第一篇:五年级上册数学第3课时植树问题
第7单元 数学广角——植树问题
第2课时 植树问题(3)
教学目标:
1.运用转化的方法,使学生理解在一条首尾封闭的曲线上植树所需棵数与间隔数“一一对应”的数学模型。
2.进一步培养学生在解决实际问题中探索规律,找出解决问题的有效方法的能力,以及抽取数学模型的能力。
教学重点:理解在一条首尾相接的封闭曲线上植树的基本数学模型。
教学难点:培养学生在解决实际问题中探索规律,找出解决问题的有效方法的能力。
教学过程:
一、谈话引入,复习旧知
教师:在前面两节课中,我们共同探讨了在一条线段上植树的问题,还运用发现的规律解决了许多生活中的实际问题。谁来帮助大家一起回顾这些知识?
预设:在一条线段上植树可以分成三种情况:两端都栽时,棵数比间隔数多1;两端都不栽时,棵数比间隔数少1;一端栽一端不栽时,棵数和间隔数相等。
教师:在解决复杂问题时,我们是怎么做的?
预设:可以先给出一个猜测,要判断这个猜测对不对,可以从简单的事例中发现规律,再应用找到的规律来解决原来的问题。
教师:同学们对已学知识掌握得很好!今天这节课,我们要一起来研究植树问题中的另一种情况。
二、自主探索,学习新知
1.出示情境,展开探索
例3:张伯伯准备在圆形池塘周围栽树。池塘的周长是120 m,如果每隔10 m栽一棵,一共要栽多少棵树?
教师:这道题与前面学习的植树问题相比,有什么相同和不同的地方?
预设:不同之处在于前面学习的是在线段上植树的问题,这道题是在一个圆形周围植树。(教师追问1:线段是怎样的?圆形又是怎样的?)线段是直的,圆形是一条曲线。(教师追问2:一条什么样的曲线?)
逐步引导得出:一条首尾相接的封闭曲线。
预设:相同之处是,都是已知长度和间隔距离。
教师:你能联系已经学过的知识,自主解决“一共要栽多少棵树”的问题吗?
学生独立思考,讨论汇报。
2.概括归纳,得出模型
教师:大家想到了用什么方法来解决问题?(画图)120 m的长度太长了,怎么办?(先用简单的数据试一试)
(1)以周长为40 m的圆为例,通过下图得知,能栽4棵树。
(2)如果把圆拉直成线段,你能发现什么?
预设:相当于在线段上植树的问题中“一端栽一端不栽”的情况。
(3)我们还可以用这样的方式来理解。
引导得出:植树的棵数与间隔数“一一对应”。
教师:利用发现的知识,你能解决例3的问题吗?(出示:池塘的周长是120 m?)
120÷10=12(棵)
答:一共要栽12棵树。
教师:谁能完整地概括一下刚才的发现?
预设:在一条首尾相接的封闭曲线上植树,所需棵数与间隔数“一一对应”,相当于在线段上植树的一端栽一端不栽的情况。
三、课堂练习,巩固强化
教师:运用刚才的发现,解决以下实际问题。
1.圆形滑冰场的一周全长是150 m。如果沿着这一圈每隔15 m安装一盏灯,一共需要装几盏灯?
150÷15=10(盏)
答:一共需要装10盏灯。
教师:你能利用题目中的数据编出一道在线段上植树(一端栽一端不栽)的问题吗?
学生练习,交流汇报。
2.一条项链长60 cm,每隔5 cm有一颗水晶。这条项链上共有多少颗水晶?
教师:这题与我们学习的植树问题的知识有关联吗?属于哪一种情况?(在一条首尾相接的封闭曲线上植树)你能说说在这题中谁与谁“一一对应”吗?(水晶的颗数与间隔数)
练习校对:60÷5=12(颗)
答:这条项链上共有12颗水晶。
四、拓展延伸,灵活应用
小区花园是一个长60 m,宽40 m的长方形。现在要在花园四周栽树,四个角上都要栽,每相邻两棵间隔5 m。一共要栽多少棵树?
教师:仔细读题并思考,这题与我们今天学习的内容有什么不同?(是在长方形的四周植树)你能运用画图的方法找到这类问题中隐藏的规律吗?
