第一篇:有理数的学习体会(范文模版)
有理数的学习体会
有理数及其四则运算是代数的基础,深刻理解有理数的相关概念,掌握一定的有理数运算技能是代数学习基础。现结合自己的体会谈一谈有理数及其运算中常被忽视而对于学生来说不易理解的概念等。1.有理数
通常我们只是简单的说:整数和分数统称为有理数。
我个人觉得这不利于学生理解,有理数的英文翻译为rational number。任何一个有理数都可以写成分数m/n(m,n都是整数,且n≠0)的形式。有理数的英文本意应该为“可比数”(ratio是比例的意思),“有理数”这一表述为翻译的问题。反过来理解无理数,即为不能用分数m/n(m,n都是整数,且n≠0)的形式表示的数,这样的数是存在的例如圆周率π。
希望这么说能对即将学习初一数学知识的娃们理解起来有所帮助。2.除数不能为0
在有理数的除法中,我们常说除数不能为0.很多情况下一带而过,学生也就这么记住了。但是究竟为什么不能为0呢?(初中时我自己也疑问过,你呢)我们现在来分析:
a.当被除数与除数同时为0时,我们假设0÷0=M。根据除法与乘法互为逆运算。那么有商×除数=被除数。此时M×0=0中M的值是任意的,不唯一。这与有四则运算结果唯一性矛盾。也就是说被除数与除数同时为零时,商不唯一。
b.当被除数不为0.除数为0时,例如3÷0=N。根据除法与乘法互为逆运算。那么有商×除数=被除数,但是N×0=0(不等于3)、也就是说0作为除数时,被除数不能复位。
怎样学好有理数?
从小学到初中,由算术到代数,是中学生学习进程中一个新的转折点.代数第二章“有理数的主要内容是有理数的概念和有理数的运算.”正确理解概念,熟练掌握运算是学好这一章的关键和主要标志.一、要正确理解有理数的几个概念
有理数一章的主要概念有:正数和负数、相反数、倒数、绝对值、数轴.此外还有两数同号(异号)、非负数、非负整数、奇偶数,以及乘方(幂)、近似数与有效数字等概念.正确理解上述概念,是学好代数的基础.不要死背概念.要做到真正理解,才会真正运用.1.要正确理解与运用相反数、倒数和绝对值三个重要概念 第一,掌握定义,并能根据定义正确而迅速地回答诸如下述问题: 例1 求下列各数的相反数、倒数与绝对值: 注意零没有倒数,a与-b是否有倒数要进行讨论.第二,掌握定义的其它描述形式.诸如
设a,b是两个有理数,那么a,b互为相反数的条件是a+b=0(即a=-b),ab互为倒数的条件是a×b=1.第三,根据定义,掌握相反数、倒数、绝对值的一些基本性质,如
(1)正数的相反数是负数,负数的相反数是正数,0的相反数是其自身.正数的倒数是正数,负数的倒数是负数.(2)正数或者负数的绝对值是正数,零的绝对值是零.因此:
①任何一个有理数的绝对值是非负数,如果用a表示有理数,那么必有|a|>0或|a|=0,即|a|≥0.②非零的有理数的绝对值一定是正数,即当a≠0时,有|a|>0.第四,善于利用数轴,直观、形象地理解相反数与绝对值这两个概念,并能熟练地对有理数大小进行比较.2.要理解两数同号,两数异号的准确含义
“两数同号”就是两数同时为正数,或者同时为负数,“两数异号”就是有一个为正数,另一个为负数.ab两数同号的条件是a·b>0,它包含两种情况: ① a>0且b>0,② a<0且b<0.两数异号的条件是a·b<0,它也包含两种情况: ① a>0且b<0,② a<0且b>0.3.要注意某些概念的扩充
初一学生学习数,范围由非负有理数(正有理数和零)扩充到有理数,要注意小学中某些概念的相应的扩充.如奇数和偶数这两个概念,在小学,偶数可表示为2n(n表示正整数).奇数可表示为2n-1(n表示正整数).在整数范围有:正整数包括(正)奇数和(正)偶数.中学里的整数,仍包括奇数和偶数,不过要注意:这里的奇数(2n-1)包含正奇数(1,2,3,„)与负奇数(-1,-2,-3„)两类.偶数(2n)包含正偶数(2,4,6,„),负偶数(-2,-4,-6,„)与零三类.二、要熟练掌握有理数的运算
