GB/T 8077-2012《混凝土外加剂匀质性试验方法》,水灰比 0. 29,减水剂掺量 0. 18%,分别测定水泥净浆流动度和水泥砂浆减水率。结果与讨论
3. 1 酸醚比对减水剂分散性能的影响
在 25 ℃条件下,固定甲基丙烯磺酸钠(SAMS)的配比,引发剂 E 用量为 0. 18%((相对于所有单体总摩尔量的百分比,下同),保持其他操作条件的相同情况下,考查不同酸醚比 n(AA)∶ n(TPEG2400)对减水剂分散性和分散保持性能的影响,试验结果见图 1。
由图 1 可知,随着 n(AA)∶ n(TPEG2400)的增大,净浆流动度逐渐增大。当 n(AA)∶ n(TPEG2400)= 4时水泥净浆流动度达到280 mm,1 h 后保持在270 mm。主要是由于减水剂吸附到水泥颗粒表面,TPEG 中的PEO 侧链在水泥颗粒间产生良好的空间阻碍作用,使水泥颗粒不能彼此靠近,有效阻碍水泥的絮凝,且-COOH 与 PEO 侧链的比例适当,主链上带电荷基团的静电斥力和侧链上的空间位阻效应的协同作用充分发挥,分子结构合理,各官能团协调作用,使减水剂的分散性及分散保持性最好。当 n(AA)∶ n(TPEG2400)﹥4 时水泥净浆流动度开始明显下降,可能是因为丙烯酸浓度增大,丙烯酸的自聚倾向增强,很容易形成均聚物,导致水泥的分散性能及分散保持性能下降。
3. 2 SAMS 用量对减水剂分散性能的影响
在 25 ℃条件下,固定 n(AA)∶ n(TPEG2400)为 4∶ 1,引发剂 E 用量为 0. 18%,保持其他操作条件的不变情况下,考查不同甲基丙烯磺酸钠对减水剂分散性和分散保持性能的影响,试验结果见图 2。
由图 2 可知,随着 SAMS 用量的增加,水泥的净浆流动度先增大后减小。当 SAMS 用量0. 3 mol 时,减水剂的初始净浆流动度达到 280 mm,1 h 后保持在 270 mm。这是因为 SAMS 具有亲水基团-SO 3 H,具有较好的减水性和缓凝效果,随着 SAMS 用量的增加,聚合产物的分散性显著提高,但其用量过大时,SAMS 具有一定的链转移作用,会影响减水剂相对分子质量的大小,易生成不易溶于水的聚合物。
3. 3 引发剂 E 对减水剂分散性能的影响
在 25 ℃条件下,固定 n(AA)∶ n(TPEG2400)为4∶ 1,SAMS 0. 3 mol,保持其他操作条件的不变情况下,考查不同引发剂 E 用量(相对于所有单体总摩尔量的百分比)对减水剂分散性和分散保持性能的影响,试验结果见图 3。
由图 3 可知,随着引发剂用量的增加,水泥的净浆流动度先增大后减小,当引发剂用量为 0. 18% 时,水泥净浆初始流动度达到 280 mm,1 h 后仍保持在 270 mm。当用量继续增加时,水泥的净浆流动度反而下降。
这是因为,在聚合反应中,引发剂不仅能起到引发聚合反应的作用,且具备一定的调节分子量作用。引发剂用量较少时,所得聚合物的主链聚合度相对较高,分子量较大,容易产生絮凝,当引发剂用量过高时,所得聚合物的主链聚合度过低,分子量较小,所带的负电基团较少,静电斥力小,减水剂的分散性能降低。1
3. 4 反应温度对减水剂分散性能的影响 固定 n(AA)∶ n(TPEG2400)为 4∶ 1,SAMS 的用量 0. 3 mol,引发剂 E 用量 0. 18%,在室温下,采用恒温水浴锅控制反应温度 10 ℃、15 ℃、20 ℃、25 ℃、30 ℃、35 ℃进行实验,考查不同反应温度对减水剂分散性和分散保持性能的影响,试验结果见图 4。
由图 4 可知,减水剂的分散性随着反应温度的升高呈现曲线变化。反应温度在 25 ℃时,所得减水剂性能最佳,可使水泥初始静净浆流动度达到 280 mm,1 h 后保持在 270 mm。当温度高于 25 ℃时,引发剂 E 分解速率较快,聚合速度太快,支链太多,残余单体数量较多,聚合反应不完全。当温度低于 20 ℃时,引发剂 E分解速率降低,聚合速度变慢,单体转化率降低。
