第一篇:科学家与化学史
科学家与化学史
舍勒(K.W.Scheele,1742—1786)18世纪中后期著名的瑞典化学家,氧气的最早发现者之一。1773年,舍勒用两种方法制得了比较纯净的氧气。一种方法是加热硝酸钾、氧化汞或碳酸银等含氧的化合物;另一种方法是把黑锰矿(主要成分是二氧化锰)与浓硫酸共热。他发现,当某一物质与这两种方法所制得的气体发生燃烧后,这种气体就会消失,他因此称它为“火气”。舍勒1742年12月19日生于瑞典南部。正式职业是一名药剂师,但他一直对化学有浓厚兴趣,很早就把当时化学书里的各种实验都重复做过一遍。他一生贫寒,却坚持用简陋的仪器在条件很差的实验室里做了大量的化学实验研究工作。后来因患哮喘病于1786年5月21日病故,终年才44岁。在舍勒有限的一生中,还有过许多其它重要的发明和发现。例如:1714年首次利用二氧化锰和盐酸制取了氯气,1781年发现了白钨矿;1782年首次制成了乙醚。此外,他还是著名绿色颜料“舍勒绿”的发明者。现在众所周知的事实“骨灰里含有磷”,也是由舍勒最早发现的,鉴于舍勒对化学做出的重要贡献,瑞典科学院在斯德哥尔摩广场上铸造了一座舍勒铜像。
普利斯特里(J.Priestley,1733—1804)18世纪中后期著名的英国化学家,和舍勒一样被认为是氧气的最早发现者。1774年8月1日,普利斯特里把氧化汞放在一个特制的玻璃瓶中,用聚光镜加热,发现很快分解放出气体。他利用排水集气法将产生的气体收集起来,并分别把蜡烛和老鼠放在其中。结果发现:在这种气体中,蜡烛能剧烈燃烧;老鼠活的时间比在空气中长。随后他撰写了《几种气体的实验和观察》一书。在这部著作中,他在科学界首次详细叙述了氧气的各种性质。虽然普利斯特里独立发现了氧气,但却把它称作“脱燃素的空气”,而没有认识到它是空气中的一种重要组成气体。和同时代的其它化学家相比,普利斯特里在研究中采用了许多新的实验技术,因而在学术界享有很高声誉,还曾被称为“气体化学之父”。他在电子、神学和其它自然科学等方面也有突出贡献。为了纪念他,英国利兹建有他的全身塑像。美国化学会专门设有普利斯特里奖章。
拉瓦锡(A.L.Lavoisicr,1743—1794)法国巴黎人,推翻燃素学说,建立燃烧的氧化学说的著名化学家。1773年舍勒首先制得了氧气(他称为“火气”);1774年普利斯特里也制得了氧气(他称为“脱燃素的空气”)。但是他们都没能发现这种气体在燃烧中的重要作用。拉瓦锡在1774年做了一个著名的金属煅烧实验,并得到了下面的事实:装有反应物的曲颈瓶和装有生成物的曲颈瓶的质量并没有发生变化,而金属的质量却增加了。拉瓦锡由此分析得出:所增之重只可能是金属结合了瓶中部分空气的结果。后来的实验证明了他的推测。这使拉瓦锡对燃素说的观点产生了极大的怀疑,并进一步提出了新的假设:金属的煅灰可能是金属和空气的化合物。他利用铁煅灰进行试验,想从其中直接分解出空气,没有成功。后来从普利斯特里的氧化汞分解实验中受到启发,重复这一实验,取得了成功,并于1777年正式把分解生成的这种助燃、助呼吸的气体称为氧气(oxygene)。通过这一实验,拉瓦锡最终确信:可燃物的燃烧或金属变为煅灰并不是分解反应,而是与氧化合的反应,根本不存在燃素学说所谓的“金属-燃素=煅灰”,而是“金属+氧=煅灰(氧化物)”。在1772年至1777年的5年中,拉瓦锡又做了大量的燃烧试验,并对燃烧以后所产生和剩余的物质逐一加以研究,然后对试验结果进行综合归纳分析,于1777年向巴黎科学院提交了名为《燃烧概论》的报告。此后不久,水的合成和分解实验也取得了成功,从此燃烧的氧化说才被举世公认了。这一学说的建立,把人们长久未能解释的燃烧的秘密揭开了,于是人们知道了氧气是具有确定性质、可度量、可采集的气体物质。燃素说完全破产,开始了现代化学的历史。拉瓦锡也因此被后人誉为现代化学的创始人。
卡文迪许(H.Cavendish,1731─1810)著名物理学家和化学家。一生中所从事的研究工作很广泛。他首次将氢气收集起来加以研究;首次发现水是氢和氧两种元素组成,并通过氢气和氧气化合生成水的实验事实推翻了1784年以前人们的那种将水看作是一种单一元素的错误认识;1785年首先发现了空气中含有氮气(当时称作“浊气”)。卡文迪许更是一位著名的物理学家,验证万有引力定律的著名扭秤实验只是他众多成就之一。卡文迪许1731年10月10日生于法国,11岁起进贵族中学学习8年。1749年到英国的剑桥大学学习。毕业后在自己家中建起了一座规模很大的实验室,从此一直在家中从事实验研究。他是18世纪著名化学家中唯一的一位百万富翁,但他的生活却十分朴素。卡文迪许是一位受人尊敬的科学家,著名的剑桥大学“卡文迪许实验室”就是为了纪念他而建立的。
拉姆塞(W.Ramsay,1852—1916)英国化学家。1894年,拉姆塞利用镁受热后与氮气化合生成氮化物的方法,对大气进行处理。发现大气中氮含量逐渐减少。经过继续实验,终于发现有一种气体不受这种处理方法的影响,其密度超过了原始大气中氮的密度。经过光谱法鉴定和多次重复实验,证实了这是一种与氮不同的新气体,被称为氩气。此后又与他人合作分离出了氖、氪、氙;准确测定出氡的原子量为222;证明了从镭中放射出的气体是氦,并据此发现了放射化学的位移定律。拉姆塞因发现稀有气体,并在周期表中确定了它们的位置而荣获1904年的诺贝尔化学奖。