中学里的有理数运算跟小学里学过的数的运算不同,它不仅要求出数值的大小,而且还要确定结果的符号,掌握好有理数的运算,做到熟练而准确,是学习代数这一章的中心任务,它是学好整个代数的基础.这里关键有两条:一是掌握有理数的运算法则,二是掌握有理数的运算律.要掌握好加、减、乘、除与乘方五种运算法则.有理数的加法法则是按两数同号、两数异号、有零三种情况分别规定的,其中异号两数相加,是难点所在,要提醒学生格外留心.要解决这个难点,就必须掌握好绝对值的概念.此外,特别是省略加号的代数和,要有正确的理解和合理运算.在进行有理数运算时,运算规律是不可少的.例2 计算:11-39.5+10-2.5-4+19 解:原式=11+10+19-39.5-2.5-4(加法交换律)=[(11+19)+10]+[(-39.5-2.5)-4](加法结合律,减法法则)=40-46(加法法则)=-6.在计算这一类题时,初学者应在每一步的后面注明运算依据,这对学习是大有好处的.对于含有加、减、乘、除和乘方混合运算的题目,要注意运算顺序.先“乘方”,再乘除,最后算加减.如何才能学好实数的概念
随着社会的发展和实际生活的需要,人们引进了实数.由于实数的初来乍到,同学们不免感觉有点陌生,因此,建议同学们在学习实数时应注意掌握以下几个要点:
一、能正确理解实数的有关概念
我们已经知道整数和分数统称为有理数.并规定无限不循环小数是无理数,这样我们把有理数和无理数统称为实数,即实数这个大家庭里有有理数和无理数两大成员.学习时应注意分清有理数和无理数是两类完全不同的数,就是说如果一个数是有理数,那么它一定不是无理数,反之,如果一个数是无理数,那么它一定不是有理数.二、正确理解实数的分类 实数的分类可从两个角度去思考,即(1)按定义来分类;(2)按正、负数来分类.但要注意0在实数里也扮演着重要角色.我们通常把正实数和0合称为非负数,把负实数和0合称为非正数.三、正确理解实数与数轴的关系
实数与数轴上的点是一一对应的,就是说所有的实数都可以用数轴上的点来表示;反之,数轴上的每一个点都表示一个实数.数轴上的任一点表示的数,是有理数,就是无理数.在数轴上,表示相反数的两个点在原点的两旁,并且两点到原点的距离相等.实数a的绝对值就是在数轴上这个数对应的点与原点的距离.利用数轴可以比较任意两个实数的大小,即在数轴上表示的两个实数,绝对值大的反而小.四、熟练掌握实数的有关性质
实数和有理数一样也有许多的重要性质.具体地讲可从以下几方面去思考:
1,相反数 实数a的相反数是-a,0的相反数是0,具体地,若a与b互为相反数,则a+b=0;反之,若a+b=0,则a与b互为相反数.2,绝对值 一个正实数的绝对值是它本身,一个负实数的绝对值是它的相反数,0的绝对值是0.实数a的绝对值可表示就是说实数a的绝对值一定是一个非负数,3,倒数 乘积为1的两个实数互为倒数,即若a与b互为倒数,则ab=1;反之,若ab=1,则a与b互为倒数.这里应特别注意的是0没有倒数.4,实数大小的比较 任意两个实数都可以比较大小,正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.5,实数的运算 实数的运算和在有理数范围内一样,值得一提的是,实数既可以进行加、减、乘、除、乘方运算,又可以进行开方运算,其中正实数可以开平方.在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.
