第一篇:八年级数学平行四边形的判别的练习
亿库教育网
http://www.xiexiebang.com,DE=BF,求证:四边形MFNE是平行四边形。
亿库教育网
http://www.xiexiebang.com 百万教学资源免费下载 A亿库教育网
http://www.xiexiebang.com 百万教学资源免费下载
DENMAiv.C
如图,AB、CD相交于点O,AC//DB,AO=BO,E、F分别为OC、OD的中点,连接AF、BE,求证:AF//BE.FBAEOFv.CB D
在四边形ABCD中,AB//CD,对角线AC、BD交于点O,EF过O交AB于E,交CD于F,且OE=OF,求证,ABCD
AFEvi.DOC是平行四边形。B
如图,过□ABCD对角线的交点O作直线EF交AD、BC分别于E、F,又G、H分别为OB、OD的中点,求证:四边形EHFG为平行四边形。AHBFOEGCDvii.现有一块等腰直角三角形的铁板,通过切割焊接成一个含有45°角的平行四边形,请你设计一种最简单的方案,并证明你的方案得到的是一个符合平行四边形的四边形。ACB
viii.如图,在△ABC中,∠C=90°,点M在BC上,且BM=AC,点N在AC上,且AN=MC。AM与BN相交于点P。求证:∠BPM=45.亿库教育网
http://www.xiexiebang.com 百万教学资源免费下载 亿库教育网
http://www.xiexiebang.com 百万教学资源免费下载
AP BNC
M
9月21日平行四边形的判别2 快速反应
6.如图,四边形ABCD为平行四边形,AB=6,BC=8,则AD=_______,CD=________,根据是__________ ADBC
7.如图,AB//DC=EF=10, DE=CF=8,则图中的平行四边形有__________,理由分别是_______________、__________________ ADEBCF
亿库教育网
http://www.xiexiebang.com 百万教学资源免费下载 亿库教育网
http://www.xiexiebang.com 百万教学资源免费下载
8.下列说法,属于平行四边形判别方法的有()个
①两组对边分别平行的四边形; ②平行四边形的对角线互相平分; ③两组对边分别相等的四边形; ④平行四边形的每组对边平行且相等; ⑤两条对角线互相平分的四边形是平行四边形;
⑥一组对边平行且相等的四边形是平行四边形。
A.6个
B.5个
C.4个
D.3个 自主探索
1. 如图,在□ABCD中,E、F、G、H分别是四条边上的点,且满足BE=DF,CG=AH,连接EF、GH。求证:EF与GH互相平分。
AHOBECGFD
亿库教育网
http://www.xiexiebang.com 百万教学资源免费下载 亿库教育网
http://www.xiexiebang.com 百万教学资源免费下载
2. 如图,以△ABC的三条边为边向BC的同一侧作等边△ABP、等边△ACQ,等边△BCR,求证:四边形PAQR为平行四边形。
PRAQBC
3. 如图,在△ABC中,∠C=90°,点M在BC上,且BM=AC,点N在AC上,且AN=MC。AM与BN相交于点P。求证:∠BPM=45°
APBMNC
4. △ABC的三条中线分别为AD、BE、CF,H为BC边外一点,且BHCF为平行四边形,求证:AD//EH.AFBDHEC
亿库教育网
http://www.xiexiebang.com 百万教学资源免费下载 亿库教育网
http://www.xiexiebang.com 百万教学资源免费下载
5. 已知:线段a、b、c,求作□ABCD,使BC=a,对角线AC=b,BD=c.6. 如图,已知AC是□ABCD的对角线,△ACP和△ACQ都是等边三角形,求证:四边形BPDQ是平行四边形。
PDBAQ C
亿库教育网
http://www.xiexiebang.com 百万教学资源免费下载
第二篇:平行四边形的判别1-反思
《平行四边形判别》反思
作为学校 “三段六步”教学模式的第一个展示者,上课前我做了充分的准备,师傅的指导,其他老师的帮助都帮我理清很多思路,都使我能够充满信心的站在录播教室的讲台上。课堂上是顺利的,但是我们不能只是上完一节课,关键是怎么上好一节课,课后前辈给我提了很多宝贵的意见以及建议,现我简单总结一下。