独立思考,合作交流。
预设1:可以先求出花园的周长,再按照棵数和间隔数一一对应的方法来求。(追问:这种方法跟我们今天这节课学习的内容是?)相同的。(60+40)×2=200(m)200÷5=40(棵)
答:一共要栽40棵树。
教师:这样的方法栽树能够保证四个角上都有树吗?为什么?(能够保证,因为长和宽都是5的倍数)
预设2:也可以分别求四条边上各栽多少棵,再求一共栽多少棵。(追问:用这种方法求的时候,要特别注意什么?)四个角上的树不能重复计算。
教师:那我们可以把4条边都当作一端栽一端不栽的情况来求。(你能自己画一画吗?)
60÷5×2=24(棵)40÷5×2=16(棵)24+16=40(棵)
答:一共要栽40棵树。
五、全课总结,畅谈收获
教师:通过这一节的学习,你有什么收获?跟大家交流一下。
根据学生回答,强调:在一条首尾相接的封闭曲线上植树,所需棵数和间隔数“一一对应”,相当于在线段上植树的问题中一端栽一端不栽的情况。
板书设计:
教学反思:
植树问题
一端不栽 间隔数=棵树
第二篇:五年级上册数学第2课时植树问题
第7单元 数学广角——植树问题
第2课时 植树问题(2)
教学目标:
1.建立并理解在线段上植树(两端都不栽)的情况中“棵数=间隔数-1”的数学模型。
2.通过画线段图初步培养学生探索解决问题的有效方法的能力,尝试用植树问题的模型解决实际生活中的简单问题,培养应用意识。
教学重点:建立并理解“棵数=间隔数-1”的数学模型。
教学难点:培养学生探索解决问题的有效方法的能力。
教学过程:
一、创设情境,复习引入
教师:上节课,我们学习了植树问题中两端都栽的情况,谁能说一说是用怎样的数学模型解决这类问题的?(棵数=间隔数+1)能快速地完成下一题吗?(课件出示题目)
准备题:绿化队要在相距60 m的小路一边植树(两端都栽),相邻两棵树之间的距离是3 m。一共要栽多少棵树?
指名回答:60÷3+1=21(棵)
答:一共要栽21棵树。
再来看看这一题(课件出示例2)认真思考,这两个题目有什么不同?
大象馆和猴山相距60 m。绿化队要在两馆间的小路两旁栽树(两端不栽),相邻两棵树之间的距离是3 m。一共要栽多少棵树?
二、比较分析,迁移新知
教师:你能用画图的方法表示出你的发现吗?同桌之间可以互相交流。(指名汇报)
预设1:准备题是一边,例2是小路两旁。(追问:在图上该如何表示?)就是有两条线段。(怎么计算?)只要先算出一边的树木数量,再“×2”就可以了。
预设2:准备题是两端都栽,例2是两端不栽。(追问:你能通过示意图说说为什么吗?)因为小路的两端都是场馆。
教师:这个题目该如何解决呢?你想到了什么方法?(可以先从简单的事例中发现规律)请你在草稿本上试一试。
三、理解归纳,得出模型
指名回答,过程预设:
1.先画一个简单的线段图看看,以20 m长的线段为例,在两端都栽的情况下“棵数=间隔数+1”,需要栽5棵树。
2.同样长的线段,在两端都不栽的情况下只需要栽3棵树,也就是说栽的棵数比间隔数少1。(教师追问:可以用怎样的数学模型表示?)棵数=间隔数-1。
教师:你能用不同的方法试一试,对这一数学模型进行验证吗?(学生操作,交流发现。)运用这一模型,例2可以怎样解答?
60÷3-1=19(棵)
19×2=38(棵)答:一共要栽38棵树。
教师追问:为什么要“×2”?(因为小路两旁都要栽树)
教师小结:我们一起来回顾一下这个题目的解决过程。通过与例1中两端都栽的植树问题相比较,采用同样的方法得出了两端不栽的植树问题的数学模型,即棵数=间隔数-1。
四、课堂练习,应用新知
教师:利用这一数学模型,还能解决许多生活中的问题。
1.一条走廊长32 m,每隔4 m摆放一盆植物(两端不放)。一共要放多少盆植物?
学生练习,指名回答:
32÷4-1=7(盆)
答:一共要放7盆植物。
教师:如果改为两端都放,该怎么算? 32÷4+1=9(盆)
教师:这两种不同的摆法相差几盆?(2盆)为什么?(两端都放时,盆数=间隔数+1;两端都不放时,盆数=间隔数-1。)
2.一根木头长10 m,要把它平均分成5段。每锯下一段需要8分钟,锯完一共要花多少分钟?