第二篇:《有理数》说课稿
《有理数》说课稿
《有理数》说课稿1
《有理数的加法法则》选是九年义务教育华师大版上学期第2章第6节的内容, 本节内容安排两个课时,本课时是本节内容的第一课时。
有理数的加法运算是建立在算术加法运算和有理数意义的基础上展开的,学好有理数的加法运算是学习其他有理数运算,以及后继要学到的实数、代数式、方程、不等式、函数等知识的前提。有理数的加法运算是建构在生产、生活实例上,展现了数学来源于实践,又应用于实践的过程。
本节课的教学目标为:
认知目标:1.理解有理数加法的意义,2.理解并掌握有理数加法法则,3.应用有理数加法法则进行准确运算。
能力目标:1.让学生体会数形结合思想、转化思想与分类思想,2.培养学生准确运算能力和归纳总结知识的能力。
情感目标:通过丰富的数学活动培养学生对数学的热爱和树立学习的自信心。
本节课的重点:有理数加法法则的理解和应用。突破策略:1.利用多媒体手段,借助于动画演示,化抽象为具体。2.讲清楚探究有理数加法法则的方法和过程。由于七年级的学生是第一次接触到带有符号的两个数相加,必须克服小学里长期形成的算术加法运算的思维定势,而解决异号两数相加时有关符号和绝对值的问题有一定难度,因此,本节课的难点是对异号两数相加加法法则的理解和应用。突破策略:1.精选各种有趣体型,让学生通过训练,尝试成功。2.利用多媒体手段,借助于动画演示,化抽象为形象,化难为易。
根据弗赖登塔尔的数学教育理论:“数学起源于现实,数学教育的过程是学习‘数学化’的过程,而学生学习数学是一个‘再创造’的过程。”所以本节课我主要采用“引导——发现法”并借助于计算机课件,通过“问题情境——建立模型——解释、应用与拓展”的模式展开教学。
七年级的学生是智力发展的关键年龄,他们活泼好动,注意力易分散,爱发表见解,并希望得到老师的表扬。所以我抓住学生的这一生理特点,努力创造条件和机会,让学生发表见解,发挥学习的主动性;并适当运用多媒体演示,吸引学生的兴趣,使学生的注意力始终集中在课堂上。
《数学课程标准》明确指出:“数学教学是数学活动的教学,学生是数学学习的主人。”为能更多地向学生提供从事数学活动的机会,我将本节课的教学过程设计如下:
第一个环节发现新知,在这个环节里我设置了两个活动。活动一,根据“兴趣是学生最好的老师”我选用学生感兴趣的足球比赛引入课题。让学生通过对得分的观察,体会到如果加法运算仅局限在小学当中的算术加法运算是不够的,从而顺理成章的引入今天的课题:有理数的加法。
活动二:探索交流。美国学者奥苏伯尔称:必要的经验和预备知识,为先行组织者,而学生已经在2.1至2.5中学了有理数的意义,这些都为学生探索法则架起了桥梁作用的组织者,在此基础上,我设置了六个探究活动。即以原点为起点,一只小狗在数轴上左右走动来表示情况,规定向左为负,向右为正。这样借助数轴帮助学生理解。既渗透了分类思想又渗透了数形结合思想,最后再由学生对整个规律进行总结归纳补充,从而得出了有理数加法法则。
法则得出后,我设置了一个小活动,比比谁聪明,让学生观察法则中1、2用简短的两句话进行概括,教师在充分肯定学生的回答后给出:同号不变值相加,异号取大值相减。在此基础上再让学生更加深入地熟悉法则,教师继续强调符号与绝对值。
这时只能说学生对法则有了初步的了解,为了加深学生对法则的理解,我设置了第二个环节再探新知。整个法则中尤其强调的是符号与绝对值,为能让学生更加直观地认识到这一点,我让他们解决创设情景中的动漫表格的问题,以个别提问的方式让学生通过表格的填写,体会到整个和的组成就是由符号与绝对值两部分,从而体现了本节课的重点与难点,加深了学生对法则的理解。
在此基础上,我设置了第三个环节应用新知,首先我设置了一道例题(1)(-6)+(-8) (2)(-3.4)+4.3 (3)(+1/2)+(-2/3),由于课前有让学生预习,所以例题是由学生自主完成,作完后由基础较薄弱的学生进行板演,对于板演时出现错误的题目,可由学生自行更正,最后师生共同评述。例题以这样的形式完成,可以使得全体学生尤其是学有困难的学生都能达到基本的学习目标,获得成功的喜悦。
