第一篇:开关电源PCB设计原则及走线技巧 - 副本
开关电源PCB设计原则及走线技巧
文章来自赣州宇辉仪器设备有限公司www.xiexiebang.com
中心议题:
开关电源印制板布线原则
开关电源印制板铜皮走线的一些事项 开关电源印制板大电流走线的处理 反激电源反射电压的一个确定因素 解决方案:
铝基板在开关电源中的应用 多层印制板在开关电源电路中的应用
一、引言
开关电源是一种电压转换电路,主要的工作内容是升压和降压,广泛应用于现代电子产品。因为开关三极管总是工作在 “开” 和“关” 的状态,所以叫开关电源。开关电源实质就是一个振荡电路,这种转换电能的方式,不仅应用在电源电路,在其它的电路应用也很普遍,如液晶显示器的背光电路、日光灯等。开关电源与变压器相比具有效率高、稳性好、体积小等优点,缺点是功率相对较小,而且会对电路产生高频干扰,变压器反馈式振荡电路,能产生有规律的脉冲电流或电压的电路叫振荡电路,变压器反馈式振荡电路就是能满足这种条件的电路。开关电源分为,隔离与非隔离两种形式,在这里主要谈一谈隔离式开关电源的拓扑形式,在下文中,非特别说明,均指隔离电源。隔离电源按照结构形式不同,可分为两大类:正激式和反激式。反激式指在变压器原边导通时副边截止,变压器储能。原边截止时,副边导通,能量释放到负载的工作状态,一般常规反激式电源单管多,双管的不常见。正激式指在变压器原边导通同时副边感应出对应电压输出到负载,能量通过变压器直接传递。按规格又可分为常规正激,包括单管正激,双管正 激。半桥、桥式电路都属于正激电路。
在设计电路的过程中为达到最优性价比,可以灵活运用。一般在小功率场合可选用反激式。稍微大一些可采用单管正激电路,中等功率可采用双管正激电路或半桥电路,低电压时采用推挽电路,与半桥工作状态相同。大功率输出,一般采用桥式电路,低压也可采用推挽电路。
反激式电源因其结构简单,省掉了一个和变压器体积大小差不多的电感,而在中小功率电源中得到广泛的应用。在有些介绍中讲到反激式电源功率只能做到几十瓦,输出功率超过100瓦就没有优势,实现起来有难度。本人认为一般情况下是这样的,但也不能一概而论,PI公司的TOP芯片就可做到300瓦,有文章介绍反激电源可做到上千瓦,但没见过实物。输出功率大小与输出电压高低有关。反激电源变压器漏感是一个非常关键的参数,由于反激电源需要变压器储存能量,要 使变压器铁芯得到充分利用,一般都要在磁路中开气隙,其目的是改变铁芯磁滞回线的斜率,使变压器能够承受大的脉冲电流冲击,而不至于铁芯进入饱和非线形状 态,磁路中气隙处于高磁阻状态,在磁路中产生漏磁远大于完全闭合磁路。
脉冲电压连线尽可能短,其中输入开关管到变压器连线,输出变压器到整流管连接线。脉冲电流环路尽可能小如输入滤波电容正到变压器到开关管返回电容负。输出部分变压器出端到整流管到输出电感到输出电容返回变压器电路中X电容要尽量接近开关电源输入端,输入线应避免与其他电路平行,应避开。Y电容应放置在机壳接地端子或FG连接端。共摸电感应与变压器保持一定距离,以避免磁偶合。
输出电容一般可采用两只一只靠近整流管另一只应靠近输出端子,可影响电源输出纹波指标,两只小容量电容并联效果应优于用一只大容量电容。发热器件要和电解 电容保持一定距离,以延长整机寿命,电解电容是开关电源寿命的瓶劲,如变压器、功率管、大功率电阻要和电解保持距离,电解之间也须留出散热空间,条件允许可将其放置在进风口。
二、印制板布线的一些原则
要考虑到干扰对系统的影响,将电路的模拟部分和数字部分的电路严格分开,对核心电路重点防护,将系统地线环绕,并布线尽可能粗,电源增加滤波电路,采用DC-DC隔离,信号采用光电隔离,设计隔离电源,分析容易产生干扰的部分(如时钟电路、通讯电路等)和容易被干扰的部分(如模拟采样电路等),对这两种类型的电路分别采取措施。对于干扰元件采取抑制措施,对敏感元件采取隔离和保护措施,并且将它们在空间和电气上拉开距离。在板级设计时,还要注意元器件放置要远离印制板边沿,这对防护空气放电是有利的。
线间距:随着印制线路板制造工艺的不断完善和提高,一般加工厂制造出线间距等于甚至小于0.1mm已经不存在什么问题,完全能够满足大多数应用场合。考虑 到开关电源所采用的元器件及生产工艺,一般双面板最小线间距设为0.3mm,单面板最小线间距设为0.5mm,焊盘与焊盘、焊盘与过孔或过孔与过孔,最小 间距设为0.5mm,可避免在焊接操作过程中出现“桥接”现象。,这样大多数制板厂都能够很轻松满足生产要求,并可以把成品率控制得非常高,亦可实现合理 的布线密度及有一个较经济的成本。
最小线间距只适合信号控制电路和电压低于63V的低压电路,当线间电压大于该值时一般可按照500V/1mm经验值取线间距。
方法一:上文提到的线路板开槽的方法适用于一些间距不够的场合,顺便提一下,该法也常用来作为保护放电间隙,常见于电视机显象管尾板和电源交流输入处。该法在模块电源中得到了广泛的应用,在灌封的条件下可获得很好的效果。方法二:垫绝缘纸,可采用青壳纸、聚脂膜、聚四氟乙烯定向膜等绝缘材料。一般通用电源用青壳纸或聚脂膜垫在线路板于金属机壳间,这种材料有机械强度高,有 有一定抗潮湿的能力。聚四氟乙烯定向膜由于具有耐高温的特性在模块电源中得到广泛的应用。在元件和周围导体间也可垫绝缘薄膜来提高绝缘抗电性能。
铝基板由其本身构造,具有以下特点:导热性能非常优良、单面缚铜、器件只能放置在缚铜面、不能开电器连线孔所以不能按照单面板那样放置跳线。
热阻很低,可取得较高可靠性。变压器采用平面贴片结构,也可通过基板散热,其温 升比常规要低,同样规格变压器采用铝基板结构可得到较大的输出功率。铝基板跳线可以采用搭桥的方式处理。铝基板电源一般由由两块印制板组成,另外一块板放 置控制电路,两块板之间通过物理连接合成一体。