道尔顿(J.Dalton,1766—1844)英国科学家。近代原子学说的奠基人。道尔顿与法拉第、布朗、歌德等同属一个时代。他从15岁起就开始了边教课、边自学、边研究、边写作的道路。他的科学启蒙老师是一位双目失明的学者。道尔顿的第一部科学著作是《气象观测论文集》。他曾经连续亲自记录气象数据达56年之久,全部观测记录超过22万条。这对他日后提出并用实验证明他的原子学说起到了有益作用。道尔顿一生勤奋、坚韧,他患有色盲症,但却从不妥协,而且把色盲症作为自己的一个研究课题。道尔顿原子学说的主要观点是:一切元素都是由不能再分割、不能毁灭的微粒——原子组成的;同一元素的原子的性质和质量都相同,不同元素的原子质量都不同;化合物是由不同原子按简单整数比化合而成的。其实,原子一词最早出现于希腊哲学著作之中。公元前5~4世纪,德谟克利特等人就提出了原子说的观点,但都没有科学的实验予以证明,因此既不能被科学界普遍接受,也无法推广运用。道尔顿利用化学分析法,研究了许多地区的空气组成,还分析了沼气(CH4)和乙烯(CH2=CH2)两种不同气体的组成,发现它们中各元素含量之间存在着一定的规律,即如果甲乙两种元素能互相化合而生成几种不同的化合物,则在这些化合物中,两种元素的质量互成简单的整数比。这就是著名的倍比定律。也正是这一定律的发现,确立了原子论的实验基础,从而使道尔顿成为近代原子论的奠基人。不仅如此,道尔顿还通过大量的实验,分析了多种化合物的组成,从氢的原子质量为1,测出了20种不同元素的相对原子质量,并于1803年给出了世界上第一张原子量表。道尔顿一生著书50多部,其中最重要的是《化学哲学新体系》(中国科学院藏有此书)。为了纪念他,英国曼彻斯特大学于1853年设立了道尔顿奖学金。
阿佛加德罗(A.Avogadro,1776—1856)意大利化学家、物理学家。1776年8月9日生于都灵市,出身于律师家庭。20岁时获得法学博士学位,做过多年律师。24岁起兴趣转到物理学和数学方面,后来成为都灵大学的物理学教授。阿佛加德罗的主要贡献是他于1811年提出了著名的阿佛加德罗假说,即在同一温度、同一压强下,相同体积的任何气体所包含的分子个数相同。根据这一假说可以得到下面的结果:在相同温度相同压力之下,任何两种气体的相对分子量都与其气体密度成正比。这样分子量(或化学式量)就可以被直接测定了。但是由于当时阿佛加德罗没有对他的假说提出实验证明,以致其假说不易被人接受。直到1860年康尼扎罗用实验论证并在卡尔斯鲁厄化学会议上予以阐述后,该假说才获公认,成为现在的阿佛加德罗定律。
汤姆生(J.J.Thomson,1856—1940)英国物理学家,发现并用实验证明了电子的存在。1879年,克鲁克斯在研究气体放电管中气体的放电现象时得到了一种叫做阴极射线的带电粒子流。当时的物理学家提出各种各样的假说试图阐明阴极射线的本质。汤姆生认为,阴极射线是一种带负电的微粒,并用实验证明了电子的存在,测定了电子的荷质比(电荷e/质量m),并发现了电子的许多性质。后又于1904年提出了一种原子模型。认为原子是一个平均分布着正电荷的粒子,其中镶嵌着许多电子,中和了正电荷,从而形成了中性原子。汤姆生于1906年荣获诺贝尔物理奖。
启普(P.J.Kipp,1808—1864)荷兰人。启普是一位药品商,曾经学过一点化学。启普发生器是他根据前人制作的发生硫化氢气体的简单装置而设计、改进制得的。除了启普发生器外,他还有其它一些小发明,如画家绘画用的彩色铅笔等。启普56岁时因病去世。产业由其子继承,后来演变成为“启普父子公司”,至今仍然是荷兰著名的科学仪器公司。
加多林(J.Gadolin,1760—1852)芬兰人,第一位发现稀土元素的化学家。1794年,他34岁时,从一位研究矿物学的人那里,得到了一块奇特的黑色石头。加多林对它进行了仔细的分析,证实了在这种矿石里面含有一种新元素。这就是第一个被发现的稀土元素(钇Yttrium)。后来,这种矿石被命名为加多林矿。加多林1762年6月5日出生在赫尔辛基附近的埃坡城。从小受到既是天文学家又是物理学家的父亲的严格教育,他曾经和著名的化学家舍勒合作过。在芬兰大学担任了25年化学教授。研究过很多种矿石及其分析方法。他还是北欧最早反对错误的燃素学说的科学家。
波义耳(R.Boyle,1627—1691)英国人,是17世纪最有成就的化学家和近代化学的奠基人。1627年1月25日生于爱尔兰,出身贵族,父亲是当地首屈一指的富商。波义耳是家中14个儿女中最小的一个,自小受到良好的教育。他阅读过大量英文、法文、拉丁文的化学著作和其它科学书籍。在学习医学的过程中接触到大量的化学实验,并很快成为一名训练有素的实验化学家和有创造力的思想家。1644年建立了家庭实验室。波义耳像许多历史上杰出的科学家一样,非常重视实验,认为只有实验和观察才是形成科学思维的基础,研究化学必须建立科学的实验方法。他自己就是一位成功的实验物理学家和实验化学家。他一生中做了大量的实验,包括对气体的研究;对火、热、光等现象的产生本质的研究;对酸、碱、指示剂的研究;对冶金、医学、化学药品、染料,玻璃制造等的研究。著名的波义耳定律也是在对实验细心观察的基础上总结得出的。波义耳写了一部不朽的名著《怀疑派化学家》。在书中,他第一次对化学元素作了明确和科学的定义:“我所指的元素乃是具有确定性质的、实在的、可觉察到的实物,是不能用一般的化学方法再分解为简单的物体的实物。”他坚决反对亚里士多德的“四元素说”和帕拉塞斯的“三元素论”,而比较赞同德谟克利特的物质观(物质是由原子构成的)。但是,波义耳的元素概念和微粒学说在一开始曾被人们看作是异端邪说,一个世纪以后才得到公认。波义耳还是一位善于演讲的哲学家。他是英国皇家学会的栋梁,是一位多产的科学家和哲学家。1691年,这位被恩格斯誉为“把化学确立为科学”的科学家在伦敦因病逝世,终年64岁。