紧接着,我设计了练习。课前我按照学习程度均衡的原则,将本班分成A、B、C、D四个小组。我设置了一道抢答题,由组间进行抢答,对于抢答成功的小组给予福娃奖励,最后以福娃个数多的小组获胜,以此激发学生学习的兴趣。
根据七年级学生的年龄特征,为能更大限度地吸引学生的兴趣,我还设置了这样一个活动:男生出题,女生回答;女生出题,男生回答。将整节课推向了高潮。在学生兴趣正浓时,我设置了一个小游戏,玩有理数牌,请同桌间的两个同学,各自抽取一张牌,进行求和比赛,看谁算得又快又准。教师在学生之间巡回参与活动。这样设计符合学生年龄特征的游戏,体现了新课改理论,让学生在“学在玩”在“玩中学”。
设置练习时,除了在形式上做了充分的考虑之外,我还注意到学生的思维是一个循序渐进的过程。所以除了刚才所设置的基础训练之外,我还设置了变式练习。第一题((-5)+( )=-8)以填空的形式出现,如果题目是 ,那么大部分学生马上可以得到-8,所以以这样的形式出现就对学生的解题造成了困难。通过对这道题目的解答,可加深学生对法则的理解,并为紧接着要学的有理数减法作好铺垫,同时也培养了学生发散思维的能力。第2题(一只小狗在一条东西向的跑道上,先走了50米,又走了30米,他现在位于原来位置的哪个方面,与原来位置相跑多少?)与之前的探究活动相呼应,须分四种情况进行讨论。从而培养了学生的分类思想。
为体现数学来源于生活,又服务于生活。我设置了这样一道应用题(星期天,小明与爸爸在安溪中国茶都代售茶叶,爸爸获利120元,而小明却获利-20元,问这一天他们共赚了多少钱?)通过此题,激发学生学习数学的热情。
此节课的教学,可以有多种不同的设计方案.大体上可以分为两类:一类是较快地由教师给出法则,用较多的时间组织学生练习,以求熟练地掌握法则;另一类是适当加强法则的形成过程,从而在此过程中着力培养学生的观察、比较、归纳能力,相应地适当压缩应用法则的练习,如本教学设计.
这种方案减少了应用法则进行计算的练习,所以学生掌握法则的熟练程度可能稍差,这是教学中应当注意的问题.但是,在后续的教学中学生将千万次应用“有理数加法法则”进行计算,故这种缺陷是可以得到弥补的.第一种方案削弱了得出结论的“过程”,失去了培养学生观察、比较、归纳能力的一次机会.权衡利弊,我们主张采用第二种教学方法。
总之,整个教学旨在,通过创设问题情境,引导学生进行分类、观察、分析,进而归纳从具体到一般的规律,得出有理数加法法则,在学生的学习过程中,充分让学生感受、体会知识的产生和发展过程,注重促使学生积极思维,主动探索,用于发现。
《有理数》说课稿2
各位领导、老师,大家好!
今天我将要为大家讲的课题是有理数的加法,首先,我对本节教材进行一些分析。
本节课选自人民教育出版社出版的〈义务教育课程标准实验教科书〉数学七年级(上)。这一节课是本册书第一章第三节第一课时的内容。下面我就从以下六个方面——教材结构与内容简析、教学目标、教学重点难点及关键、教法、学法、教学过程的设计向大家介绍一下我对本节课的理解与设计。
一、教材结构与内容简析
在分析新数学课程标准的基础上确定了本节课在教材中的地位和作用以及确定本节课的教学目标、重点和难点。首先来看一下本节课在教材中的地位和作用。
1、有理数的加法在整个知识系统中的地位和作用是很重要的。初中阶段要培养学生的运算能力、逻辑思维能力和空间想象能力以及让学生根据一些现实模型,把它转化成数学问题,从而培养学生的数学意识,增强学生对数学的理解和解决实际问题的能力。运算能力的培养主要是在初一阶段完成。有理数的加法作为有理数的运算的一种,它是有理数运算的重要基础之一,它是整个初中代数的一个基础,它直接关系到有理数运算、实数运算、代数式运算、解方程、、研究函数等内容的学习。
2、就第一章而言,有理数的加法是本章的一个重点。有理数这一章分为两大部分——有理数的意义和有理数的运算,有理数的意义是有理数运算的基础,有理数的混合运算是这一章的难点,但混合运算是以各种基本运算为基础的。在有理数范围内进行的各种运算:加、减法可以统一成为加法,乘法、除法和乘方可以统一成乘法,因此加法和乘法的运算是本章的关键,而加法又是学生接触的第一种有理数运算,学生能否接受和形成在有理数范围内进行的各种运算的思考方式(确定结果的符合和绝对值),关键是这一节的学习。