收获:
通过小纸条拼图的方式引导同学探索、研究得出平行四边形的判定方法,学生掌握比较好,通过练习巩固,学生对判定方法的运用也比较熟练,而且由于要求学生对每一个判定都进行了口头表达过程和符号语言的书写练习,因此提高了学生的推理论证的能力和书写能力,在训练过程中大部分的学生都能说出或写出比较完整的证明过程。
不足:
1、因为学生刚开始学习习近平行四边形的判定方法,因此,应该让学生书写证明过程时注明选择的判定方法。
2、本节课虽然目标达成较好,但缺少亮点,应该设计一道一题多解的问题,把本节课的两种判定方法结合起来,加深学生的理解以及区别。
2、我在书写本节课两个判定方法以及符号语言时,设计不太妥当,可以让学生板书或者学生叙述我来演板,不能单一的自己演板。
4、小组合作时,应先让学生独立思考再合作学习。
5、学生们本节课不够活跃,应该加强课前对学生积极性的调动。
6、课件某些字体颜色设计不够妥当,色差不大,导致后排学生看不清楚。
第三篇:2017八年级数学平行四边形教案.doc
第十九章 四边形
单元要点分析
教材内容
本单元教学的主要内容:
现实世界中,四边形在我们的生活中,随处可见,如宏伟的大厦,各种地砖,别具一格的窗棂、各种型号的电视机、风扇、电冰箱等,处处都有着四边形的身影,在本单元,我们将着重研究这些特殊的四边形,分析它们的联系与区别,探索并证明它们的性质及判定方法,从而进一步提高分析问题、解决问题的能力.
本单元知识结构图:
本单元教材分析:
四边形和三角形一样,也是基本的平面图形,在小学,我们已经学过一些特殊的四边形,如长方形、正方形、平行四边形和梯形等,这些特殊的四边形与我们的生活联系的较为紧密,本单元探索并掌握四边形的基本性质,进一步学习说理和简单的推理,为今后学习“立几”与图形等内容打下坚定的基础,教材通过平行线、三角形、图形变换等几何知识,推得平行四边形性质,将梯形问题的研究用“化归”思想转化为平行四边形和三角形问题上来研究;而平行四边形的性质的学习又丰富与发展了平行线和三角形的性质,教材安排上围绕着从“特殊→一般”的思想展开讨论.以观察、分析、探究的方法,辅以简单的情理推进研究.
本单元为学生提供了生动有趣的现实情境,安排了观察、动手操作、合作交流等活动,推进学生对四边形性质的理解、识图、作用等操作技能的理解与掌握.积累数学思维的活动经验,形成合情推理能力,提高学生分析问题与解决问题能力.
教学目标(三维目标)
知识与技能:
了解平行四边形、矩形、菱形、正方形、梯形的概念,以及它们之间的关系;探索并掌握它们的有关性质和判别方法.
过程与方法:
经历特殊四边形性质的探索过程,掌握合情推理能力,以及几何说理的基本方法,了解多边形的有关概念.
情感态度与价值观:
丰富学生数学经验,增强学生的简单逻辑推理能力.体验本单元知识在实际生活中的应用价值.
重难点、关键
重点:理解和掌握平行四边形的性质与判定.
难点:几种特殊四边形的联系与区别.
关键:应用观察、识图、判断的思想,采用合作探究的形式使学生把握住几何推理的思路.
单元课时划分
19.1平行四边形 4课时 19.2 特殊的平行四边形 5课时 19.3 梯形 1课时 19.4 重心(课题学习)1课时
复习与交流 1课时
单元自测优化设计 1课时
教学活动设计
19.1平行四边形
第一课时平行四边形的性质
(一)教学目标
知识与技能:
探索并掌握平行四边形对边相等、对角相等、对角线互相平分的性质.
过程与方法:
经历探索平行四边形有关概念和性质的过程,发展学生的探究意识和合情推理的能力.
情感态度与价值观:
培养学生严谨的思维习惯和勇于探索的思想意识,体会几何知识的内涵与实际应用价值.
重难点、关键
重点:理解和掌握平行四边形的性质.
难点:平行四边形性质的应用.
关键:把握平行线、三角形等有关知识,应用于平行四边形的探究之中.
教学准备
教师准备:投影仪,收集有关生活中的平行四边形图案制成投影片.
学生准备:复习近平行线性质,判定;三角形有关性质;预习本节课内容,收集生活中的有关平行四边形的图片.
学法解析
1.认知起点:对几何中的平行线、•三角形以及小学中的四边形有关知识的积累,以此为起点来认识平行四边形.