贝采里乌斯(J.J.Berzelius,1779—1848)19世纪前期瑞典最杰出的化学家。1779年8月22日,贝采里乌斯生于瑞典东部的一个小村庄。四岁丧父、九岁丧母,在祖父和姨母、教父的抚养下长大成人。在很困难的情况下完成了中学学业。1746年进入大学学习,1802年获得医学博士学位,1807年任斯德哥尔摩大学教授。贝采里乌斯最早研究的课题是分析化学和矿物分类。在这期间,先后发现了碲、硒、硅和钍元素。他对化学的一大贡献是创造了一套用拉丁字母表示的元素符号(即现在使用的元素符号),从而废弃了过去的象形表示方法。对于贝采里乌斯来说,最耗费时间和精力的研究是对原子量的测定工作。他分析了两千种左右的化合物,测定了这些化合物中各种元素的重量组成关系,再制订出原子量标准,然后根据化合物的化学式,计算出原子量,并用此方法先后制定了五张原子量表。贝采里乌斯对化学的贡献还涉及许多重要领域,如发现了异构现象、创立了电化学,提出了催化剂概念等。
原子概念的形成公元前5世纪前后,古希腊哲学家德谟克利特等人最先提出世界上千千万万种物质是由最微小,坚不可入且不可再分的微粒所构成。这种微粒叫做“原子”,希腊语原意即“不可分割”。牛顿在17世纪后期比较明确地指出,一切物质都是由微小的颗粒组成的。但这些论点都没有科学的实验来证明,既不能被科学界普遍接受,也无法推行运用。英国科学家道尔顿通过化学分析,研究了许多地区的空气组成,得出这样的结论:各地的空气都是由氧、氮、二氧化碳和水蒸气四种主要物质的无数个微小颗粒混合起来的。他利用了希腊哲学上的名词,也称这些小颗粒为“原子”。1803年,道尔顿提出了他的原子学说:①元素(单质)的最终粒子称为简单原子,它们极其微小,是看不见的;是既不能创造,也不能毁灭和不可再分割的。它们在一切化学变化中保持其本性不变;②同一元素的原子,其性质和质量都相同;不同元素的原子,其性质和质量都不相同;③不同元素的原子以简单数目的比例相结合,形成了化学中的化合现象;化合物的原子称为“复杂原子”。这一学说合理地解释了当时发现的质量守恒定律、定组成定律及倍比定律等,开创了化学的新时代。但是,道尔顿的把原子看成是组成物质的“最后质点”,是“绝对不可再分”的微粒的观点,又受到19世纪末一系列重大科学发现的有力冲击。电子的发现打开了原子内部的大门,放射性的发现则进一步揭示了原子核的奥秘。随着科学研究的不断深入,现代原子概念逐步得到了发展和完善。
分子概念的形成意大利化学家阿佛加德罗以意大利物理学家盖·吕萨克(J.L.Gay-Lussac,1778—1850)的气体化合体积定律为基础,通过合理的概括和推理,引入了分子的概念。盖·吕萨克在进行大量的气体研究实验的基础上提出:“各种气体在相互发生化学反应时,常以简单体积比相结合。”由于道尔顿的原子学说中没有分子的概念,未能看到单质分子会由双原子或多原子构成。因而,按照道尔顿的学说,在化合物的复杂原子中就会出现“半个原子”的矛盾现象。阿佛加德罗敏锐地看到,只要在物体和原子这两种物质层次之间再引进一个新的关节点或新的分割层次——分子,就可以把道尔顿的学说与盖·吕萨克的气体化合体积定律顺利地统一起来。对化合物而言,分子即相当于道尔顿的所谓“复杂原子”,对单质来说,同样包含这样一个层次,只不过是由相同的原子结合成分子。对盖·吕萨克的气体化合体积定律的解释,只要认为相同温度、压力下,同体积的任何气体都含有相同数目的分子,便可以得到圆满的回答;如果认为各种元素的单质都含有两个或多个原子,也就不会出现“半个原子”那样的矛盾了。由于阿佛加德罗的分子概念是对道尔顿原子学说的发展,所以人们把它们统称为原子—分子论。
原子结构的发现
道尔顿把原子看成是“绝对不可再分”的微粒的观点,在19世纪末受到了新的科学发现的有力冲击。1879年,英国著名的物理学家和化学家克鲁克斯(Sir William Crookes,1832—1919)在高真空放电管中发现了一种带负电的微粒流——“阴极射线”;1879年,英国剑桥大学物理学家汤姆生等人利用阴极射线能被电场和磁场联合偏转的作用,测定了这种粒子的荷质比(即电荷与质量之比)。实验表明,不论电极是用什么材料制成和在阴极射线管中充以什么样的气体,生成带负电的粒子其荷质比都是相同的,说明它是各种原子的一个共同组成部分,即电子。1903年,汤姆生提出了原子结构的“浸入模型”:原子是由均匀分布的带正电荷的粒子及浸入其中的运动的许多电子所构成的,电子的负电荷中和了正电荷。1909年,英国物理学家卢瑟福(E·Rulherford,1871—1937)用一束高能的a粒子(带正电的氦离子)流轰击薄的金箔时发现,绝大多数a粒子几乎不受阻碍而直接通过金箔,说明原子内部很空旷;但也有极少数(约万分之几)a粒子穿过金箔后发生偏转,个别a粒子偏转程度较大,甚至被反弹回来。汤姆生的原子结构模型无法解释这一实验现象。卢瑟福设想,这是由于原子中存在一个几乎集中了原子的全部质量并带正电荷的极小的核,是它对a粒子产生了静电排斥作用。1911年,卢瑟福提出了原子结构的“核式模型”:每个原子中心有一个极小的原子核,几乎集中了原子的全部质量并带有Z个单位的正电荷,核外有Z个电子绕核旋转,就像行星绕太阳转动一样。因此也称为“行星式模型”。后来,随着对原子光谱的深入研究和量子力学的出现,才逐步形成了现代原子结构理论。
氧气的发现