3、数学思想方法分析:作为一名数学老师,不仅要传授给学生数学知识,更重要的是传授给学生数学思想、数学意识,因此本节课在教学中力图向学生渗透的德育目标是:
(1)渗透由特殊到一般的辩证唯物主义思想
(2)培养学生严谨的思维品质。
二、教学目标
根据新课程标准和上述对教材结构与内容分析,考虑到学生已有的认知结构及心理特征 ,制定如下教学目标:
1、基础知识目标:
(1)理解有理数加法的意义;
(2)理解并掌握有理数加法的法则;
(3)应用有理数加法法则进行准确运算;
(4)渗透数形结合的思想。
2、能力目标是:
(1)培养学生准确运算的能力;
(2)培养学生归纳总结知识的能力;
3、德育目标是:渗透由特殊到一般的辩证唯物主义思想
4、个性品质目标:培养学生严谨的思维品质。
三、教学重点、难点、关键
有理数加法的意义与小学学习的在正有理数和零的范围内进行的加法运算的意义相同,让学生理解即可,有理数的加法法则的理解与运用是本节的重点内容。因此本节课的重点是:有理数加法法则的理解与运用。由于本阶段的学生很难把握住事物主要特征:如异号两数、绝对值不相等的异号两数和互为相反数之间的关系,这就对法则的理解造成困难。因此我确定本节课的难点是:有理数加法法则的理解。
四、教法
数学是一门培养人的思维,发展人的思维的重要学科,因此,在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”,我们在以师生既为主体,又为客体的原则下,展现获取知识和方法的思维过程。在教学过程中,我注重体现教师的导向作用和学生的主体地位,。本节是新课内容的学习,教学过程中尽力引导学生成为知识的发现者,把教师的点拨和学生解决问题结合起来,为学生创设情境,从而不断激发学生的求知欲望和学习兴趣,使学生轻松愉快地学习,不断克服学生学习中的被动情况,使其在教学过程中在掌握知识的同时发展智力、受到教育。
五、学法
本节课是在前面学习了有理数的意义的基础上进行的,学生已经很牢固地掌握了正数、负数、数轴、相反数、绝对值等概念,因此我没有把时间过多地放在复习这些旧知识上,而是利用学生的好奇心,采用生动形象的事例,让学生充当指挥官的角色,亲身参加探索发现,从而获取知识。在法则的得出过程中,我引进了现代化的教学工具微机,让学生在微机演示的一种动态变化中自己发现规律归纳总结,这不但增加了课堂的趣味性提高了学生的能力,而且直接地向学生渗透了数形结合的思想。在法则的应用这一环节我又选配了一些变式练习,通过书上的基本练习达到训练双基的目的,通过变式练习达到发展智力、提高能力的目的。这些我都在教学过程的设计中具体体现。而且在做练习的过程中让学生互相提问,使课堂在学生的参与下积极有序的进行。
六、教学过程的设计
1、引入:再课堂的引入上,开始我本打算选择教材上的例子,但是它过于简单。并且不宜于引起学生的注意,所以我选择了学生们感兴趣的军事问题,让学生在充当指挥官的同时,有一种解决问题的成就感,从而使学生积极主动的学习,并且营造了良好的学习氛围。
2、探索规律:法则的得出重要体现知识的发生,发展,形成过程。我通过了一个小人在坐标轴上来回的移动,使学生在小人的移动过程中体会两个数相加的变化规律。由于采用了形式活泼的教学手段,学生能够全身心的投入到思考问题中去,让学生亲身参加了探索发现及获取知识和技能的全过程。最后由学生对规律进行归纳总结补充,从而得出有理数的加法法则。
3、巩固练习:再习题的配备上,我注意了学生的思维是一个循序渐进的过程,所以习题的配备由难而易,使学生在练习的过程中能够逐步的提高能力,得到发展。并且采用男生出题,女生回答;女生出题,男生回答,活跃课堂气氛,充分调动学生的积极性。使学生在一种比较活跃的氛围中,解决各种问题。同时针对学生素质的差异进行分层训练,既使学生掌握基础知识,又使学有佘力的学生有所提高,从而达到拔尖和“减负”的目的。
4、归纳总结:归纳总结由学生完成,并且做适当的补充。最后教师对本节的课进行说明。
以上是我对本节课的理解和设计。希望各位老师批评指正,以达到提高个人教学能力的目的。说课对我仍是新事物,今后我也将进一步说好课,并希望各位专家领导对本堂说课提出宝贵意见。
《有理数》说课稿3