教师:这个问题和我们学习的植树问题有关联吗?属于植树问题中的哪一种情况?可以先用画图的方法试一试。
学生练习,分析讲评:
10÷5-1=4(次)
8×4=32(分钟)
答:锯完一共要花32分钟。
五、利用变式,强化认知
小明家门前有一条35 m的小路,绿化队要在路旁栽一排树。每隔5 m栽一棵树(一端栽一端不栽)。一共要栽多少棵?
教师:这题与已经学过的植树问题有什么不同?(一端栽一端不栽)先猜一猜,再用自己喜欢的方法验证结果是否正确。
预设1:两端都栽的情况下,棵数=间隔数+1;两端不栽的情况下,棵数=间隔数-1。这种一端栽一端不栽的情况,应该是棵数=间隔数。
预设2:是用画线段图的方法得出的,一共要栽7棵。
预设3:直接用35÷5=7(棵)。(教师追问:35÷5算的是什么?)间隔数。(用这样的方法计算其实是以什么作为依据的?)在一端栽一端不栽的情况下,棵数=间隔数。
教师:比较植树问题的三种情况,说说你自己的理解。
六、课堂小结,布置作业
小结:植树问题在生活中的应用非常广泛,在解决这类问题时,应该先判断出属于哪一种情况,再根据题意列式解答。
课外作业:先判断以下各题属于哪种情况,再列式解答。
(1)在一条长2千米的公路的一边栽白杨树,每隔8米栽1棵,最多可以栽多少棵?最少可以栽多少棵?
(2)搬运工从一楼到二楼,走了16级台阶,王丽家住6楼,每相邻两层台阶相同,从一楼到六楼一共走多少级台阶?
(3)一个古老的摆钟,于六时整敲响六下,需时五秒钟;那么,在正午敲响十二下时,需时多少秒?
板书设计:
植树问题
两端不栽 间隔数-1=棵数
教学反思:
第三篇:第3课时《植树问题》教案设计
第3课时《植树问题》
教案设计 设计说明
“植树问题”对于学生来说比较抽象,学生接受起来较为困难,本节复习课,就是让学生在已有知识的基础上,巩固所学,理清思路,让学生的数学能力得到进一步的提高。
1.通过对比,提高学生解决问题的能力。
植树问题的复习分为三个类型:两端都栽树、两端都不栽树和在封闭路线上栽树。由于它们之间都存有共性:都隐藏着间隔数与棵数之间的关系,因此,本节课把所有类型的植树问题归纳在一起,通过观察比较,得出公式,总结这一类问题的解决方法和策略。最后能够运用所学知识解决所有和植树问题相关的实际问题。
2.通过变式练习,培养学生灵活运用所学知识的能力。
在学生进一步明确了三个类型的“植树问题”的解决方法和策略之后,设计了不同难易程度的练习,让学生根据前面发现的规律来解决。同时做好植树问题和生活实际问题的对比沟通,培养学生的应用意识,提高学生学习数学的兴趣,提高学生运用所学知识解决实际问题的能力。
课前准备
教师准备 PPT课件 课堂练习卡 学生准备 课堂练习卡 教学过程
⊙创设情境,导入复习
第七单元,我们共同研究了“植树问题”,想一想,“植树问题”存在几种情况,它们的关系是怎样的呢?指名回答后,老师小结。
(1)在线段上栽树。
①两端都栽:棵数=间隔数+1 ②两端都不栽:棵数=间隔数-1(2)在封闭路线上栽树:棵数=间隔数。
设计意图:通过引导学生进行知识回顾,进一步理解植树问题中存在的规律,为下一步分层练习作铺垫。
⊙分层练习,强化提高 1.基本练习。/ 3(1)在练习本上画一条10厘米长的线段,每隔2厘米画一朵小花,两端都要画,一共可以画多少朵小花?
(2)一个堤坝长200米,沿堤坝栽一行小树,每隔10米栽一棵,只有一端栽,一共可以栽多少棵?
(3)在一段公路的一边栽95棵树,两端都栽,每两棵树之间相距5米,这段公路全长多少米?
(4)公园大门前的公路长80米,要在公路两边栽上树,每两棵树相距8米(两端也要栽)。园林工人共需要准备多少棵树?
(学生自由解答,小组内交流,然后教师组织全班交流,指名学生回答,其他同学纠正错误)
师:同学们真聪明,计算得这么准确,下面老师又为你们准备了一些题目,有没有信心完成?