瑞典化学家舍勒是氧气的最早发现者。1773年,舍勒用两种方法制得了比较纯净的氧气。一种方法是将硝酸钾、硝酸镁、碳酸银、碳酸汞、氧化汞加热得到氧气;另一种方法是将黑锰矿(二氧化锰)与浓硫酸共热产生氧气。舍勒将他的研究成果发表在《论空气和火的化学》中,但这本书被出版商延误,直到1777年才出版。而英国化学家普利斯特里于1774年发现氧气后,很快就发表了研究论文,时间比舍勒早。普利斯特里制得氧气的方法是:把氧化汞放在玻璃制的密闭容器内,用聚光镜加热而制得氧气。但舍勒和普利斯特里由于受“燃素说”的错误影响,都未能对他们的重要发现做出正确的解释。只有法国化学家拉瓦锡在普利斯特里对氧气研究的基础上得出了合理的结论,并推翻了错误的燃素说。
燃素说
是形成于17世纪末、18世纪初的一个解释燃烧现象甚至整个化学的学说。燃素说认为,可燃的要素是一种气态的物质,存在于一切可燃物质中,这种要素就是燃素(phlogiston);燃素在燃烧过程中从可燃物中飞散出来,与空气结合,从而发光发热,这就是火;油脂、蜡、木炭等都是极富燃素的物质,所以它们燃烧起来非常猛烈;而石头、木灰、黄金等都不含燃素,所以不能燃烧。物质发生化学变化,也可以归结为物质释放燃素或吸收燃素的过程。例如,煅烧锌或铅,燃素从中逸出,便生成了白色的锌灰和红色的铅灰;而将锌灰和铅灰与木炭一起焙烧时,锌灰和铅灰从木炭中吸收了燃素,金属便又重生了出来。酒精是水和燃素的结合物,酒精燃烧后,便剩下了水;金属溶于酸是燃素被酸夺去的过程。在当时,燃素说不能自圆其说并受到最大责难的就是金属煅烧后增重的事实随着人们对化学反应进行了更多的定量研究之后,燃素说就更加陷入了重重自相矛盾的境地。直到18世纪70年代,氧气被发现之后,燃烧的本质终于真相大白,燃素说才退出了历史舞台。
燃素说对燃烧现象正好做了颠倒的解释,把化合过程描述成了分解过程,但却使当时的大多数化学现象得到了统一的解释,帮助人们摆脱、结束炼金术思想的统治,使化学得到解放,在历史上起到了积极作用。尽管燃素说本身是错误的,但它却引导和启发人们去思考、探索,并不断地实践、验证、修正假说或是得到新的发现。也正是在这种不断的过程中积累起来的大量的科学实验材料,为科学的燃烧理论的创立准备了条件。
氮气的发现 1772年,英国植物学家丹尼尔·卢瑟福(Daniel Rutherford,1749—1819)将小动物放入密闭容器中,用苛性钾(KOH)不断吸收动物呼吸所产生的二氧化碳,所剩余的气体不能使动物生存,也不支持蜡烛燃烧。他还在密闭容器中燃烧磷或碳,使生成的气体通过碱吸收后,所剩余的气体也是既不能维持生命和燃烧,也不溶于苛性钾溶液。同年,英国化学家普利斯特里和瑞典化学家舍勒也通过对空气的研究确定了这种气体的存在,从而发现了氮气,并确定为元素。
稀有气体的发现
氦的发现是在1868年。这一年的10月26日,巴黎科学院收到两封来信,一封是法国天文学家、米顿天体物理观象台台长詹森(P.Janssen,1824—1907)寄来的,报告他在该年8月18日在印度用分光镜研究日全食时观察到在其它亮线中有一条新的黄线;另一封信是英国天文学家、皇家科学院太阳物理天文台台长洛基尔(J.N.Lockyer,1836—1920)写来的,信中的内容与詹森的报告几乎完全相同。经过查对,这条黄线只能是太阳上的一种未知的新元素。这是有史以来第一次从地球上发现存在于太阳上的新元素。于是法国科学院将这种元素命名为“Helium”(氦),意思是“太阳的元素”。1895年,英国比学家拉姆塞指出:给钇铀矿加热时放出的气体也能够给出与氦相同的光谱,从而知道地球上也有氦存在。氩的发现是在1894年。英国化学家雷利(LordRayleigh,1842—1919)注意到从空气中分离出的氮气与从含氮物质制得的氮气在密度上的差异,通过实验对空气进行了进一步研究。雷利在空气中加入过量的氧,用放电法使氮变为氧化氮,然后用碱吸收,剩余的氧用红热的铜除去。可是,即使把所有的氮和氧除尽,仍有很少量的残余气体存在。拉姆塞也使除去二氧化碳、水和氧气的空气通过灼热的镁以吸收其中的氮,也得到少量的残余气体(约占原空气体积的1%)。这种残留气体的密度比氮气的密度要大得多,其光谱线过去从未见过。毫无疑问,它是一种新元素。这个被发现的新元素就是氩。氖、氪和氙都是拉姆塞和他的助手特拉威斯(M.W.Travers,1872—1961)等人分别在1894年和1898发现的。发现的方法都是在大量液态空气蒸发后所得到的残余物中将这些元素分离出来,并用光谱分析分别确定了它们的存在。它们的命名都源于希腊语,氖的意思是“新奇(Neon)”,氪的意思是“隐匿(Krypton)”,氙的意思是“异国人、陌生人(Xenon)”。
元素符号的形成最早的元素符号来自古代的炼金术符号,而历史最久的炼金术符号则来自埃及的像形文字,因为像形文字描摹实物的形状,简明、己的弟子使用的,这些符号除了他们自己能看懂之外,别人看不懂,因为炼金制丹的“天机”不可泄漏。不同的炼金术士使用的符号几乎完全不同。这样,炼金术符号越来越多,达到泛滥成灾的地步。随着化学知识的加速积累,人们深感建立一套统一清晰的化学符号体系的重要性。1787年,哈森弗拉兹(J.H.Hassenfratz,1755—1827)和阿迪(P.A.Adet,1763—1834)提出了完全不同于炼金术符号体系的新方案。
简明、系统,但由于当时并不是每个化学家都意识到元素符号的重要作用,再加上这套符号本身的再造能力不强,因而未被普遍采纳。19世纪初,道尔
这套符号的主要优点是它的定量性质,每个符号表示一个简单原子,化合物的符号由其组成元素的符号组成,能够反映“复杂原子”(分子)中所含简单原子的个数。但这套符号不便于记忆,使用起来也不方便。现代化学符号体系的奠基人是瑞典化学家贝采里乌斯。他于1848年正式发表了《论化学符号以及使用这些符号表示化学比例的方法》一文,提出用元素的拉丁文名称开头的字母表示元素及该元素的相对原子量,用元素符号的组合作为化合物的符号。他所提出的元素符号体系延用至今。