2.知识线索:
3.学习方式:观察形象、突出概念,合作交流.
教学过程
一、创设情境,导入新知
【活动方略】
教师提问:上一节布置大家收集有关平行四边形的图片(相片),现在你们将自己所收集的图片与同伴交流.
学生活动:分四人小组,拿出收集的图片进行交流,观察其特征.
教师活动:请各组派代表将你们组收集、讨论的情况向全班进行交流.
媒体使用:学生上讲台利用实物投影或直接展示,来汇报自己的材料.
学生活动:通过观察图片、交流心得,丰富联想,得到平行四边形的特征:是有两组对边分别平行的四边形.
教师归纳:定义:两组对边分别平行的四边形叫做平行四边形,记作“”,如下图a、b,记作“ABCD”.(板书)
【设计意图】采用让学生课前收集现实生活中的平行四边形并通过合作交流来引入平行四边形定义自然流畅,激发了学生兴趣.
二、情理推导,认识性质
【问题牵引】
操作探究:请同学们用两块三角板画出一个平行四边形,观察下面问题. 1.平行四边形边之间有何关系?请证明. 2.平行四边形角之间有何关系?请证明.
【活动方略】
学生活动:分四人小组进行探讨,在探讨中采用观察、度量的方法,很快发现平行四边形具有以下性质:
性质一:平行四边形的对边相等;
性质二:平行四边形的对角相等.
教师活动:在学生通过观察、度量的体验,发现了平行四边形性质之后,引导学生进行证明.
学生活动:证明平行四边形性质一、二,并踊跃上台演示.
思路点拨:对于四边形的问题通常可以转化为三角形来解决,如性质一、二,可通过连结对角线AC或BD(如下图c、d)的方法将平行四边形切割成两块三角形,然后利用三角形全等证明.
【设计意图】采用学生动手画图感知得到平行四边形的两个性质,然后再应用“化归”的数学思想解决性质的严格证明,并渗透一题多解的发散思维.
三、范例点击,提高认知
例1(投影显示)如图,小明用一根36m长的绳子围成了一个平行四边形的场地,其中一条边AB长为8m,其他三条边各长多少?
思路点拨:这个实际问题首先通过周长36m的平行四边形这个条件,•利用已知一条边AB=8m,很容易求出AB=DC=8m,AD=BC=10m,•这是平行四边形性质中的对边相等的应用.
【活动方略】
教师活动:操作投影仪,分析例1,引导学生正确应用平行四边形的性质一,•并板书,教会学生如何书写几何语言.(见课本P93)
学生活动:参与教师分析,弄清解题思路.
【课堂探究】(投影显示)
探究题:如图,已知ABCD中,∠A:∠B=2:3,求∠C,∠D的度数.
思路点拨:本题首先应明确ABCD中,由于AD∥BC,因此∠A+∠B=180°,•根据已知条件∠A:∠B=2:3,可以求出∠A=72°,∠B=108°,然后再用平行四边形性质过渡得到∠D=∠B=108°,∠C=∠A=72°.
【活动方略】
教师活动:操作投影仪,提出问题后,组织学生训练,关注“学困生”的学习,在巡视中发现解题中的问题,可通过让这样的学生(代表性)上台演示,发动学生纠正.
学生活动:先独立思考,从已知条件中分析出思路:要求∠C,∠D,•只要能求出∠A,∠B,这样就把问题转化成熟悉的思路上来,通过两个式子:∠A+∠B=•180 ①,∠A:∠B=2:3 ②用代数的代入法求得结果.
【设计意图】补充这道探究题的目的是让学生有一个独立思考问题的素材.同时也是对课本例题的充实.
四、随堂练习,巩固深化
1.课本P93 “练习” 1、2、3. 2.【探研时空】
(1)如图,从ABCD的顶点D和C,分别引对边AB的垂线DE和CF,交AB和它的延长线于E、F,求证:△AED≌△BFC.
(2)求证:平行四边形ABCD中,顶点B、D与对角线AC的距离相等.
(提示:证出Rt△AED≌Rt△BFC)
五、课堂总结,发展潜能
本节课主要通过情境引入平行四边形定义:两驵对边分别平行的四边形叫做平行四边形,同时引入表达符号“”;接着利用观察和度量以及证明得到平行四边形两个性质:(1)平行四边形对边相等;(2)平行四边形对角相等.
本节课除了弄清上述概念之外还应该学会严谨的书写表达,注意其完整性,同时应领悟平行四边形化归成三角形的思想,这是添加辅助线的方向.