2.综合练习。
一个挂钟,1时敲1下,3时敲3下,12时敲12下,当这个挂钟3时时敲3下共用了4秒钟。当12时时敲12下要用多少秒?
(1)读题明确题意。(2)分组合作探究。
设计意图:通过分层练习,层层深入地回顾了解决问题的步骤和方法,从而进一步提高了学生的解题能力。
⊙全课总结
通过这节课的复习,我们对植树问题进行了回顾,大家有什么收获呢? ⊙布置作业
1.校园里有一段长80米的路,在路的一侧栽松树,每隔5米栽一棵,一共可以栽多少棵?
2.要在100米的马路两旁栽树,每隔5米栽一棵,一共可以栽多少棵?
3.一个圆形花圃周围长40米,沿花圃一周每隔4米插一面红旗,每两面红旗的中间插一面黄旗,花圃周围各插了多少面红旗和黄旗?
4.一个小朋友以相同的速度在路上行走,从第1棵树走到第17棵树需要16分钟。如果这个小朋友走了30分钟,应走到第几棵树?
板书设计 / 3
植树问题
①两端都栽:棵数=间隔数+1植树问题②两端都不栽:棵数=间隔数-1
③在封闭路线上栽树:棵数=间隔数/ 3
第四篇:人教版数学五年级上册第七单元第三课时植树问题3同步测试
人教版数学五年级上册
第七单元第三课时植树问题3
同步测试
姓名:________
班级:________
成绩:________
小朋友,带上你一段时间的学习成果,一起来做个自我检测吧,相信你一定是最棒的!
一、填一填。
(共2题;共2分)
1.(1分)一根224米长的铁丝,每32米剪一段,一共剪_______ 次.
2.(1分)把一根粗细均匀的木料横截成4段,用时4.8分钟,如果横截成5段,一共用时_______分钟。
二、选择题。
(共3题;共6分)
3.(2分)在周长为42厘米的圆形蛋糕周围每隔3厘米插一根小蜡烛,一共可以插()根小蜡烛。
A
.15
B
.14
C
.16
D
.13
4.(2分)一段木料,锯成三段需6分钟,如果锯成6段需要()分钟.
A
.12分钟
B
.15分钟
C
.9分钟
D
.10分钟
5.(2分)一根绳子要截成20根跳绳,需要截()次。
A
.19
B
.20
C
.21
D
.22
三、解决问题。
(共6题;共35分)
6.(5分)小强用围棋子摆了一个实心方阵,摆这个方阵一行一列共用17个棋子。他摆这个方阵共用了多少个棋子?
7.(10分)城东新区新修了一条道路,全长1500米,在这条道路的一侧从头到尾每隔60米安装一盏路灯,相邻两盏路灯之间等距离地栽2株侧柏。
(1)共栽种了多少株侧柏?
(2)相邻两株侧柏之间间隔多少米?
8.(5分)四年级一班有60人,排成两队,每两个同学相隔1米,队伍前后长米?
9.(5分)每隔1分钟放1炮,10分钟共放多少炮?
10.(5分)将一根木料锯成4段要24分钟,若锯成8段要用多少分钟?
11.(5分)星期一早上,同学们站成纵队升旗,壮壮前面有7人,后面有6人,如果相邻两个人之间的间距是6dm,壮壮所在的这条纵队的长度是多少米?
参考答案
一、填一填。
(共2题;共2分)
1-1、2-1、二、选择题。
(共3题;共6分)
3-1、4-1、5-1、三、解决问题。
(共6题;共35分)
6-1、7-1、7-2、8-1、9-1、10-1、11-1、
第五篇:小学五年级数学上册植树问题教案
小学五年级数学上册植树问题教案
教学目标:
1.通过猜测、试验、、验证等数学探究活动,使学生初步体会两端都栽的植树问题的规律,构建数学模型,解决实际生活中的有关问题。
2.培养学生通过“化繁为简”从简单问题中探索规律,找出解决问题的有效方法的能力,初步培养学生的模型思想和化归思想。
教学重点:发现并理解两端都栽的植树问题中间隔数与棵数的规律。
教学难点:运用“植树问题”的解题思想解决生活中的实际问题。
教学准备:课件、直尺、学习纸。
教学过程:
(一)创设情境,生成问题
教师:你们知道3月12日是什么节日吗?关于植树你知道些什么?(引导学生说诸如植树时两棵数之间有一定的距离,这些距离一般相等„„这些与本课学习相关的信息。)
教师: 其实在植树中还隐藏着很多数学问题呢!今天我们这节课就来研究植树中的数学问题。(板书课题:植树问题)在现实中有很多;关于这种间隔的现象,请同学们看大屏幕:
(二)探索交流,解决问题
1.大胆猜测,引发冲突。
(1)读一读,说一说。
课件出示例题,引导学生获取相关数学信息。让学生读题,然后指名说一说:从题中你了解到了哪些信息?重点帮助学生弄清楚下列数学信息的含义:
①“每隔5米栽一棵”是什么意思?