第二篇:化学史
一种放射性元素的提炼成功,在现代意味着一个世界巨富的出现,可在镭问世的几十年里,我们随意提取着当初曾高达数十万美金的镭,它的发现者却从不过问。居里夫人把它献给了
全人类,献给了她最爱的科学事业,她只留下了五个东西,她留下了自己一种无私的精神,她留给了自己一丝奉献的快乐,她留给了自己一点心灵上的财富,她留给了自己一些隐藏的幸福,她留给了自己一个伟大的人格。
最伟大的居里夫妇发现镭后只有一个想法:没有人应该因为镭致富,它是属于全人类的,镭可以带给他们无穷的财富,可以带给他们无穷的荣誉,可对居里夫妇来说一切只是过眼云
烟如同最柔弱的蛛丝风吹丝断。为了改变科学,工作者那注定的贫穷生活,为了改变科学事
业的层次,他们作出了放弃。放弃代表着什么,这代表着离成功与幸福只有一步的居里夫妇
从此再没有机会。放弃代表着居里夫妇让世界人民得到拥有镭的快乐。放弃代表着他们失去
了一切本应是自己的东西。其实,他们已经成功了,为世界人民造福才是科学家应该履行的责任。居里夫妇永远会留在我们心中。因为他们为人类与科学付出了自己的一切。现在有太
多自私的人,为了自己的荣华富贵用了多少下流的手段,害了多少可怜的人。即便是现在的科学家,哪个有了发明不申请专利,哪个在保障大众的福利时不先想到自己的利益,哪个不
都是把自己的创造据为已有,哪个不都会三番五次地往专利局申办处跑,哪个不都先狠狠地
给大众剥削一层皮后移植到自己的身上,有谁会像居里夫妇这样不会去想自己的利益,有谁
会只为了大众的利益而做具有沉醉于事业的大公无私的梦想者,有谁在发现一种可以让自己
变成“超富”的东西后不会纸醉金迷,花天洒地,有谁会比居里夫人还大公无私,先公后私?
百分之九十九点九九九的人没有。原来,居里夫人真的好伟大。在人生的天平上,一端是你自己,一端人民,你只有一个很轻微的法码。虽然它微不
足道,但它却主宰着整个天平。居里夫人把法码放在了人民的一端,致使她伟大的人格举世
闻名。正如她所说的一样她真的是一个沉醉于事业的梦想者。她的心中只有公,便激励着她
把自己的幸福分享给了整个世界。居里夫人你是我们所有人崇敬的榜样,我也要像你一样,把自己的一切贡献给人民。不管在什么时候,不管做什么工作,我的未来都要为世界而付出,做一个真正大公无私的人。
第三篇:化学史心得体会
化学史心得体会
班级_________
学号_________
姓名_________
化学史心得体会
随着科学研究的不断深入,现代原子概念逐步得到了发展和完善。化学改变了我们生活的习惯,改变了我们的出行习惯,也改变了我们医药方面的习惯。所以说化学起着举足轻重的作用,足以影响影响整个世界,从未来到现在。
刚开始的时候我以为化学史文科课的东西我们理科生没有必要去学,但是回过头想想,完全是有必要的,因为我们是师范生,学的不多就会误人子弟,并且学习了也给自己补充能量,填补自己的空洞。回过头想想,原来化学的历史也这么精彩。我觉得应该把化学史也纳入历史中,这样不仅学习了中华上下五千年的历史,也了解了化学的鼻祖,以及来源。
公元前5世纪前后,古希腊哲学家德谟克利特等人最先提出世界上千千万万种物质是由最微小,坚不可入且不可再分的微粒所构成。这种微粒叫做“原子”,希腊语原意即“不可分割”。牛顿在17世纪后期比较明确地指出,一切物质都是由微小的颗粒组成的。但这些论点都没有科学的实验来证明,既不能被科学界普遍接受,也无法推行运用。英国科学家道尔顿通过化学分析,研究了许多地区的空气组成,得出这样的结论:各地的空气都是由氧、氮、二氧化碳和水蒸气四种主要物质的无数个微小颗粒混合起来的。他利用了希腊哲学上的名词,也称这些小颗粒为“原子”。1803年,道尔顿提出了他的原子学说:①元素(单质)的最终粒子称为简单原子,它们极其微小,是看不见的;是既不能创造,也不能毁灭和不可再分割的。它们在一切化学变化中保持其本性不变;②同一元素的原子,其性质和质量都相同;不同元素的原子,其性质和质量都不相同;③不同元素的原子以简单数目的比例相结合,形成了化学中的化合现象;化合物的原子称为“复杂原子”。这一学说合理地解释了当时发现的质量守恒定律、定组成定律及倍比定律等,开创了化学的新时代。但是,道尔顿的把原子看成是组成物质的“最后质点”,是“绝对不可再分”的微粒的观点,又受到19世纪末一系列重大科学发现的有力冲击。电子的发现打开了原子内部的大门,放射性的发现则进一步揭示了原子核的奥秘。
这些是外国人的成就,下面我国的发展粉墨登场。我国的发展是从一些道士手中开始的,比如秦始皇想要的长生不老,永驻年华。以及在明朝时期的“红丸”时间,这些都是化学的开端,虽然不雅观,却推动了化学的发展。
诺奖的得主——中国化学委员会的屠呦呦。虽然我国得奖有点来的迟,但充分说明中国后继有人,有望超过其他资本主义国家。
学习了化学史就要结合具体的内容讲给同学听。
在学生自主性的学习活动中,兴趣是学生学习动机最活跃的表现形式,也是学生能够完成学习任务的重要心理品质。爱因斯坦说过:“对于一切来说,只有热爱才是最好的老师”。初中是学生学习化学的启蒙阶段,教师的主导作用之一是唤起学生热爱化学的情感,关键是培养、强化学生的学习兴趣。普通化学是化学学科的基础课程,过去“填鸭式”照本宣科的教学很容易让学生觉得枯燥无味。引入化学史辅助普通化学教学是克服这种现象的有效方法和手段,可以充分调动学生学习的积极性。