教学目的:
1、知识目标:使学生了解了负数产生的背景,理解正、负数及零的意义,掌握正、负数的表示方法,会用正、负数表示具有相反意义的量。
2、能力目标:通过本节教学,培养学生的想象能力、理论联系实际能力、分析解决问题的能力;并向学生渗透“对立统一”、“实践第一”等辩证唯物主义观点;
3、思想目标:对学生进行爱国主义思想教育;培养学生良好的个性品质和学习习惯。
教学设计:
本课教材所处位置,是小学所学算术数之后数的范围的第一次扩充,是算术数到有理数的衔接与过渡,并且是以后学习数轴、相反数、绝对值以及有理数运算的基础。
重点:
正、负数的意义
难点:
负数的意义及0的内涵。
教学方法:
鉴于初一年级学生的年龄特点,他们对概念的理解能力不强,精神不能长时间集中,但思维比较活跃。我决定采取启发式教学法及情感教学,创设问题情境,引导学生主动思考,用大量的实例和生动的语言激发学生学习兴趣,调节学习情绪。并利用计算机和投影胶片辅助教学,增大教学密度。
教学过程的设计,分为四部分。
一、创设情境,引入负数;
二、联系对比,突出重点;
三、课堂练习,及时反馈;
四、总结提高,渗透德育。
在引入部分,我通过介绍数的产生与发展,向学生渗透“实践第一”的辩证唯物主义观点:原始社会,从打猎记数开始,首先出现自然数,经过漫长岁月,人们用数“0”表示没有,随着人类的不断进步,在丈量土地进行分配时,又用小数使测量结果更加准确。使同学们感到,数的第一次发展都是为了满足社会生产与生活的需要。
随之提问:同学们小学都学过哪些数?
为了给下节课讲述有理数概念及分类作好铺垫,我把学生们答出的数归类为整数和分数。
那么小学学过的这些数能否满足社会生产生活及数学自身发展的需要呢?
为了体现负数是从实践中产生的,我选择了三个学生较熟悉的例子,用计算机显示动画效果,采取形象化教学。
(计算机)比如零上5°C,它比0°C高5°C,可记作5°C,而零下5°C比0°C低5°C,怎么表示呢?珠穆朗玛峰高出海平面8848米,吐鲁番盆地低于海平面155米,怎样表示二者的海拔高度?又如向东走3米与向西走3米、收入50元与支出50元等等。还可以联系抗洪实际,让学生思考怎样用数学来区分高区警戒水位1米与低于警戒水位1米呢?
通过创设问题情境,激发学生的求知欲望让不同水平的学生都在教师的引导下进行积极的思维参与,兴致勃勃的参与学习活动,既体现了教师的主导作用,又突出了学生的主体地位,师生共同进入角色。
以上实例说明,小学学过的那些数不能满足实际需要,而且数的局限也阻碍了数学自身向前发展。如小学遇到0—2、3—5这类题我们束手无策。以上种种矛盾及不便我们如何解决呢?
使学生感到数的扩充势在必行,扩充的根源是社会生产生活的需要及数学自身发展的需要。
既然小学学过的数不能满足需要,我们需要引出新的数。根据同学们的生活经验,零下5°C,比0°C低5°C,那么有没有比0还上的数呢?此时,负数已到了呼之欲出的地步,学生顺利地接受了这一事实,负数自然而然的引出了。
接下来讲解正、负数的定义及本节课的重点、难点,我采取联系对比的方法,始终不脱离小学所学知识。在给出正、负数的定义时,我采取比较轻松的态度,尽量避免使概念复杂化:小学学过的大于零的数就是正数,负数就是在正数前面加上一个“—”号。让学生觉得数学并不难学。在讲述正、负数的表示法、读法后,强调这里的“+”“—”是性质符号,虽然与表示运算符号的加号、减号涵义不同,但又能完全统一,因此形式上是一样的。在学运算时会有更深刻的理解。
从温度计上观察0°C以上的温度用正数表示,0°C以下的温度用负数表表示,说明正数都大于0,负数都小于0,0是正数与负数的`界限。因此,0既不是正数也不是负数。0是非正非负的中性数。对于0的认识,我们小学知道,0表示没有,又知道0的一些性质:0不能作除数、0乘以任何数都得0等。其实,0不仅仅表示没有:比如:0°C并不是没有温度,水位线定为0米并不是没有高度。在实际意义中,0是用来表示基准的数,比如海平面、警戒水位等。因此,0是一个实际存在的数量,它比所有正数都小,又比所有负数都大。当然,0的内涵还很丰富,我们将在以后陆续学到。