由于铝基板优良的导热性,在小量手工焊接时比较困难,焊料冷却过快,容易出现问题现有一个简单实用的方法,将一个烫衣服的普通电熨斗(最好有调温功能),翻过来,熨烫面向上,固定好,温度调到150℃左右,把铝基板放在熨斗上面,加温一段时间,然后按照常规方法将元件贴上并焊接,熨斗温度以器件易于焊接为 宜,太高有可能时器件损坏,甚至铝基板铜皮剥离,温度太低焊接效果不好,要灵活掌握。
三、印制板铜皮走线的一些事项
走线电流密度:现在多数电子线路采用绝缘板缚铜构成。常用线路板铜皮厚度为35μm,走线可按照1A/mm经验值取电流密度值,具体计算可参见教科书。为 保证走线机械强度原则线宽应大于或等于0.3mm。铜皮厚度为70μm 线路板也常见于开关电源,那么电流密度可更高些。
模块电源行列也有部分产品采用多层板,主要便于集成变压器电感等功率器件,优化接线、功率管散热等。具有工艺美观一致性好,变压器散热好的优点,但其缺点是成本较高,灵活性较差,仅适合于工业化大规模生产。
单面板,市场流通通用开关电源几乎都采用了单面线路板,其具有低成本的优势,在设计,及生产工艺上采取一些措施亦可确保其性能。
为保证良好的焊接机械结构性能,单面板焊盘应稍微大一些,以确保铜皮和基板的良好缚着力,而不至于受到震动时铜皮剥离、断脱。一般焊环宽度应大于 0.3mm。焊盘孔直径应略大于器件引脚直径,但不宜过大,保证管脚与焊盘间由焊锡连接距离最短,盘孔大小以不妨碍正常查件为度,焊盘孔直径一般大于管脚 直径0.1-0.2mm。多引脚器件为保证顺利查件,也可更大一些。
需要架空散热的器件,要在器件与线路板之间的管脚上加套管,可起到支撑器件和增加绝缘的双重作用,要最大限度减少或避免外力 冲击对焊盘与管脚连接处造成的影响,增强焊接的牢固性。线路板上重量较大的部件可增加支撑连接点,可加强与线路板间连接强度,如变压器,功率器件散热器。
双面板焊盘由于孔已作金属化处理强度较高,焊环可比单面板小一些,焊盘孔孔径可 比管脚直径略微大一些,因为在焊接过程中有利于焊锡溶液通过焊孔渗透到顶层焊盘,以增加焊接可靠性。
四、大电流走线的处理
线宽可按照前帖处理,如宽度不够,一般可采用在走线上镀锡增加厚度进行解决,其方法有好多种。
1.将走线设置成焊盘属性,这样在线路板制造时该走线不会被阻焊剂覆盖,热风整平时会被镀上锡。
2.在布线处放置焊盘,将该焊盘设置成需要走线的形状,要注意把焊盘孔设置为零。
3.在阻焊层放置线,此方法最灵活,但不是所有线路板生产商都会明白你的意图,需用文字说明。在阻焊层放置线的部位会不涂阻焊剂
线路镀锡的几种方法如上。一般可采用细长条镀锡宽度在1~1.5mm,长度可根据线路来确定,镀锡部分间隔0.5~1mm 双面线路板为布局、走线提供了很大的选择性,可使布线更趋于合理。关于接地,功率地与信号地一定要分开,两个地可在滤波电容处汇合,以避免大脉冲电流通过 信号地连线而导致出现不稳定的意外因素,信号控制回路尽量采用一点接地法。
电压反馈取样,为避免大电流通过走线的影响,反馈电压的取样点一定要放在电源输出最末梢,以提高整机负载效应指标。
不宜通过器件管脚焊盘实现,因为在插装器件时有可能破坏这种连接关系,还有在每1A电流通过时,至少应有2个过孔,过孔孔径原则要大于0.5mm,一般0.8mm可确保加工可靠性。
五、铝基板在开关电源中的应用和多层印制板在开关电源电路中的应用 铝基板(金属基散热板(包含铝基板,铜基板,铁基板))是一种独特的金属基覆铜板,它具有良好的导热性、电气绝缘性能和机械加工性能。铝基覆铜板是一种金属线路板材料、由铜箔、导热绝缘层及金属基板组成,它的结构分三层:
Cireuitl.Layer线路层:相当于普通PCB的覆铜板,线路铜箔厚度loz至10oz。
DielcctricLayer绝缘层:绝缘层是一层低热阻导热绝缘材料。厚度为:0.003“至0.006”英寸是铝基覆铜板的核心技术所在,已获得UL认证。BaseLayer基层是金属基板,一般是铝或可所选择铜。铝基覆铜板和传统的环氧玻璃布层压板等,目前市场上主流的是福斯莱特铝基板。
电路层(即铜箔)通常经过蚀刻形成印刷电路,使组件的各个部件相互连接,一般情况下,电路层要求具有很大的载流能力,从而应使用较厚的铜箔,厚度一般35μm~280μm;导热绝缘层是铝基板核心技术之所在,它一般是由特种陶瓷填充的特殊的聚合物构成,热阻小,粘弹性能优良,具有抗热老化的能力,能够承受机械及热应力。该公司生产的高性能铝基板的导热绝缘层正是使用了此种技术,使其具有极为优良的导热性能和高强度的电气绝缘性能;金属基层是铝基板的支撑构件,要求具有高导热性,一般是铝板,也可使用铜板(其中铜板能够提供更好的导热性),适合于钻孔、冲剪及切割等常规机械加工。
铝基板由其本身构造,具有以下特点:导热性能非常优良、单面缚铜、器件只能放置在缚铜面、不能开电器连线孔所以不能按照单面板那样放置跳线。
铝基板上一般都放置贴片器件,开关管,输出整流管通过基板把热量传导出去,热阻很低,可取得较高可靠性。变压器采用平面贴片结构,也可通过基板散热,其温 升比常规要低,同样规格变压器采用铝基板结构可得到较大的输出功率。铝基板跳线可以采用搭桥的方式处理。铝基板电源一般由由两块印制板组成,另外一块板放 置控制电路,两块板之间通过物理连接合成一体。
在小量手工焊接时比较困难,焊料冷却过快,容易出现问题现有一个简单实用的方法,将一个烫衣服的普通电熨斗(最好有调温功能),翻过来,熨烫面向上,固定好,温度调到150℃左右,把铝基板放在熨斗上面,加温一段时间,然后按照常规方法将元件贴上并焊接,熨斗温度以器件易于焊接为 宜,太高有可能时器件损坏,甚至铝基板铜皮剥离,温度太低焊接效果不好,要灵活掌握。