如在讲述九年级化学绪论时,穿插很多化学史的知识,从远古时代人类独有的最伟大的成就——火的发现,到用火过程中得到启示,通过实践掌握了烧制粗陶瓷的技术,到青铜器时代、铁器时代到来,到2008 年神舟七号飞船的升空。一部化学发展史,也是一部中国发展史,由此激发了学生学习普通化学的兴趣,为以后的教学打下了良好的基础。如果教师只是按照书本的固定模式来讲授,会使学生认为化学就是简单的事实、定律和记忆过程, 这样会使学生产生死记硬背、机械训练, 使学习兴趣降低。若在教学中适时的穿插一些与化学知识相关的趣闻秩事, 引导学生寻求化学发展的历程, 就会增强学生的求知欲和学习兴趣。例如, 在讲有机化合物苯时可以穿插凯库勒确定它的结构时梦见蛇咬尾巴的故事;在讲氧化反应时, 讲一讲拉瓦锡因为否认燃素说而被送上断头台的故事等等。这些趣味横生又富有哲理的故事和趣闻, 不但能用来活跃课堂气氛、激发学生学习兴趣, 而且有利于加深对基础知识的记忆和理解, 加深对某些科学理论规律性的认识, 从而启发学生独立思考问题, 培养他们分析解决问题的能力, 领悟其中的道理, 取得良好的教学效果。
化学不仅可以培养人才,还可以为世界创造福利。
(一)无机化学对世界的影响
无机化学是化学学科的起始。从冶金、冶铁、炼丹都是与无机化学息息相关的。19世纪的元素周期律为无机化学奠定了基础。例如无极新型材料的出现,改善了环境,促进了发展。
(二)有机化学对世界的影响 法国的拉瓦锡发现,有机化合物燃烧后,产生二氧化碳和水。这为有机化合物奠定了基础。例如宇航员耐高温材料的衣服,“白色垃圾”的产生,它功不可没。有机化学的出现也促进了计算机的发展。有机物的分离,分析方法向自动化,超微量化方向发展。核磁共振仪,电子衍射光谱等以用于有机化学结构的鉴定。未来有机无的发展会用于研究能源和资源开发。
(三)物理化学对世界的影响
物理化学是以热力学为主的。吉布斯自由能,范托夫对化学平衡的影响,阿伦尼乌斯提出电离学说,这些都是对化学热力学的贡献。
(四)分析化学对世界的影响 分析化学对人类的物质文明做出了重要的贡献。广泛应用于化学工业,能源,医药,临床医学,环境保护。
化学是研究物质的组成、结构、性质以及变化规律的科学。由于社会的发展,物质合成已占了半壁江山。各种自然现象都可以用它来解释,所以化学是改变世界的重要武器,学习化学,就有必要了解化学史。
第四篇:化学史
化学史在教学中地位与作用
学校:四川师范大学
学院:化学与材料科学学院
班级:2010级5班
姓名:蹇磊
摘要: “科学素养”是当今国际科学教育的中心议题。国内外众多教育工作者研究发现:科学史(包括化学史)教学有利于提高学生科学素养。随着现代科技的发展 ,要求师范院校培养高素质的学生 ,而化学史教育是非常重要而有效的途径 ,本文对化学史在素质教育中的地位和作用进行了讨论。在现代科技革命时代 ,化学也在突飞猛进的向前发展.化学教育面临的任务是为 21 世纪培养具有创新精神的高素质的化学人才.面对 21 世纪的期待 ,人们呼唤全面的化学教育 ,这就要求学校教育除了给予受教育者以系统的专业知识外 ,还应训练他们的科学思维和科学方法 ,培养他们科学精神和科学品质.我国著名化学家、教育家付膺教授曾多次讲过: “一门科学的历史是那门科学中最宝贵的一部分 ,因为科学只能给我们知识 ,而历史却能给我们智慧.” 在实施全面的化学教育的诸多途径中 ,化学史教育是非常重要而有效的途径.在化学教学中 ,结合化学史进行讲授 ,可使学生掌握化学发展的规律 ,提高他们分析问题、解决问题的能力和自学能力与独立工作能力.化学史教育也对学生正确认识主观与客观、理论与实践、个人与社会、人类与自然的关系等一系列的问题 ,培养高素质创新人才等方面都有重要意义.关键字:科学素养,化学史,地位,作用
一. 化学史在教育教学地位
随着素质教育的推进,许多国家的基础教育开始从“精英教育”向“大众教育”转化。科学教育的目的发生了根本变化,从培养科学家转为培养有“科学素养”的公民。科学素养便成为当今国际科学教育的中心议题,相应的公众科学素养成为衡量一个国家综合国力的重要标志,成为一个深入人心的教育口号题。但是多年来,在“应试教育”的重压和传统观念的束缚下,造成了中学生的科学素养水平不佳,这一状况可以从我国学者魏冰的一项实证研究中得以证实。魏冰研究发现:我国高中生对科学知识本质的认识程度并不乐观。不仅仅学生如此,我国公众的科学素养水平普遍也不高仁。所以,提高公众科学素养是我国迫切需要解决的问题。
为了改变这一现状,必须从基础教育阶段抓起。众多的科学教育家已经意识到了科学史教育的重要作用。值得强调的是英国学者Driveer从科学素养的角度提出把科学哲学和科学史纳入科学教育的必要性,并基于实用主义、民主、文化、道德和科学学习五个观点要求人们通过科学史理解科学的本质。全日制义务教育化学课程标准(实验稿)》将化学史材料列入“可供选择的学习情境素材”,教师可以在相关的主题中利用这些素材创设学习情境〔24〕。《普通高中化学课程标准(实验)))在基本理念部分:提到了“结合人类探索物质及其变化的历
史与化学科学发展趋势,引导学生进一步学习化学的基本原理和基本方法,形成科学的世界观。”即“立足于学生适应现代生活和未来发展的需要,又着眼于提高21世纪公民的科学素养,构建‘知识与技能’、‘过程与方法’、‘情感态度与价值观’相融合的高中化学目标体系。” 现代化学教育的任务,不仅要向学生传授化学理论知识和实验技能,还要向学生揭示蕴含于化学知识中的科学思想和科学方法,使他们具有良好的科学素养。要做到这一点,单凭化学知识本身是远远不够的,只有联系化学史实,才能使学生从历代化学家的成功中获得启发,学到有益的科学思想和方法。由此看出,化学史教育特殊的研究视角,决定了它在提高公众科学素养中发挥其它学科不可替代的作用。