六、布置作业,专题突破
1.课本P99习题19.1 1,2,6,11. 2.选用课时作业优化设计
七、课后反思
第一课时作业优化设计
【驻足“双基”】
1.已知ABCD的周长为20cm,且AD-AB=1cm,则AD=______,CD=______. 2.平行四边形内角和等于________.
3.平行四边形周长为50cm,两邻边之比为2:3,则两邻边分别为_____.
4.如图,在ABCD中,∠ADB=40°,∠ABD=85°,则∠C=_____,∠ABC=_______. 5.已知一个平行四边形的两对角和为214°,则这个平行四边形相邻的两内角的度数分别为_________.
6.如图,在等腰△ABC中,AB=AC,AB=5cm,D为BC边上任意一点,DF∥AC,DE∥AB,求ABCD的周长. 【提升“学力”】
7.连结平行四边形对边中点的线段是否能将对角线二等分?与同伴交流.
8.如图,已知ABCD,AD、BC的距离AE=15cm,AB、DC的距离AF=30cm,且∠EAF=30°,求AB、BC、ABCD面积.
【聚焦“中考”】
9.(2003年安徽省中考题)如图,在ABCD中,AC=4,BD=6,P点BD上的任一点,过P•作EF∥AC,与平行四边形的两条边分别交于点E、F.设BP=x,EF=y,则能反映y与x之间关系的图象为()
10.(2003年北京市中考题)如图所示,在ABCD中,点E、F在对角线AC上,且AE=CF,请你以下为一个端点,和图中已标明字母的某一点连成一条新线段,•猜想并证明它和图中已有的第一条线段相等(只须证明一组线段相等即可).
(1)连结:__________.
(2)猜想:________=________.
(3)证明.
答案: 1.5.5cm,4.5cm 2.360° 3.10cm,15cm 4.55°,125° 5.107°,73° •6.10cm
27.EF能将AC二等分 8.30cm,60cm,900cm 9.A 10.(1)BF,(2)BF=DE,(3)•提示:证△BCF≌△DAE.
第四篇:《平行四边形的判别》说课教案
《平行四边形的判别》说课教案
各位老师,大家好!我说课的内容是九年义务教育北师大版数学教材八年级上册第四章第二节《平行四边形的判别》,下面我从五个方面来汇报我是如何分析教材和设计教学过程的。
一、教材分析
1.从在教材中的地位与作用来看
《平行四边形的判别》紧接《平行四边形的性质》一节。纵观整个初中平面几何教材,它是在学生掌握了平行线、三角形及简单图形的平移和旋转等平面几何知识,并且具备了初步的观察、操作等活动经验的基础上讲授的。这一节课既是前面所学知识的继续,又是后面学习菱形、矩形及正方形等知识的基础,起着承前启后的作用。2.从教材编写角度看
教材从学生年龄特征、文化知识的实际水平出发,先让学生动手做,动脑思考,然后与同伴交流、探索、总结归纳,升华得出平行四边形的判别方法,再用这些方法去对四边形是否是平行四边形进行判定。这样的安排使抽象的定理让学生更易于接受,并能在整个教学过程中真正享受到探索的乐趣。
3.基于对教材的分析,我认为本节课的教学重点是平行四边形的判别方法,教学难点是判别方法的灵活运用。
4.根据新课程标准的要求及学生的实际情况,本节课我制定了如下教学目标:(一)知识目标:
1.经历并了解平行四边形判别方法的探索过程,使学生逐步掌握说理的基本方法。
2、探索并掌握平行四边形的四种判别方法,能根据判别方法进行有关的应用。(二)能力目标:
在探索过程中发展学生的合理推理意识、主动探究的习惯。
(三)德育目标:
体验数学活动来源于生活又服务于生活,提高学生的学习兴趣。
二、教法分析 针对本节课的特点,我准备采用“创设情境—观察探索—总结归纳—知识运用”为主线的教学方法。
在教学过程中引导学生通过观察、思考、探索、交流获得知识,形成技能,在教学过程中注意创设思维情境,坚持二主方针(学生为主体,教师为主导),让学生在老师的引导下自始至终处于一种积极思维、主动探究的学习状态。使课堂洋溢着轻松和谐的气氛,探索进取的气氛,而教师在其中当好课堂教学的组织者、决策者、创造者和参与者。同时借助多媒体进行演示,以增加课堂容量和教学的直观性
三、学法指导
在本节课的教学中要帮助学生学会运用观察、分析、比较、归纳、概括等方法,得出解决问题的方法。使传授知识和培养能力融为一体,使学生不仅学到科学探究的方法,而且体验到探究的甘苦,领会到成功的喜悦。
四、教学过程
(一)引入新课
在复习了平行四边形定义和性质之后创设教学情景(例如装潢店要招聘店员,老板出了这样一道考题:“一顾客要一张平行四边形的玻璃,你能否利用手头的工具钉制一个平行四边形吗?并说明这张玻璃符合顾客要求的道理。”你能为招聘人员设计一方案吗?)此问题可先提示学生用定义,但用定义不好测量时是否还有别的方法,这样就给学生提出一个问题:也就是说除了用定义外,还可以用什么样的方法去判定一个四边形是平行四边形呢?