最近几年,随着多层线路板在开关电源电路中应用,使得印制线路变压器成为可能,由于多层板,层间距较小,也可以充分利用变压器窗口截面,可在主线路板上再 加一到两片由多层板组成的印制线圈达到利用窗口,降低线路电流密度的目的,由于采用印制线圈,减少了人工干预,变压器一致性好,平面结构,漏感低,偶合 好。开启式磁芯,良好的散热条件。由于其具有诸多的优势,有利于大批量生产,所以得到广泛的应用。但研制开发初期投入较大,不适合小规模生。开关电源分为,隔离与非隔离两种形式,在这里主要谈一谈隔离式开关电源的拓扑形式,在下文中,非特别说明,均指隔离电源。隔离电源按照结构形式不同,可分 为两大类:正激式和反激式。反激式指在变压器原边导通时副边截止,变压器储能。原边截止时,副边导通,能量释放到负载的工作状态,一般常规反激式电源单管 多,双管的不常见。正激式指在变压器原边导通同时副边感应出对应电压输出到负载,能量通过变压器直接传递。按规格又可分为常规正激,包括单管正激,双管正 激。半桥、桥式电路都属于正激电路。
正激和反激电路各有其特点,在设计电路的过程中为达到最优性价比,可以灵活运用。一般在小功率场合可选用反激式。稍微大一些可采用单管正激电路,中等功 率可采用双管正激电路或半桥电路,低电压时采用推挽电路,与半桥工作状态相同。大功率输出,一般采用桥式电路,低压也可采用推挽电路。
反激式电源因其结构简单,省掉了一个和变压器体积大小差不多的电感,而在中小功率电源中得到广泛的应用。在有些介绍中讲到反激式电源功率只能做到几十瓦,输出功率超过100瓦就没有优势,实现起来有难度。本人认为一般情况下是这样的,但也不能一概而论,PI公司的TOP芯片就可做到300瓦,有文章介绍反 激电源可做到上千瓦,但没见过实物。输出功率大小与输出电压高低有关。
量,要 使变压器铁芯得到充分利用,一般都要在磁路中开气隙,其目的是改变铁芯磁滞回线的斜率,使变压器能够承受大的脉冲电流冲击,而不至于铁芯进入饱和非线形状 态,磁路中气隙处于高磁阻状态,在磁路中产生漏磁远大于完全闭合磁路。
变压器初次极间的偶合,也是确定漏感的关键因素,要尽量使初次极线圈靠近,可采用三明治绕法,但这样会使变压器分布电容增大。选用铁芯尽量用窗口比较长的磁芯,可减小漏感,如用EE、EF、EER、PQ型磁芯效果要比EI型的好。关于反激电源的占空比,原则上军用电源的最大占空比应该小于0.5,否则环路不容易补偿,有可能不稳定,但有一些例外,如美国PI公司推出的 TOP系列芯片是可以工作在占空比大于0.5的条件下。占空比由变压器原副边匝数比确定,本人对做反激的看法是,先确定反射电压(输出电压通过变压器耦合反映到原边的电压值),在一定电压范围内反射电压提高则 工作占空比增大,开关管损耗降低。
接着谈关于反激电源的占空比(本人关注反射电压,与占空比一致),占空比还与选择开关管的耐压有关,有一些早期的反激电源使用比较低耐压开关管,如 600V或650V作为交流220V 输入电源的开关管,也许与当时生产工艺有关,高耐压管子,不易制造,或者低耐压管子有更合理的导通损耗及开关特性,像这种线路反射电压不能太高,否则为使 开关管工作在安全范围内,吸收电路损耗的功率也是相当可观的。现在 由于MOS管制造工艺水平的提高,一般反激电源都采用700V或750V甚至 800-900V的开关管。这两种类型各有优缺点: 第一类:缺点抗过压能力弱,占空比小,变压器初级脉冲电流大。优点:变压器漏感小,电磁辐射低,纹波指标高,开关管损耗小,转换效率不一定比第二类低。第二类:缺点开关管损耗大一些,变压器漏感大一些,纹波差一些。优点:抗过压能力强一些,占空比大,变压器损耗低一些,效率高一些。
六、反激电源反射电压还有一个确定因素
那就是输出电压,输出电压越低则变压器匝数比越大,变压器漏感越大,开关管承受电压越高,有可能击穿开关管、吸收电 路消耗功率越大,有可能使吸收回路功率器件永久失效。在设计低压输出小功率反激电源的优化过程中必须小心处理,其处理方法有几个:
1、采用大一个功率等级的磁芯降低漏感,这样可提高低压反激电源的转换效率,降低损耗,减小输出纹波,提高多路输出电源的交差调整率,一般常见于家电用开关电源,如光碟机、DVB机顶盒等。
2、如果条件不允许加大磁芯,只能降低反射电压,减小占空比。降低反射电压可减小漏感但 有可能使电源转换效率降低,这两者是一个矛盾,必须要有一个替代过程才能找到一个合适的点,在变压器替代实验过程中,可以检测变压器原边的反峰电压,尽量 降低反峰电压脉冲的宽度,和幅度,可增加变换器的工作安全裕度。一般反射电压在110V时比较合适。
3、增强耦合,降低损耗,采用新的技术,和绕线工艺,变压器为满足安全规范会在原边和副 边间采取绝缘措施,如垫绝缘胶带、加绝缘端空胶带。这些将影响变压器漏感性能,现实生产中可采用初级绕组包绕次级的绕法。或者次级用三重绝缘线绕制,取消 初次级间的绝缘物,可以增强耦合,甚至可采用宽铜皮绕制。
反激电源变压器磁芯在工作在单向磁化状态,所以磁路需要开气隙,类似于脉动直流电感器。部分磁路通过空气缝隙耦合。为什么开气隙的原理本人理解为:由于功 率铁氧体也具有近似于矩形的工作特性曲线(磁滞回线),在工作特性曲线上Y轴表示磁感应强度(B),现在的生产工艺一般饱和点在400mT以上,一般此值 在设计中取值应该在200-300mT比较合适、X轴表示磁场强度(H)此值与磁化电流强度成比例关系。磁路开气隙相当于把磁体磁滞回线向X 轴向倾斜,在同样的磁感应强度下,可承受更大的磁化电流,则相当于磁心储存更多的能量,此能量在开关管截止时通过变压器次级泻放到负载电路,反激电源磁芯 开气隙有两个作用。
反激电源的变压器工作在单向磁化状态,不仅要通过磁耦合传递能量,还担负电压变换输入输出隔离的多重作用。所以气隙的处理需要非常小心,气隙太大可使漏感 变大,磁滞损耗增加,铁损、铜损增大,影响电源的整机性能。气隙太小有可能使变压器磁芯饱和,导致电源损坏。