使学生明确“每隔5米栽一棵”就是指每两棵树之间的距离都是5米,每两棵树之间的距离也叫间隔长度,也可以说成“两棵树之间的间隔是5米”。
②“两端要栽”是什么意思?“一边”是什么意思?
可以先让学生说一说,然后教师拿出实物演示。例如:让学生指出尺子的两端指的是哪里?一边指的是什么?
(2)猜一猜,想一想。
让学生根据例题中的信息,猜一猜一共要栽多少棵树苗,教师对学生的猜测不发表评论,引导学生积极发表自己的看法。
教师:到底要栽多少棵呢?对不对呢?你打算怎样检验自己的猜想?
引导学生用画线段图的方法进行验证。
引导学生说出20米长的一条路,间隔长度是5米,有4个这样的间隔,可以栽5棵树。
(3)小组合作,初步体验。
1、活动前,小组长分工要明确,动手前要思考怎样来设计。
2、可以用一条线段代表20米的小路。用你们喜欢的图案表示树,把你们设计的方案画一画。
3、每个小组推选一名代表汇报设计的方案。
引导学生观察,在这些不同的画法中,有一个共同的地方:棵树比间隔数多1。
(4)合理推测,感知规律。
教师:不用画线段图,如果这条路长30米、35米„„又应栽几棵树呢?请同学们拿出学习纸,填写表格。
学生填写表格,教师巡视,对个别学生进行指导和说明。
学生填写完表格后,小组交流汇报结果。
(5)归纳概括,理解规律。
教师:请大家认真观察表格,你发现在一条线段上栽树(两端要栽),间隔数和棵树有什么关系?将自己的发现在小组内说一说。
学生汇报自己的发现。
引导学生发现两端都栽树,植树的棵数比间隔数多1,也可以说间隔数比棵数少1。
教师:为什么两端都栽树,棵数比间隔数多1?
学生回答后,教师借助课件演示帮助学生进一步直观理解。
(6)即时巩固,强化规律。
教师:同学们都明白了两端都栽的情况下树的棵数与间隔数之间的关系,老师出几道题考考大家:7个间隔种几棵树?20个间隔种几棵树?9棵树之间有几个间隔?20棵树之间有几个间隔?
3.运用规律,验证例题。
教师:回到例题,在20米的小路一边植树,每隔5米栽一棵(两端要栽),到底一共要栽多少棵树?哪些同学刚才猜对了?
教师(点几个猜错的同学):现在你知道自己猜错的原因是什么了吗?给大家说说看,你要提醒大家注意什么?
学生尝试列式解决问题,教师巡视,有针对性地指导。
全班汇报交流,主要让学生弄清楚:20÷5=4是什么意思?为什么还要用4+1=5(棵)?
(三)巩固应用,内化提高
1.“做一做”第1题。
教师:这道题里没有植树呀,能用我们今天学的方法解决吗?
使学生明确应用植树问题的规律,可以解决生活中很多类似问题。在本题中把一盏路灯看成一棵树,也能用植树问题的规律来解决。
教师:其实植树问题,并不只是与植树相关,生活中有很多问题和植树问题相似,比如安装路灯、电线杆、设立车站等。
2.练习二十四1、2、3题。
让学生进一步感受到植树问题在生活中的广泛应用。
3.练习二十四第4题。
教师:这一题与例题有什么不同?
老师引导学生找出此题与例题的区别。例题是知道全长与间隔长度求棵数,而本题是知道间隔长度与棵数求路的全长。
教师:你是怎样计算的?为什么用36减1?
(四)回顾整理,反思提升。
1.对本次课中,探究植树问题的过程进行总结。
2.对解决植树问题的方法进行总结。
3.鼓励学生探索其他相关问题。