设计意图:从实际问题引入新课, 提出具有启发性的问题,能够调动学生的积极思维,激起学生的学习欲望。著名教育家苏霍姆林斯基曾经说过:如果教师不想方设法使学生进入情绪高昂和智力振奋的内心状态,就急于传授知识,那么这种知识只能使人产生冷漠的态度,而不动感情的脑力劳动就会带来疲惫。
(二)判别方法的探索
⒈ 提出问题后我安排了如下三组探索题
探索一 如图,将两根木条AC,BD的中点重叠,并用钉子固定,则四边形ABCD就是平行四边形。你能说出这种方法的道理吗?并与同伴交流。
探索二
如图,将两根同样长的木条AB,CD平行放置,再用木条AD,BC加固,则四边形ABCD就是平行四边形。你能说出这种方法的道理吗?与同伴交流。
这两个问题,让学生分小组展开讨论,此时课堂上营造一种和谐、热烈的气氛,在小组讨论中教师可鼓励学生用度量、旋转、证三角形全等等多种方方法来证明所得四边形是平行四边形。教师还要指导学生进行总结、归纳、在探索过程中鼓励学生力求寻找多种方法来解决问题,同时还可组织组与组之间的评比,这样也能培养他们的竞争意识。然后每组由一名学生代表发言,让学生锻炼自己的语言表达能力,让学生的个性得到充分的展示。最后教师和大家一起总结归纳。得出平行四边形的判别方法: 两条对角线互相平分的四边形是平行四边形; 2 一组对边平行且相等的四边形是平行四边形。
这一教学活动的设计意图:确保学生主体作用得到充分发挥,让学生从被动学习到主动学习、自主学习,让学生从接受知识到探究知识,从个人学习到合作交流。这样的活动教学将会真正焕发出课堂教学的活力,从而在课堂教学中注入一种新课程理念:给学生一个空间,让他们自己往前走;给学生一个时间,让他们自己去安排;给学生一个问题,让他们自己去找答案;给学生一个条件,让他们自己去锻炼;给学生一个题目,让他们自己去创造;给学生一个机遇,让他们自己去抓住。
(三)题组训练:
为了进一步落实教学目标,让学生在学懂学会的基础上融会贯通,我安排了坡度适中,题型多样的系列题组。1。说一说
请你识别下列四边形哪些是平行四边形?