所谓反激电源的连续与断续模式是指变压器的工作状态,在满载状态变压器工作于能量完全传递,或不完全传递的工作模式。一般要根据工作环境进行设计,常规反 激电源应该工作在连续模式,这样开关管、线路的损耗都比较小,而且可以减轻输入输出电容的工作应力,但是这也有一些例外。由于制造工艺特点,高反压二极管,反向恢复时间长,速度低,在电流连续状态,二极管是在有正向偏压时恢复,反向恢复时的能量损耗非常大,不利于 变换器性能的提高,轻则降低转换效率,整流管严重发热,重则甚至烧毁整流管。由于在断续模式下,二极管是在零偏压情况下反向偏置,损耗可以降到一个比较低的水平。
反激开关电源变压器应工作在连续模式,那就要求比较大的绕组电感量,当然连续也是有一定程度的,过分追求绝对连续是不现实的,有可能需要很大的磁芯,非常 多的线圈匝数,同时伴随着大的漏感和分布电容,可能得不偿失。那么如何确定这个参数呢,通过多次实践,及分析同行的设计,本人认为,在标称电压输入时,输 出达到50%~60%变压器从断续,过渡到连续状态比较合适。
宇辉仪器主要实验仪器设备:高低温试验箱,高低温交变试验箱,高低温交变湿热试验箱,高低温湿热试验箱,恒温恒湿箱,恒温恒湿试验箱,振动台等
第二篇:开关电源的PCB设计经验总结
对于开关电源,PCB布线毫无疑问是非常重要的一个环节.然而市面似乎很没有合适的书籍来阐述这一块,这主要是由于写书的人不太具有工程经验,具有工程经验的人往往不会写书导致.在这里先挖一个坑,我会慢慢和大家分享这些年来在PCB布线方面的经验,欢迎大家参与讨论.暂时先罗列一下大致内容: 1.原理图的绘制 2.PCB封装 3.布局 4.走线
5.机械,散热和EMI考量 6.Gerber文件的生成 7.制板工艺说明
不好意思,最近比较忙,所以进度会比较慢.首先,你要开始这个工作,先掌握一款软件,画PCB的软件很多,protel,AD,PADS, Power PCB, Allegro等等.当然这些只是工具,在这里并不讨论某种软件怎么用.第一步,我们来讨论怎么画原理图.可能很多工程师觉得怎么画原理图不重要,只要画对就行.其实不然,画图和编程一样,一个是要正确,二是要有可读性,逻辑分明.要是一张原理图,n久之后连你自己都看不懂,那肯定不是好原理图.对于电源原理图,要做到逻辑分明并不难.1.首先要把功率电路和控制电路区分开来.如果你是简单电路,可以放在一张原理图里.比如上面 为功率电路,下面为控制电路.并且将初次级分割明显.如果你是复杂电路,可以采用多张原理图,比如PFC一页,DCDC一页,PFC控制电路一 页,DCDC控制电路一页,还有各种保护也单独一页.2.每个功能模块,都应该有简短的文字说明.3.尽量少用交叉,但又不连接的连线.过多的交叉线,会导致看不清楚,而且有可能会误连接.4.合理利用网络名,原理图中每一个节点都有一个独一无二的net name,所以对一些无法用连线连接的节点,可以用net来连接,但是net的名字应该取得比较形象,容易读懂.对于跨页的连接,应该采用全局的网络名.在画原理图的时候,还需要养成一些小的良好习惯,比如
1.一些在布板的时候需要彼此靠近的器件,在原理图中最好也画在一起.2.在第一次研发的时候,应该预留一些调试的器件位置,有利于增加器件.3.善于利用0欧姆电阻,0欧姆电阻可以将一个net分成二个net,有利于布线.在你布比较复杂的电路的时候,会发现有时候很多走线是一个net的,但是又不能混在一起.比如功率地,信号地.那么在布线的时候,为了能自动互相避让,可以将其分成两个net.原理图是一个项目的开始,也是最为关键的一环.所以在画原理图的时候,应该仔细审查,任何一个细微错误,都会导致将来花大力气来弥补.原理图一旦完成,就该进行编号,同时每一次修改,都应该另存,不要随意覆盖旧文件,避免出错后找不到原来的文件.那么如果原理图准备完毕,就要开始准备每一个所用器件的PCB封装.在大公司里,通常PCB封装有严格的规范,或许有专人制作,那么电源工程师就省去了这个麻烦.但是在一些小公司里,封装还得工程师自己来画,那么要注意些什么呢? 1.封装的脚位必须和原理图脚位一一对应,比如电解电容,如果脚位对错,那可糟糕了.2.要了解生产工艺对封装的要求,通常生产线会积累一些经验,比如封装焊盘多大,生产效率比较高,那么工程师在做封装的时候要事先了解这些规范,尽量迁就产线标准.这样生产效率才能提高.其次,不同的焊接工艺,比如是波峰焊,还是回流焊,都会对焊盘有不同的要求.3.对于一些对称的封装,一定要注意标记,比如标记1脚,避免装反.对于定制的器件,最好搞成不对称,可防反.如果开始布局了,首先要考量的就是器件的总体摆放.1.要考量功率电路的走向,功率电路是占了PCB大部分的区域,那么这部分电路的走向就非常重要了.通常对于功率比较大的电路,走向有以下几种.直线型:输入在一边,输出在另外一边.回字型:输入和输出在同一边,绕个弯回来.蛇形:绕好几个弯
多块板子,比如有AB两块板子,中间用飞线连接.(注意飞线上要走直流电流,减少EMI)当然还有其他的一些,总的来说,功率走向要清晰,不能胡乱交叉.对于布局,为了考虑EMI,首先需要对原理图的EMI产生源头进行分析,首先保证功率电路的EMI的源头的环路最小,在此基础上去布局比较好!我现在指导 LAYOUT 布局就是依据这点来布的,其次在对芯片的周围原件的布局时,先把关键的原件给优先布局,然后在布局其他次要的,举个例子,如芯片的去耦电容优先布局,控制 器的震荡优先布局,反馈回路优先布局等等。
对于大致的功率走向确定之后,要来分别细化各个功率电路的走向,首先看EMI的滤波器的,布局
EMI滤波有个大概的原则,就是输入和输出尽量远离.如果输入和输出很靠近,那么输入输出之间的耦合电容,会导致高频滤波效果变差.滤波器走向如下:
那么再来看一下一个简单的反激电路
如果从结构,散热的角度来考虑的话,要注意一些细节: 板子的重量尽量均衡,不要把重物器件都集中在某一区域.热源器件也不要都聚集在一块,不然互相提高温升.对热敏感的器件,比如电解电容,不要靠近热源,或者热源的下风口.对于风冷的电源,要注意风道的畅通,发热器器件尽量处于下风口,对热敏感器件处于上风口.对于容易破裂的器件,比如陶瓷电容,不要放在PCB容易弯曲的地方,比如定位孔附近.除此之外,还有一个重要的环节,就是要事先了解安规,要知道你设计的产品,将来要过哪个地区的哪些安规。