3. 5 投料方式对减水剂分散性能的影响 根据自由基聚合原理,投料方式的不同会影响大单体和丙烯酸的共聚倾向及大单体的转化率。在25 ℃条件下,固定 n(AA)∶ n(TPEG2400)为4∶ 1,SAMS 的用量0. 3 mol,引发剂 E 用量0. 18%,反应时间2 h,此处主要考查了不同投料方式对减水剂分散性能的影响:(1)全混法:将 TPEG、SAMS、AA、引发剂 E 一次性投入三口烧瓶中,控制温度进行反应 2 h。(2)半混法:将一定配比的 TPEG、SAMS、AA 投入三口烧瓶中,引发剂 E 混合均匀后连续滴加 2 h 进行反应。(3)分别滴加法:将一定配比的 TPEG、SAMS 投入三口烧瓶中,AA 及引发剂 E 分别同时以滴加加入。试验结果见图 5。
由图 5 可知,相同条件下,采用分别滴加法所得减水剂流动度较大,初始净浆流动度达到 280 mm。主要原因是全混法和半混法反应体系中,活性较大的单体先行聚合,剩余活性较小的单体聚合速率较低,使得产品中有效成分较少,且分子量不均匀。而分别滴加法有效的控制了活性较高的单体的加入速率,所得产品结构合适、分子量均匀,其净浆的流动度及保留性比较理想。因此,试验中采用分别滴加法。
3. 6 反应时间对减水剂分散性能的影响
在 25 ℃条件下,固定 n(AA)∶ n(TPEG2400)为 4∶ 1,SAMS 的用量 0. 3 mol,引发剂 E 用量 0. 18%,保持其他操作条件的相同情况下,考查不同反应时间对减水剂分散性和分散保持性能的影响,试验结果见图 6。
在聚合反应中,自由基聚合反应,一般不存在中间产物,反应体系除了生成一定分子量的聚合物,就是未反应的单体。随着反应时间的增长,减水剂大分子链上接枝的不同官能团的数目随之增加,反应程度也随之增加,所得减水剂的流动度也随之增大。由图 6 可知,反应时间 2 h 时,所得减水剂性能最佳,可使净浆度达到 280 mm。当反应时间超过 2 h,净浆流动度基本保持不变,因此最佳反应时间为 2 h。
3. 7 采用最佳工艺制得的减水剂性能测定
在25 ℃条件下,n(SAMS)∶ n(AA)∶ n(TPEG2400)=0. 3∶ 4. 0∶ 1. 0,2 h 内匀速滴加引发剂 E 及共聚单体AA 于 SAMS、TPEG 混合溶液中,共聚单体 AA 溶液先于引发剂 E 溶液滴加完毕,再用 w(NaOH)=40% 的水溶液中和,制得聚羧酸系减水剂。对此减水剂进行了水泥净浆性能测试,在水灰比为 0. 29,掺量为 0. 18%条件下,水泥净浆初始流动度为 280 mm,1 h 经时流动度为 270 mm,减水率达到 29%。合成的聚羧酸减水剂在低掺量下表现出很好的分散性与分散保持性能,且减水效果较好。结论
(1)本文研究一种聚羧酸减水剂的低温生产工艺,通过单因素实验分析,得到最佳工艺条件:反应温度25 ℃,n(SAMS)∶ n(AA)∶ n(TPEG)=0. 3∶ 4. 0∶ 1. 0,引发剂 E 用量为 0. 18%,反应时间 2 h;(2)采用最佳工艺条件合成得到的减水剂,在水灰比为 0. 29,掺量为 0. 18% 条件下水泥净浆初始流动度为 280 mm,1 h 经时流动度为 270 mm,具有较好的分散性与分散保持性能;(3)在混凝土中掺加采用最佳工艺制得的聚羧类减水剂,其减水率可达 27%,且强度越发稳定。与国内目前广泛应用的聚羧酸类减水剂相比,该减水剂减水率高,保坍性好,合成工艺简单,且聚合反应过程在室温下即可完成,耗能更低,成本较低,具有良好的性价比和市场竞争力。
青岛鼎昌新材料有限公司,是一家专业从事混凝土外加剂新材料的企业,集产品研发、生产、销售及技术服务于一体。公司生产厂位于美丽的青岛胶州市,考虑全国客户产品的使用便捷性,我司先后在广东省东莞市、陕西省西安市、四川省广汉市建立分库房,营销中心坐落于陕西省古城西安,业务面向全国,截止目前成交客户的数量已近千家,遍及全国。公司凭借多年的外加剂从业经验以及强大的技术团队支持,先后研发出一系列适应性强、综合性价比高的混凝土外加剂产品,如:保塑剂系列、缓凝剂系列、改性引气剂系列、阻泥剂系列、高效还原剂系列、抗泥型功能单体,在很大程度上解决了外加剂复配过程中坍损快、和易性差、流动性不好、易泌水等技术难题。
公司的持续发展,离不开广大客户对我司产品的不断建议和信任验证,应市场广大客户需求公司于2014年建立专业的工艺技术研发团队,从事聚羧酸常温合成研究工作,新型的聚羧酸常温工艺解决了部分客户和易性、坍损快等技术问题,简化了材料及生产的复杂性同时达到了环保要求。
我公司将致力于以适应性广泛的产品,先进的技术和完善的服务体系,与全国用户通力合作,来满足不同市场客户的需求。竭诚欢迎各界朋友来电咨询,洽谈业务!