二. 化学史在教学中的作用
1.使学生全面把握化学知识 ,培养学生的创新精神
人类对自然界的认识是不断发展的 ,对化学知识的认识也是不断发展的.随着时间的推移 ,化学家知道的物质种类、制取方法和研究范围都在不断扩大 ,关于物质的组成结构 ,化学现象和过程的理论都在不断被扩充完善和发展.如酸碱理论就经历了从波义耳(Boyle)最初的酸碱概念到阿累尼乌斯(Arrhenius)的电离理论、布朗施特德 — 劳莱(Bransted2Lowry)的质子理论、路易斯(Lewis)的电子理论到皮尔逊(Pearson)的软硬酸碱理论的发展过程;再如人类对原子结构的认识 ,也经历了汤姆生(Thomson)“葡萄干蛋糕” 模型到卢瑟福(Rutherford)模型、玻尔(Bohr)模型以及建立在量子力学基础上的原子结构模型的发展过程。又如对元素的分类及元素周期律的发现也经历了一个长期的发展过程.针对应试教育带来的学生 “思维定势” 及 “教科书都是正确的、无疑的” 负面影响 ,在教学中教师结合这些化学史的例子 ,以发展的动态知识 ,从它的孕育、产生、发展的历史过程去阐述 ,首先可以使学生从发展的高度以全面发展的视野 ,深刻地理解化学知识 ,把握化学发展的规律 ,将学到的知识融会贯通;其次可以引导学生追踪科学发展的足迹 ,对学习化学产生浓厚的兴趣;第三 ,这些理论都是在实验的基础上不断完善、不断发展的 ,这样可使学生更加深刻地认识到实验的重要性.通过认真观察实验现象 ,并对这些现象进行理论解释 ,也使学生养成了 “不唯书 ,只唯实” 的良好风气和科学态度 ,并培养了他们的钻研创新精神。
2.有助于了解化学对社会影响
化学史不仅是研究化学产生和发展的历史,同时也是化学的社会影响的历史。要正确认识化学在当今的社会影响,必须考察化学史。化学技术向社会的各方面全而渗透,影响到社会的政治、经济、军事、文化、教育甚至人们的几活方式。化学在为人类造福的同时,也可给人类带来了灾难:生态破坏、环境污染、人口膨胀、土地侵蚀、自然资源快速耗尽。于是,人们发现了化学的二重性—建设性和破坏性。人们对化学的积极作用产生了怀疑,甚至对化学产生反感。其实,科学技术是一把“双刃剑”,它可以为人类带来福社,一旦被滥用,也可能给人类带来灾难,就要看利用它的人有何种价值取向。例如,原子能技术,可以用作医疗、能源,也可以作为杀伤性武器,毁灭人类,甚至毁灭地球。科学产生不良后果的原因不在科学本身,而在于人类。科学本身不值得我们批判,重要的是我们如何运用科学,科学可以产生最好和最坏的结果。因此,科学史使我们对科学、技术与社会的关系有更全面的认识,这有利于社会对科学的应用进行适当的控制,有利于制定科学技术政策。
有助于了解化学对社会的影响化学史不仅是研究化学产生和发展的历史,同时也是化学的社会影响的历史。要正确认识化学在当今的社会影响,必须考察化学史。
3.培养学生勇于探索、献身科学的精神
在化学发展史中 ,许多化学家以寻根问底、锲而不舍的精神 ,致力于所从事的科学研究 ,并且有许多人为此献出了宝贵的生命.氟是最活泼的非金属 ,其单质的制备被认为是上一世纪化学史上最困难的任务之一.企图发明这个新元素秘密的化学家表现出巨大顽强的精神 ,研究工作一直继续下来 ,仅在法国就经历了四代人 ,总共 106 年;为了征服该元素 ,先后有 3 位科学家献出了生命.最后法国化学家莫瓦桑(Moissan)用电解法成功得到了单质氟 ,成为当时化学领域的一个重大事件 ,莫瓦桑也因此获得了 1906 年的诺贝尔化学奖.诺贝尔(Nobel)本人一生从事炸药的研究 ,虽遇许多不幸 ,但始终不渝.晚年诺贝尔积劳成疾 ,去世前将自已的全部财产捐献给科学和和平事业.居里夫人在提取镭和钋的过程中 ,表现出了顽强的毅力和废寝忘食的工作态度.她去世后 ,医生证明 “夺取居里夫人生命的罪魁祸首是镭”.她无愧地把自已的一生献给了科学事业.法国科学家于尔班(Urbain)采用硝酸盐分步结晶法 ,经过 4 万次的分步结晶 ,从铒、铥中分离出一种混合物 ,再经过 15000 次分步结晶得到了新元素镥和镱.这些事例都使学生受到很好的教育 ,也必将激励他们在今后的工作中学习科学家们百折不挠的献身精神.4.有助于了解科学本质
一些实证研究者运用科学史进行教学,均发现科学史教育对于学生更加深入的理解科学的本质(thenaotreofseienee,NoS)起到积极作用,国内也有相应研究,例如东北师范大学的王秀红、历晶等的研究工作。另有研究发现,对科学本质的理解,能进一步促进学习者对科学内容的习得、增进对科学的了解、提高对科学的兴趣,同时能够促进教学的多元化,以呈现科学本质在科学教学上的重要性。所以在科学教育中,科学的本质是一个至关重要的问题。无论 是科学教育政策的制定、科学课程的选择,还是科学教育活动的实施都应该符合那些被广泛接受的科学准则,即科学的本质。只有这样,才能引导和帮助学生正确地认识科学的价值,真正实现个体科学素养的发展。其实,无论是化学史还是科学史的作用,总括起来就是:通过科学发展的历史,以科学家为中心、以科学家的科学思想为中心这一科学史研究的基本原则,让学生对科学的本质有更深入的了解。
5.用化学史培养学生严谨的学习态度