要事先考虑好,各个爬电距离,电气间隙的要求。事实上安规的细节要求是非常多的,对于研发工程师来说,一开始就要和安规工程师做好沟通,了解一些细节。最主要的一些细节,大致有这些,保险丝前的火线和零线的距离。初级,次级,大地之间的距离。两个不同电位点之间的距离。
这些,以后有时间可以和大家专门以安规的角度去讨论。
关于控制电路的布局,通常复杂点的电源,控制电路分为控制部份,和驱动部份.而驱动部份介于功率电路和信号电路之间,是一定的干扰源,而抗干扰能力要比信号电路强.简单一点的电路,控制和驱动是集成在一块的.那么需要注意的是: 1.控制电路的布局,应该尽量远离功率电路,不宜和功率电路混在一起.特别需要避开dv/dt大的节点,di/dt大的环路.2.布局应该以IC为中心,优先布局震荡电容,去耦电容等电容器件.因为容性器件起到滤除高频噪音的功能,为了减少寄生电感,要和IC的引脚尽量近.3.驱动电路必须靠近MOS,这样驱动电路的环路才会比较小,一个减少干扰,二减少驱动线上的寄生电感.当布局初步完成之后,就要切入我们讨论的重点,如何布线.对于电源来说布线并非简单的连连起来这么简单,有诸多的细节需要考虑.首先,在布线之间,你要了解合作的PCB厂家的工艺水平.比如你采用1盎司的铜厚,通常的厂家能做的最小线宽和最小间距大概在5mil左右,如果你设计的太小,会导致工艺做不到.同样铜厚越厚,最小线宽和间距就会越大.通常2盎司,会要求7mil以上,3盎司会要求8mil以上.当然这些都是要看各个PCB厂家的工艺水平.所以在设置布线规则之前,要先了解这些.接下来,应该知道多大的电流需要多宽的铜皮.也就是所谓的走线的电流密度,这个没有唯一的标准,完全受铜线的温升限制.但是IPC-2221提供一个参考计算.为了方便计算,国外的网友设计了一个网页: http://circuitcalculator.com/wordpress/2006/01/31/pcb-trace-width-calculator/
但是有一个前提需要告知,该计算方法是在没有其它热源影响的前提下.所以在设计的时候,你要注意走线附近的热源,来估算PCB走线容许的温升是多少.对于PCB走线,无非是铜皮而已,所以不单单走线具有电阻,会发热,会有压降.在高频开关电源里面,走线带来的另外一个寄生参数可能会更值得关注,那就是寄生电感.每一根走线都会带来或大或小的寄生电感.这些电感,带来震荡,噪音.....
第三篇:PCB设计技巧总结经验谈
PCB设计技巧总结经验谈.txt你站在那不要动!等我飞奔过去!
雨停了 天晴了 女人你慢慢扫屋 我为你去扫天下了
你是我的听说现在结婚很便宜,民政局9块钱搞定,我请你吧你个笨蛋啊遇到这种事要站在我后面!
跟我走总有一天你的名字会出现在我家的户口本上。
PCB设计技巧总结经验谈
趁着五一有空,这几天断断续续,结合工作中的一些经验,参考资料,总结,写了一下PCB设计方面的技巧和注意的地方,详细介绍给DIYer,希望能够从中提高DIYer的技能水平。
注意:不一定都对,仅仅供参考,只是个人的经验。(请勿转载)
一.PCB板框设计
1.物理板框的设计一定要注意尺寸精确,避免安装出现麻烦,确保能够将电路板顺利安装进机箱,外壳,插槽等。
2.拐角的地方(例如矩形板的四个角)最好使用圆角。一方面避免直角,尖角刮伤人,另一方面圆角可以减轻应力作用,减少PCB板因各种原因出现断裂的情况。
3.在布局前应确定好各种安装孔(例如螺丝孔)及各种开口,开槽。一般来说,孔与PCB板边缘的距离至少大于孔的直径。
4.当电路板的面积大于200 x 150 mm时,应重视该板所受的机械强度。从美学角度来看,电路板的最佳形状为矩形。宽和长之比最好是黄金比值0.618(黄金比值的应用也是很广的)。实际应用时可取宽和长为2:3或3:4等。
5.结合产品设计要求(尤其是批量生产),综合考虑PCB板的尺寸大小。尺寸过大,印刷铜线过长,阻抗增加,抗噪声能力下降;尺寸过小,散热不好,线距不好控制,相邻导线容易干扰。
6.一般来说,板框的规划是在KeepOutLayer层进行。
二.PCB板布局设计
元件布置是否合理对整板的寿命,稳定性,易用性及布线都有很大的影响,是设计出优秀PCB板的前提。不同的板的布局各有其要求和特点,但当中不乏一些通用的规则,技巧。现详细介绍给DIYer,希望能够从中提高DIYe的技能水平。
1.元件的放置顺序
① 一般来说,首先放置与整板的结构紧密相关的且固定位置的元件。比如常见的电源插座,开关,指示灯,各种有特殊位置要求的接口(连接件之类),继电器等,并且不要与PCB板中的开孔,开槽相冲突,位置要正确。放置好后,最好用软件的锁定功能将其固定。
② 接着放置体积大的元件和核心元件以及一些特殊的元件。例如变压器等大元件,集成电路,处理器等核心IC元件,发热元件等。这些元件会随着布线的考虑有所移动,因此是大致的放置,更不用锁定。③ 最后放置小元件。例如阻容元件,辅助小IC等。
2.注意点
① 原则上所有元件都应该放置在距离板边缘3mm以上的地方。尤其在大批量生产时的流水线插件和波峰焊,此举是要提供给导轨槽使用的,同时可以防止外形切割加工时引起边缘部分缺损。
② 要重视散热问题。
对于一些大功率的电路,应该将其发热严重的元件(如功率管,高功率变压器等)尽量分布在板的边缘,便于热量散发,不要过于集中在一个地方。总之要适当,尤其在一些精密的模拟系统中,发热器件产生的温度场对一些放大电路的影响是严重的。除了保证有足够的散热措施外,一些功率超大的部分建议做成一个单独的模块,并作好隔热措施,避免影响后续信号处理电路。还有一点,电解电容不要离热源太近,以免电解液过早老化,寿命剧减。热敏元件切忌靠近热源!