设计意图:让学生着重讲清判断的理由,此题直接运用平行四边形的判别方法,起到及时巩固判别方法的作用。同时也锻炼学生的语言表达能力。2.做一做
例题; 如图所示,在 四边形 ABCD中,E、F分别是AB、CD的中点.下图中有几个平行四边形? 请说明理由.设计意图:此题作为本课的例题,要求学生不仅找出五个平行四边形,而且能有条理的写出证明过程,教师要及时查缺补漏,规范解题格式,此题完成后,学生已顺利达到教学目标。3.画一画
如图,在 ▱ABCD中,已知两条对角线相交于点O,E、F、G、H分别是AO、BO、CO、DO的中点,以图中的点为顶点,尽可能多地画出平行四边形。
设计意图:此题的综合性,灵活性比较强,学生能够顺利解决,对培养他们学好数学的信心大有好处。4.挑战自我 在四边形ABCD中,若分别给出四个条件: ⑴AB∥CD ⑵AD=BC ⑶∠A=∠C ⑷AD∥ BC 现在,以其中的两个为一组,能识别四边形ABCD为平行四边形的条件是________(只填序号)设计意图:此题为条件型开放题,答案不唯一。设计此题的目的是:培养学生的发散思维,力求使学生不停留在重复与模仿的阶段。5.实际应用
生物实验室有一块平行四边形的玻璃片,在做生物实验时,小华一不小心碰碎了一部分(如图所示)。同学们!有没有办法把原来的平行四边形重新画出来?(A,B,C为三顶点,即找出第四个顶点D)
设计意图:目的是让学生了解数学问题来源于实际,同时又应用于实际,让学生充分体验历经困难探索结果而轻松用于实际的快乐感觉。(四)布置作业 课本P92习题4.4:1、2、2体会本堂课你所获得成功的经验,写好数学日记,同学交流
设计意图:让学生写“数学日记”这种作业形式,能够培养学生善于归纳总结的能力,逐步养成良好的学习习惯。五.评价分析
本节课教学过程中通过问题设置,引发学生学习的兴趣,引导学生主动探索,通过对平行四边形判别方法的讨论发现新知,归纳总结,得出结论。
本节内容逻辑性较强,对学生的逻辑思维能力要求较高,学生在说理上存在一定困难是正常的。但在问题讨论、引导发现、巩固训练的过程中,师生的信息交流畅通,反馈评价及时,学生与学生积极交流、讨论、思维活跃,教学活动始终处于教师的期盼控制中。六.板书设计
第五篇:八年级数学平行四边形性质说课稿(用)
2008年肃南县初中优质课评选说课稿
学校:肃南一中 教师: 程斌斌
课题:平行四边形的性质(1)
2008年10月12日
平行四边形性质
(一)说课稿
肃南一中
程斌斌
一、教材分析
(一)教材的地位和作用
现实世界中,四边形装点着我们的生活。宏伟的建筑物、铺满地砖的地板、别具一格的窗棂、天空飞舞的风筝„„处处都有平行四边形的身影。本节课是在学生已掌握了全等三角形、四边形的有关知识和平行线的性质的基础上学习的,既是已学知识的综合运用,更是下一步研究各种特殊平行四边形的基础,具有承上启下的作用。通过本节教学,把研究平行四边形转化为全等三角形的方法向学生渗透“转化”的数学思想,探究平行四边形的性质过程提高学生分析、解决问题的能力。因此,本节课无论是在知识的学习,还是对学生能力的培养上都起着十分重要的作用。
(二)教学目标 知识教学点目标:使学生理解并掌握平行四边形的概念及性质,并能运用这些知识进行有关的证明与计算。从而解决简单的实际应用问题。
能力教学点目标:在性质的探索、发现与证明的过程中,培养学生的观察能力及逻辑推理论证能力,渗透“转化”的数学思想。
情感、态度、价值观目标:通过探究学习,增强发现问题、解决问题的意识,养成合作交流的习惯。通过列举现实生活中的平行四边形形状的实例,使学生明白几何图形来源于生活,学习几何是为了解决实际问题,培养学生科学的学习态度。
(三)教学重点、难点与课时设计 教学重点:平行四边形的定义及性质。教学难点:平行四边形性质的理解。
二、说教法
根据本节课的教材内容特点,为了更有效地突出重点,突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,采用观察发现法为主,多媒体演示法为辅。教学中,设计启发性思考问题,创设问题情境,引导学生思考。教学适时运用电教媒体化静为动,激发学生探求知识的欲望,逐步推导归纳得出结论,使学生始终处于主动探索问题的积极状态,从而培养思维能力。
三、说学法
1、根据自主性和差异性原则,让学生“观察→猜想→概括→验证→交流→应用”的学习过程中,自主参与知识的发生、发展和形成的过程,使学生掌握知识。
2、学生一题多解,并及时引导学生小结方法,克服思维定势。例题讲解采取分解图形的方法,使学生体验并学习“转化”的数学思想。
3、利用实际生活中的图形,使获取新知识的过程成为水到渠成,增强学生学习的成就感及自信心,从而培养浓厚的学习兴趣。
四、说教学过程
教学程序设计:教学流程图
展概性性课示念质质外
图的的的作 片形猜巩业揭成想固自
示与与与我 课讲验应检题解证用测
教学过程:
(一)、观赏生活中的图片,引入课题(电脑演示)下面的图片中,有你熟悉的哪些图形?