以上对数0表示量的意义的分析,实际上能够帮助学生加深对负数的认识和理解。正数、0、负数的大上关系在学生的头脑中初步形成,也为下一节课讲述有理数分类打下基础。
在此选取课本练习1让学生口答,巩固对正、负数的认识。并把课本例1作为练习给出。目的是使学生熟悉正、负数的特征,会判断一个数是正数还是负数。
为了突出正、负数的意义这一重点,就要突出它的实践性。那么,与引入部分呼应,有了负数以后,那些不能解决的问题就迎刃而解了。零上5°C可记作5°C或+5°C,零下5°C可记作—5°C;珠穆朗玛峰海拔8848米,吐鲁番盆地海拔—155米;收入50元记作+50元,支出50元记作—50元等等。同学们观察、正、负数所表示的两个意义正好相反的量,叫做具有相反意义的量。有趣的是,在千世界中,有上就有下,有升就有降,有收入就有支出,有赢就有亏损。因此,上仍相反意义的量是普遍存在的。正、负数的一个重要应用就是能表示两个具有相反意义的量。为了加深学生对具有相反意义的量的理解,请学生再举一些日常生活中的例子,总结出具有相反意义的量的特征:
(1)意义相反 (2)同一种量
并解释相反与相异的区别。比如向东走3米向北走3米就不是具有相反意义的量。并通过以下练习加以巩固。
由于用负数表示实际问题对学生来说很不习惯,是理解上的难点,如何讲解难点呢?在此要向学生渗透相反意义所隐含的辩证关系。
“+”“—”作为性质符号有着更深层的涵义:
“+”表示与问题中给出意义的相同意义,
“—”表示与问题中给出意义的相反意义,
如:前进+5米,表示真正前进5米,
前进—5米,表示后退5米,
那么,后退—5米就表示前进5米。并通过课本例2加以巩固。
为了加深对正、负数的意义及对具有相反意义的量的理解,我安排了这样一个练习:
图中所示是一个零件的剖面图。用φ30±0.07表示轴直径的误差范围,说明±0.07的意义。
因为学生第一次见到这种标注误差的方法,很难回答。我采取铺垫式启发,先讲解;“这是一个直径为30mm的轴,在制作过程中允许产生尺寸上的误差,既可以大些也可以小些,但不许超过一定的范围,如此标准谁能说出它的意义?”这时,学生就会根据正、负数可以表示具有相反意义的量这一特点回答出+0.07表示比30mm大0.07mm,—0.07表示比30mm小0.07mm。这样使学生把正、负数与实际问题联系起来,加深了对正、负数意义内涵的理解。
接下来是课堂练习。让更多的学生参与进来,通过练习巩固知识发现不足,教师及时得到反馈,检查教学效果,采取相应措施。在练习过程中培养学生养成用所学知识去思考问题,判断问题,解决问题的好习惯。学生的练习分出了梯度,让不同水平的学生都有所提高,有助于贯彻因材施教的教学原则。各组练习在进行中,进行后,都要掌握学生的完成情况,让学生举手,加以统计,及时纠错及再讲解,根据学生的接受情况,调整练习题目的多少与难易。在学生回答问题时,我通过语言、目光、动作给予鼓励与告诉,发挥评价的增益效应。
在整个教学过程中,教师的一言一行、语气、神态都会对学生的学习过程产生影响。因此,教师要对学生在听课过程中通过有形的精神状态如眼神等所表现出来的无形思维状态加以感知,随时捕捉反馈信息,对自己的讲课进程作出相应的调整,快、慢、停、转应用自如。
在本节课的小结部分,首先小结本课重点与难点,然后向学生提问:你知道是哪个国家最早使用负数吗?负数最早记载于中国的《九章算术》中,比国外早一千多年。借此向学生进行爱国主义思想教育。并布置思考题及作业,目的是把正、负数与第一章所学代数式联系起来,加深对正、负数的意义的理解。
通过教学实践取得了良好的效果,使我认识到教师在教学过程中,不仅要教会学生知识,还要培养学生良好的数学素养的学习习惯,更要重视教学生做人,才能真正讲出一堂好课,真正成为一名好教师。
《有理数》说课稿4
各位专家,各位同仁:;大家好!;我说课的课题是北师大版《数学》七年级上册教材中的;
一。教材分析;
(一)教材的地位与作用;本课时既是有理数加减混合运算的自然延续,又是后面;
(二)教学目标分析;
1、知识与技能目标:借助实际情境,使学生理解有理;
2、方法与过程目标:让学生经历有理数乘法法则的探;
3、情感﹑态度与价值观目标:通过学习
2.8. 有理数的乘法(第一课时)
各位专家,各位同仁 :
大家好!