③ 注意元件的重量问题。对于一些较重的元件,建议设计成用支架固定,然后焊接。一些又大又重且发热多的元件,不应直接安装在PCB板上,而应考虑安装在机箱底版上。
④ 重视PCB板上高压元件或导线的间距。
若要设计的电路板上同时存在高压电路和低压电路,则器件之间或导线之间就可能存在较高的电位差。此时应将它们分开放置,加大导线的间距,以免放电引起意外短路。还应注意带高压的器件应布置在人手不易触及的地方。
⑤ 摆放元件时,注意焊盘不要重叠,或相碰,避免短路。还有,焊盘重叠放置,在钻孔时会在一处地方多次钻孔,易导致钻头断裂,焊盘和导线都有损伤。
⑥ 注意元件摆放不要与定位孔,固定支架等有空间冲突。元件应与定位孔,固定支架等保持适当的距离,空间,避免安装冲突。
⑦ 注意电路中用于调节的器件(例如电位器,可调电容器,微动,拨动开关等)。在布局时应充分结合整机结构要求来布置:若只在机内调节,则应放置在方便调节的地方;若是机外面板调节,则应配合面板旋钮的位置来布局。
3.布局技巧
① 对照、结合原理图,以每个功能电路的核心元件(通常是IC芯片)为中心,其他阻容元件等围绕它展开布局。元件应均匀、整齐、紧凑地布置,不仅要考虑整齐有序,更要注重稍候布线的优美流畅性。
② 按照电路的流程合理布置各子功能电路,使信号流畅,并使信号尽可能保持一致的方向。
③ 尽量缩短相关元件之间的连线距离,特别是高频元件间的连线距离,减少它们的分布参数。例如振荡电路元件应尽可能靠近。
④ 一般尽可能使元件平行对齐排列,避免横七竖八。这样不但美观,而且便于安装焊接,批量生产。
⑤ 输入和输出元件应当尽量远离。容易相互干扰的元件不能挨得太近。
⑥ 合理区分模拟电路部分,数字电路部分,噪声产生严重的部分(如继电器火花,大电流、高压的开关)。设法优化调整它们的位置,使相互间的信号耦合最小,减少电磁干扰。例如尽可能让电机、继电器与敏感的单片机远离。
⑦ 强信号与弱信号,交流信号与直流信号要分开设置隔离。
⑧ 在布线前应检查确定好各类元件的焊盘大小。若在布完线后,再修改焊盘的大小,则极易引起焊盘与导线或焊盘与焊盘的间距问题,严重时造成短路!
三.PCB板布线设计 1.注意点
① 输入和输出的导线应避免相邻、平行,以免发生回授,产生反馈耦合。可以的话应加地线隔离。
② 布线时尽量走短、直的线,特别是数字电路高频信号线,应尽可能的短且粗,以减少导线的阻抗。
③ 遇到需要拐角时,高压及高频线应使用135度的拐角或圆角,杜绝少于90度的尖锐拐角。90度的拐角也尽量不使用,这在高频高密度情况下更要关注,这些都为了减少高频信号对外的辐射和耦合。
④ 相邻两层的布线要避免平行,以免容易形成实际意义上的电容而产生寄生耦合。例如双面板的两面布线宜相互垂直,斜交或弯曲走线。
⑤ 数据线尽可能宽一点(特别是单片机系统),以减少导线的阻抗。数据线的宽度至少不小于12mil(0.3mm),可以的话,采用18至20mil(0。46至0.5mm)的宽度就更为理想。
⑥ 注意元件布线过程中,过孔使用越少越好。数据表明,一个过孔带来约0.5pF的分布电容,减少过孔数量能显著提高速度。
⑦ 同类的地址线或数据线,走线的长度差异不要太大,否则短的线要人为弯曲加长走线,补偿长度的差异。
2.布线技巧
① 良好的布局对自动布线的布通率大有益处。根据实际设计要求预设好布线的规则(例如走线拓扑,过孔大小,线距等等),然后先进行探索式布线,把短线快速连接好,可以利用交互式布线,把要求严格的线进行布线。接着进行迷宫式布线,把剩余的线全局不好,再进行全局路径优化,可以断开已布的线重新再布。
② 电源线和地线应尽量加宽,不要嫌大,最好地线比电源线宽,其关系是:地线﹥电源线﹥信号线。加宽除了减少阻抗降低压降外,更重要的是降低耦合噪声。
③ 各种信号线的走线不要形成环路(回路),若是不可避免要形成环路,应设法将环路面积减至最少,以降低感应噪声。自动布线的走线拓扑中的菊花状走线能有效避免布线时形成环路。
④ 尽量使电源线﹑地线的走线方向与数据线走向平行一致,这样对增强抗噪声能力大有益处。
⑤ 高频信号线要注意近距离平行走线所引起的交叉干扰。对于双面板,可在平行信号线的反面设置大面积的地来降低干扰;对于多层板,可利用电源层或地线层来降低干扰。
⑥ 在数字电路系统中,同类的数据线﹑地址线之间不必担心互相干扰,但读﹑写﹑时钟线等控制信号线应避免走在一起,最好用地线保护起来。
⑦ 地线或铺地应尽量与信号线保持合理的相等距离,在安全范围内尽可能靠近信号线。
⑧ 电源线和地线应尽可能相邻靠近,以减少回路面积,降低辐射耦合。
⑨ 数字信号频率高,模拟信号敏感度高。布线时,高频信号线应尽可能远离敏感的模拟电路器件。
⑩ 对于一些关键的信号线是否采取了最佳的保护措施。例如加地线保护。
⑾ 信号﹑元件的连线越短越好,其长度不宜超过25cm。某条连线使用的过孔数量也应尽量少,最好不要超过2个,以免引入太多的分布参数,况且过孔太多,对PCB板的机械强度也有影响。
⑿ 敏感的信号线(例如复位线,中断线,片选线等)不要靠近大电流的导线,要远离 I/O线和接插件。
⒀ 石英晶体振荡器下面不要走任何信号线;其外壳要设计成接地;用地线把时钟区包起来,屏蔽干扰信号;时钟线尽量短。
3.地线设计
① 对模拟电路来说,地线的处理相当重要。如功放电路,很微小的地噪声都会因为后级放大而对音质产生严重的影响;又如高精度的A/D转换电路中,如果地线上有高频干扰存在将会是放大器产生温飘,影响工作。
② 对数字电路来说,由于时钟频率高,布线及元件间的电感效应明显,地线阻抗随着频率的上升而变得很大,产生射频电流,电磁干扰问题突出。
③ 充分利用表面粘贴式元件(贴片元件),少用直插式元件。这样可以省去很多直插焊盘孔,把多出来的空间让给地线;设法让信号线尽量在顶层走,将底层尽量完整的做地线层或铺地,保持地电流的低阻抗畅通。
④ 数字电路的地和模拟电路的地要分开处理。在PCB板上既有高速逻辑电路,又有线性电路,两者的地线不要相混,必须彼此分开布线,最后只在电源的地相接,或在某一处短接后再接到电源的地。具体最后如何相接由系统设计决定。
⑤ 正确运用单点接地和多点接地。在低频电路中,信号的工作频率小于1MHZ,它的布线和元器件间的连线电感影响较少,而接地电路的形成的地环流对干扰影响较大,因而应采用一点接地。这种接法通常用于音频功放电路,模拟电路,60HZ直流电源系统等。当信号工作频率大于1MHZ时,连线电感会增大地线阻抗,产生射频电流。此时必须尽量降低接地阻抗。采用多点接地法可有效降低射频电流的影响。