设计意图:从学生身边熟悉的事物中选取学习素材,易于学生接受,激发学生的学习兴趣。同时,让学生明确本节课的学习内容。
(二)、开启智慧
1、操作活动:
让学生进行如下操作后,思考以下问题:(幻灯片展示)
将一张纸对折,剪下两张叠放的三角形纸片。将它们相等的一组边重合,可以得到一个四边形。设计意图:学生在拼图活动中可以获得丰富的感知,经历和体验图形的变化过程,引导学生感悟知识的生成、发展和变化.
2、观察、讨论:
(1)两张纸片拼成了怎样的图形?它是四边形吗?
(2)这个图形中有没有互相平行的线段?你是怎样得到的?(3)用简洁的语言刻画这个图形的特征,并与同伴交流。
设计意图:通过拼图游戏,让学生经历了平行四边形概念的探究过程,自然而然地形成平行四边形的概念,符合学生的认知规律.避免了以往概念教学的机械记忆,同时发展了学生的探究意识,培养了学生思维的广阔性.
3、平行四边形的定义。
4、介绍平行四边形的书写方式及对角线、对边、对角、邻角的定义。
5、学生动手画一个平行四边形ABCD。
设计意图:通过动手画图操作使学生对平行四边形及其相关元素获得丰富的直观体验,为探究图形性质打下坚实基础。
(三)、知识源于悟:
1、做一做(让学生实际动手操作)(出示幻灯片)
先将复制后的四边形与原来的四边形重合,然后绕一个顶点旋转180°,再平移该四边形,它还能与原来的四边形ABCD重合吗?
(教师用展示整个旋转变化过程)
2、讨论:(小组交流)
(1)通过以上活动,你能得到哪些结论?
(2)平行四边形ABCD对边、对角分别有什么关系?能用数学知识验证你的结论吗?
3、结论:平行四边形的对边相等
平行四边形的对角相等
平行四边形的邻角互补
设计意图:以学生原有的知识为出发点,引导学生进行小组学习,通过一系列的动手、操作、观察、实践、思考、探索、交流来获取知识和学会学习,使他们更好体会合作交流、互相评价、互相尊重的学习方式。同时让学生经历数学知识的形成的过程,能很好地让学生从已有的经验中、活动中,有意义地构建自己的知识结构,获得富有成效的学习体验。从而培养学生数学学习的探究能力、分组合作能力、逻辑思维能力和推理论证能力等。
4、填表:分边、角总结平行四边形的性质,并用几何语言叙述。
设计意图:规范学生的几何语言。同时也使学生清楚,平行四边形的定义既可以作为性质运用,也能作为证明一个四边形是平行四边形的方法,在此为平行四边形的判定做了一个铺垫。
(四)、随堂练习
1、在平行四边形ABCD中,已知∠A=50°,BC=3cm, 则∠B=____,∠D=____,AD=______。
2、在□ ABCD 中∠ADC=125,∠CAD=21°,求∠ABC,∠CAB的度数.3、平行四边形ABCD中,若在AD上取一点E,CB上取一点F,且AE=CF,试测量比较BE ,DF的大小并说明理由。
设计意图:1 主要是引导学生归纳小结帮助学生熟练掌握平行四边形的性质。
2、3 是应用性质解题部分, 2采用学生板演,教师巡回的辅导方式,让学生巩固所学知识,检验本节课对知识的掌握情况,并对书写格式,及时的订正和指导。3采取小组合作解答,互帮互助。让学生熟练性质定理,为以后的证明和计算打好基础。
(五)、新课小结:
通过本节课的学习,你有什么收获?(同桌互讲,小组交流,师生共同小结)
设计意图:引导学生归纳小结本节课的知识要点,使学生养成学习→总结→学习的良好习惯,发挥自我评价的作用,也培养学生的语言表达能力。
(六)、作业设计:
1、必做题:P99习题4.1第1、3题。
2、选做题:利用平行四边形设计美丽的图案,表达你美好的愿望。
五、课后反思
1.注重学生对数学学习兴趣的培养
以实际生活中的图片引入,通过动手画图和实验探索来激发学生的好奇心和求知欲。2.注重对“基础知识”、“基本技能”的理解、掌握和创新能力的培养 本节课通过变式、探究及其相关应用来体现这一基本思想。3.注重师生之间的互动和交流
学生是学习活动的主人,教师是学习活动的引导者、组织者和参与者,在此过程中,教师始终关注学生学习的情绪体验,注重对学习过程的评价。通过归纳整理,培养学生善于反思的良好学习习惯,为自身的发展打下坚实基础。