实事求是的治学态度科学研究不是一墩而就的,它与严谨的治学态度、实事求是的精神是分不开的 ,是在前人研究的基础上通过不懈的努力得出的。例如 元素周期率的发现者门捷列夫是在许多科学家研究成果的基础上 ,通过桥牌的组合从中获得启发 ,经过大量的分析、研究而最终总结出了元素周期率。又如 稀有气体氢的发现 英国科学家雷利从空气中分离出的氮气每升重 ,而从氮的化合物中制得的氮气每升重 ,雷利并没有忽视这微小的差异 ,继续与雷姆塞进行研究 ,终于发现了一种新元素—氢。稀有气体的发现被称为“第三位小数的胜利”。而没有严谨的治学态度有时就将与真相失之交臂。比如李比希就因为他的武断失去了发现单质嗅的机会。从这样一些例子中能让学生体会到严谨的态度在任何时刻都显得尤为重要 ,启迪学生要勤于思考,敢于提问 ,认真分析。从而达到培养学生刻苦钻研的精神,促进学生养成严谨的学习态度的目的。
6.运用化学史提高学生的学习兴趣
爱因斯坦曾说过 “如果把学生的热情激发起来 ,那么学校所规定的功课就会被当作一种礼物来接受。”因此 ,在化学学习中,化学典故的讲解 ,令人觉得魅力无穷 ,深深回味。如 原子论的发展过程 氯气作为最早的化学武器应用于第一次世界大战,使学生对氯气的毒性有
个深刻的认识 还有碘化银可用于人工降雨 生活中的加碘盐 玻尔用“王水”收藏诺贝尔奖章,使之免于沦落敌手 居里夫人用毕生精力提炼铀等等。这些小故事 ,无一不带给学生无限的遐想和思考。这些生动的化学史实 ,引导学生沿着化学发展的足迹 ,追溯化学发展的源流 ,就如同把学生引进了科学家进行化学研究的氛围中,怀着一种对未知事物的好奇和进行理论研究的兴奋感 ,同先辈们一起在化学学科这个宽广的领域里遨游 ,这样既引起了学生的好奇心 ,又调动了学生学习的主动性 ,更激发了学生的求知欲,同时 ,也有助于化学理论的理解和记忆 ,从而达到提高教学质量的效果。
参考文献
「1」川丁邦平.HPS教育与科学课程改革「J〕.比较教育研究,2000(6):6一12.「2」中国自然辩证法研究会化学化工专冬业组.化学哲学基础「M」.北京:科学出版 社,1986.[3」王永红.论科学素养和人文素养的统一仁Jj.教育研究与实验,2001(4):18一21.[4」王成全译.《多元智能教与学的策略》[M〕.北京:中国轻工业出版社,2001.氦 「5」王秀红,历晶.运用科学史培养初中生的科学本质观[J」.化学教育,2005(12): 20~22
「6」王秀红,郑长龙,林长春,等.用STS观点分析美国化学教科书《Chemstiyr: AMdoemCuosre》内容结构的变迁(上)〔J逸.中学化学教学参考,1999(7):1一3.篆 「7」王秀红,郑长龙,林长春,等.用STS观点分析美国化学教科书《Chemstir:y AModemCourse))内容结构的变迁(下)[J〕.中学化学教学参考,1999(8一9):3~1.2
[81」王芳,吴星.利用化学史料强化学生的科学探究意识[J」.中学化学教学参考,2005又1一2):7~8.「9」邓踪琼.李大光:没育科学素养也能活着,但不能好好活着.中国青年报[N三,2004一12一2
皿l叹乔治,萨顿著,刘堵职译.科学的生命—文明史论集「Mj.北京:商务印书馆,1987.「11」刘兵.新人文主义的桥梁—解读萨顿《科学的生命》仁M〕.济南:山东人民 出版社,200.2
[12」刘振中,熊召弟.国小教师的科学本质观及其教学实践个案研究[Jj.国立台
北师范学院学报,2002(巧):285一314.「13」许良荣,李田英.科学史在科学教学的角色与功能〔J〕.科学教育月刊,1995 仁179):15一27.[14」张家治.化学史教程「Ml.太原:山西人民出版社,1987.1.0
[ 15 ] 北京师范大学等校编.无机化学(上、下册,第3 版)[M].北京:高等教育出版社,1992.[ 16] 武汉大学.无机化学(上、下册,第2 版)[M].北京:高等教育出版社,1983.[ 17 ] 袁翰青,应礼文.化学重要史实[M].北京:人民教育出版社,1989.[ 18] 郭保章,董德沛.化学史简明教程[M].北京:北京师范大学出版社,1985.
第五篇:《化学史》读后感
读《化学史传》有感
英国哲学家、作家和科学家弗兰西斯.培根曾经说过这样一句话:“读史使人明智,哲理使人深刻,伦理学使人有修养,逻辑修辞使人善辩”。原来我们接触的比较多的是中国古代史和近代史,对化学史更是知之甚少,甚至可以说完全不了解。最近读了读那本山冈望著的《化学史传》,它让我对化学有了新的发现与敬畏。
书中的那些化学家真的很伟大,很多都是10岁左右就对化学产生了兴趣,读了很多的化学著作,有种痴迷的感觉。记得有个为了研究,居然忘了结婚的日子,忘了自己居然活了这么多年。他们那种为了科学努力拼搏的精神真是常人无可比拟的。通常化学实验对身体也很不好,但他们并不在乎这些,为了科学献身对他们来说才是有意义的事情,记得有一个化学家说过,如果想在化学上有所成就,就应该有不怕牺牲的精神。他们的那种不怕死的精神现在还熠熠生辉。当时的那种环境,那种条件,真的难以想象。这些科学家不仅为了科学自己一个人研究,还要交流,还要留给下一代,为了研究的方便,自己建实验室,给那些对化学渴望的青年们更早更多接触化学的机会……
当然,当时的欧洲国家也是很重视科学家的培养的,国家出资成立了多少皇家化学学会,或者一些专门的研究机构……,对他们的称赞,对他们的鼓励和奖励……。这些都促使化学的发展越来越快
还有化学家都有着敏锐的观察力,也很会把握机会,为了科学执着的,献身的,认真的,甚至健忘的精神,这些倒是让我想起现在的那些荧幕上的明星们,为什么可以拥有那么多的钱?而那些科学家呢?只是平平淡淡,一个家,一个实验室,做出的成就却不只是为一个国家,而是为世界,为整个人类!让我们为那些为人类作出了贡献的化学家们致敬!