⑥ 尽量加粗接地线。尤其模拟地线应尽量加大引出端的接地面积。若地线很细,阻抗就会很大,接地电位随着电流的变化而变化,致使信号电平不稳定。最好使地线能够通过3倍于电路允许的最大电流。
4.铺铜(主要是指铺地)设计
① 为了提高系统的可靠性,大面积铺地是必须的,而且是行之有效的。特别是微弱信号处理的电路
② PCB板上应尽可能多的保留铜箔做铺地。这样得到的传输线特性和屏蔽效果,比一条长长的地线要好。
③ 大面积铺铜通常有2种作用:一是散热,二是提高抗干扰能力。
④ 在铺设大面积的铜皮时,建议将其设置成网状。一来可以防止PCB板的基板与铜箔的黏合剂在浸焊或受热时,产生挥发性气体﹑热量不易排除,导致铜箔膨胀﹑脱落现象;二来更重要的是网格状的铺地,其受热性能高频导电性性能都要大大优于整块的实心铺地。
⑤ 为了保持足够低的地阻抗,铺地的连续性很重要。在双面板中,有时为了走一两条信号就将地线分割开,这对于地电流的流畅性是极不利的,必须另想他法。
⑥ 多层板布线时,抑制电磁干扰的重要思想是:当信号线与地线层相邻布线时,其时钟信号特性最好。信号线层有剩余的走线,应当首先考虑在电源层上布完,而保留完整的地线层。
⑦ 对于只有数字电路的PCB板,可用宽的铜箔线围在板的四周边缘处组成闭环回路,并连接到地。这样做大多能提高抗噪声能力。(注意:模拟电路不适用)
⑧ 大面积铺铜距离板边缘至少保证0.3mm以上。因为在切割外形时,如果切到铜箔上,就容易造成铜箔翘起产生尖刺或引发焊剂脱落。
第四篇:浅谈开关电源设计中PCB板的物理设计注意事项
浅谈开关电源设计中PCB板的物理设计注意事项
在开关电源设计中PCB板的物理设计都是最后一个环节,如果设计方法不当,PCB可能会辐射过多的电磁干扰,造成电源工作不稳定,以下针对各个步骤中所需注意的事项进行分析:
一、从原理图到PCB的设计流程
建立元件参数-》输入原理网表-》设计参数设置-》手工布局-》手工布线-》验证设计-》复查-》CAM输出。
二、元器件布局
实践证明,即使电路原理图设计正确,印制电路板设计不当,也会对电子设备的可靠性产生不利影响。例如,如果印制板两条细平行线靠得很近,则会形成信号波形的延迟,在传输线的终端形成反射噪声;由于电源、地线的考虑不周到而引起的干扰,会使产品的性能下降,因此,在设计印制电路板的时候,应注意采用正确的方法。每一个开关电源都有四个电流回路:
(1)电源开关交流回路(2)输出整流交流回路(3)输入信号源电流回路(4)输出负载电流回路输入回路
通过一个近似直流的电流对输入电容充电,滤波电容主要起到一个宽带储能作用;类似地,输出滤波电容也用来储存来自输出整流器的高频能量,同时消除输出负载回路的直流能量。所以,输入和输出滤波电容的接线端十分重要,输入及输出电流回路应分别只从滤波电容的接线端连接到电源;如果在输入/输出回路和电源开关/整流回路之间的连接无法与电容的接线端直接相连,交流能量将由输入或输出滤波电容并辐射到环境中去。
电源开关交流回路和整流器的交流回路包含高幅梯形电流,这些电流中谐波成分很高,其频率远大于开关基频,峰值幅度可高达持续输入/输出直流电流幅度的5倍,过渡时间通常约为50ns。
这两个回路最容易产生电磁干扰,因此必须在电源中其它印制线布线之前先布好这些交流回路,每个回路的三种主要的元件滤波电容、电源开关或整流器、电感或变压器应彼此相邻地进行放置,调整元件位置使它们之间的电流路径尽可能短。建立开关电源布局的最好方法与其电气设计相似,最佳设计流程如下:
放置变压器
设计电源开关电流回路 设计输出整流器电流回路 连接到交流电源电路的控制电路
设计输入电流源回路和输入滤波器 设计输出负载回路和输出滤波器根据电路的功能单元,对电路的全部元器件进行布局时,要符合以下原则:
(1)首先要考虑PCB尺寸大小。PCB尺寸过大时,印制线条长,阻抗增加,抗噪声能力下降,成本也增加;过小则散热不好,且邻近线条易受干扰。电路板的最佳形状矩形,长宽比为3:2或4:3,位于电路板边缘的元器件,离电路板边缘一般不小于2mm。
(2)放置器件时要考虑以后的焊接,不要太密集。(3)以每个功能电路的核心元件为中心,围绕它来进行布局。元器件应均匀、整齐、紧凑地排列在PCB上,尽量减少和缩短各元器件之间的引线和连接,去耦电容尽量靠近器件的VCC。
(4)在高频下工作的电路,要考虑元器件之间的分布参数。一般电路应尽可能使元器件平行排列。这样,不但美观,而且装焊容易,易于批量生产。
(5)按照电路的流程安排各个功能电路单元的位置,使布局便于信号流通,并使信号尽可能保持一致的方向。
(6)布局的首要原则是保证布线的布通率,移动器件时注意飞线的连接,把有连线关系的器件放在一起。
(7)尽可能地减小环路面积,以抑制开关电源的辐射干扰。
三、参数设置
相邻导线间距必须能满足电气安全要求,而且为了便于操作和生产,间距也应尽量宽些。最小间距至少要能适合承受的电压,在布线密度较低时,信号线的间距可适当地加大,对高、低电平悬殊的信号线应尽可能地短且加大间距,一般情况下将走线间距设为8mil。
焊盘内孔边缘到印制板边的距离要大于1mm,这样可以避免加工时导致焊盘缺损。当与焊盘连接的走线较细时,要将焊盘与走线之间的连接设计成水滴状,这样的好处是焊盘不容易起皮,而是走线与焊盘不易断开。
四、布线
开关电源中包含有高频信号,PCB上任何印制线都可以起到天线的作用,印制线的长度和宽度会影响其阻抗和感抗,从而影响频率响应。即使是通过直流信号的印制线也会从邻近的印制线耦合到射频信号并造成电路问题(甚至再次辐射出干扰信号)。因此应将所有通过交流电流的印制线设计得尽可能短而宽,这意味着必须将所有连接到印制线和连接到其他电源线的元器件放置得很近。
印制线的长度与其表现出的电感量和阻抗成正比,而宽度则与印制线的电感量和阻抗成反比。长度反映出印制线响应的波长,长度越长,印制线能发送和接收电磁波的频率越低,它就能辐射出更多的射频能量。根据印制线路板电流的大小,尽量加租电源线宽度,减少环路电阻。同时、使电源线、地线的走向和电流的方向一致,这样有助于增强抗噪声能力。接地是开关电源四个电流回路的底层支路,作为电路的公共参考点起着很重要的作用,它是控制干扰的重要方法。
因此,在布局中应仔细考虑接地线的放置,将各种接地混合会造成电源工作不稳定。在地线设计中应注意以下几点:
1.正确选择单点接地通常,滤波电容公共端应是其它的接地点耦合到大电流的交流地的唯一连接点,同一级电路的接地点应尽量靠近,并且本级电路的电源滤波电容也应接在该级接地点上,主要是考虑电路各部分回流到地的电流是变化的,因实际流过的线路的阻抗会导致电路各部分地电位的变化而引入干扰。在本开关电源中,它的布线和器件间的电感影响较小,而接地电路形成的环流对干扰影响较大,因而采用一点接地,即将电源开关电流回路(中的几个器件的地线都连到接地脚上,输出整流器电流回路的几个器件的地线也同样接到相应的滤波电容的接地脚上,这样电源工作较稳定,不易自激。做不到单点时,在共地处接两二极管或一小电阻,其实接在比较集中的一块铜箔处就可以。
2.尽量加粗接地线 若接地线很细,接地电位则随电流的变化而变化,致使电子设备的定时信号电平不稳,抗噪声性能变坏,因此要确保每一个大电流的接地端采用尽量短而宽的印制线,尽量加宽电源、地线宽度,最好是地线比电源线宽,它们的关系是:地线>电源线>信号线,如有可能,接地线的宽度应大于3mm,也可用大面积铜层作地线用,在印制板上把没被用上的地方都与地相连接作为地线用。进行全局布线的时候,还须遵循以下原则:
(1)。布线方向:从焊接面看,元件的排列方位尽可能保持与原理图相一致,布线方向最好与电路图走线方向相一致,因生产过程中通常需要在焊接面进行各种参数的检测,故这样做便于生产中的检查,调试及检修(注:指在满足电路性能及整机安装与面板布局要求的前提下)。
(2)。设计布线图时走线尽量少拐弯,印刷弧上的线宽不要突变,导线拐角应≥90度,力求线条简单明了。
(3)。印刷电路中不允许有交叉电路,对于可能交叉的线条,可以用“钻”、“绕”两种办法解决。即让某引线从别的电阻、电容、三极管脚下的空隙处“钻”过去,或从可能交叉的某条引线的一端“绕”过去,在特殊情况下如何电路很复杂,为简化设计也允许用导线跨接,解决交叉电路问题。因采用单面板,直插元件位于top面,表贴器件位于bottom面,所以在布局的时候直插器件可与表贴器件交叠,但要避免焊盘重叠。
3.输入地与输出地本开关电源中为低压的DC-DC,欲将输出电压反馈回变压器的初级,两边的电路应有共同的参考地,所以在对两边的地线分别铺铜之后,还要连接在一起,形成共同的地。
五、检查
布线设计完成后,需认真检查布线设计是否符合设计者所制定的规则,同时也需确认所制定的规则是否符合印制板生产工艺的需求,一般检查线与线、线与元件焊盘、线与贯通孔、元件焊盘与贯通孔、贯通孔与贯通孔之间的距离是否合理,是否满足生产要求。电源线和地线的宽度是否合适,在PCB中是否还有能让地线加宽的地方。注意: 有些错误可以忽略,例如有些接插件的Outline的一部分放在了板框外,检查间距时会出错;另外每次修改过走线和过孔之后,都要重新覆铜一次。
六、复查根据“PCB检查表”,内容包括设计规则,层定义、线宽、间距、焊盘、过孔设置,还要重点复查器件布局的合理性,电源、地线网络的走线,高速时钟网络的走线与屏蔽,去耦电容的摆放和连接等。
七、设计输出 输出光绘文件的注意事项:
a.需要输出的层有布线层(底层)、丝印层(包括顶层丝印、底层丝印)、阻焊层(底层阻焊)、钻孔层(底层),另外还要生成钻孔文件(NC Drill)b.设置丝印层的Layer时,不要选择Part Type,选择顶层(底层)和丝印层的Outline、Text、Linec.在设置每层的Layer时,将Board Outline选上,设置丝印层的Layer时,不要选择Part Type,选择顶层(底层)和丝印层的Outline、Text、Line。d.生成钻孔文件时,使用PowerPCB的缺省设置,不要作任何改。
第五篇:PCB线路板设计技巧总结
PCB线路板设计技巧总结~~~
发表于:2009-01-26 13:23:
53元件布局技巧:
1.基本布局:
(1)尽可能缩短高频元件之间的连线,设法减小其分布参数和相互之间的电磁干扰,易于相互干扰的元器件不能离得太近,输入和输出应尽量远离。
(2)当元件或导线之间可能有较高电位差时,应该加大其距离,以免放电击穿,引起短路。
(3)重15g以上的元件不能只靠导线焊盘来固定,应用支架或卡子固定。
(4)电位器、可变电容、可调电感线圈或微动开关等可调元件,应考虑整机的结构要求。若是机外调节,其位置应考虑调节旋钮在机箱面板上的位置,若是机内调节,应考虑放在印刷板上能方便调节的地方。
(5)留出PCB板固定支架,定位螺孔和连接插座所用的位置。
2.按电路功能单元,对电路的全部器件布局:
(1)通常按信号的流向逐个安排电路单元的位置,以便与主信号流通方向保持一致。
(2)以每个功能电路的核心元件为中心,围绕它布局。元件应均匀,整齐,紧凑地排列在PCB上,尽量减少和缩短各单元之间的引线和连线。
(3)在高频下工作的电路,要考虑元件之间的分布参数,一般电路的元件应尽可能平行排列,这样不仅美观,还可以使装焊方便,易于批量生产。(4)位于边上的元器件,应离PCB板边缘至少2mm。PCB板的最佳形状是矩形(长宽为3:2或4:3),板面尺寸大于200mm*150mm时,应考虑PCB板所受的机械强度。
布线技巧:
(1)输入、输出的导线应尽量避免相邻或平行,最好加线间地线,以免发生反馈。高电平信号和低电平电路不要相互平行,特别是高阻抗、低电平信号电路,应尽可能靠近低电位。PCB板两面的导线宜相互垂直,斜交或弯曲走线,应避免平行,以减小寄生耦合。
(2)在安装电源走线时,每1-3个TTL集成电路,2-6个CMOS集成电路,都应在靠近集成块地方设旁路电容。
(3)PCB板导线的最小宽度主要由导线与绝缘基板间的粘附强度和流过其电流值决定。一般1-1.5mm时,可通过2A电流。对于集成电路,尤其是数字电路,通常为0.2-0.3mm,应注意加宽电源线和地线。
(4)PCB导线拐弯处一般取圆弧形,直角或尖角在高频电路中会影响电气性能。此外在使用大面积铜箔时,应加排气网眼,以利于排除铜箔与基板沾合剂受热产生挥发气体,否则长时间受热易造成铜箔膨胀和脱落。
焊盘:
焊盘中心的引线孔比元件引脚直径略大即可,太大反而造成虚焊,如:DIP型集成电路引脚直径约为0.6mm,其引线直径一般为0.8mm。焊盘外径
一般取D>=(d+1.3)mm,d为引线孔直径。