我说课的课题是北师大版《数学》七年级上册教材中的第二章第8节“有理数的乘法”.第一课时。我将从以下四个方面谈一谈这节课的教学设计。
一。教材分析
(一)教材的地位与作用
本课时既是有理数加减混合运算的自然延续,又是后面学习有理数除法、乘方运算的基础,还是今后学习代数式运算﹑方程﹑函数等内容的必要知识储备。因此本节课的学习有着承上启下﹑铺路架桥的作用。学好这部分内容,对于学生理解“类比和化归”这些重要数学思想,应用“不完全归纳法”,发展学生数学探究能力,增强学生学习数学的信心都具有十分现实的意义。
(二)教学目标分析
1、知识与技能目标:借助实际情境,使学生理解有理数乘法的意义,掌握有理数的乘法法则,并运用法则解决实际问题。
2、方法与过程目标:让学生经历有理数乘法法则的探索过程,发展学生观察、猜想、归纳、验证、运算的能力,让学生领会类比、数学建模,以及从特殊到一般的数学思想方法。
3、情感﹑态度与价值观目标:通过学习,激发学生的学习动机和好奇心理,锻炼学生的思维意志品质,张扬学生个性,培养学生科学严谨的学习态度,使学生树立正确的价值观、人生观。
(三)教学重、难点及成因分析
教学重点定为:掌握有理数的乘法法则,会进行有理数的乘法运算。
教学难点定为:有理数的乘法法则的探索和对法则的理解。
为了突破教学重难点,教学的关键是运用猜想验证的方式,利用水位变化的直观性,帮助学生掌握有理数乘法运算法则。
二、教法、学法分析
(一)、学情分析
1、学生在小学已经明确正数乘法的意义和正数之间、正数与零之间的乘法运算法则。
2、通过对有理数加法运算的学习,学生对负数参与运算有了一定的认识,已经明确计算时要先确定和的符号,再确定和的绝对值的基本方法。
(二)、教法分析
《课程标准》中明确指出:学生是学习的主人,教师是学习的组织者、引导者与合作者。基于以上理念,结合本节课内容及学生的实际情况,教学中我主要采用“引导——探究法”组织教学。
(三)、学法指导
本节课我鼓励学生采用自主探索与合作交流相结合的方式进行学习,让学生亲身体验知识的发生、发展、发现的全过程,增强学生的参与意识,促进学生对知识的理解和掌握,真正提升学生的数学素养。
三、教学过程分析
我根据数学课程“倡导积极主动,勇于探索的学习方式”的基本理念,将本节课的基调定为对于创设情境,引入课题,我考虑了两种方式:
1.直接提出问题:你能给出下列各式的结果吗?
(1)2×3=____;(2)(-2)×(-3)=____;(3)2×(-3)=____;(4)0×(-4)=____. 这种引入由学生所熟悉的正数乘法运算引入未知的负数参与的乘法运算,能做好中学与小学知识的衔接,激起学生认知上的冲突。但它较难让学生快速进入学习情境。
2、通过演示实际生活中甲,乙两水库的水位上升或下降的情景,得到乘法算式,以次引入课题。这种引入符合七年级学生形象思维能力强的认知特点,易激发学生的学习兴趣,在复习乘法意义的同时,也为后面利用水位变化研究课题打下基础。因此我选择第二种方式引出课题。
(二)自主探究,归纳结论
根据学生思维活跃,善于交流的特点,本着由浅入深,由易到难,由形象思维过渡到抽象思维的原则,我设计了:出示问题,建立模型;独立思考,探索规律; 归纳总结,得出法则 这样三个层次,来逐步展开对课题的探究。以便更好的展示知识的形成过程,突出重点,突破难点;减轻学生对法则的理解难度。
1.出示问题 ,建立模型
问题1. 议一议
(-3)×4= -12
(-3)×3=
(-3)×2=
(-3)×1=
在出示问题,建立模型这一环节,先提出问题1. 议一议,我要求学生按6人一组,进行探究活动,在充分合作并取得一致意见的基础上,然后由学生主动进行展示。学生可能会从以下两个方面进行回答。1.把乘法转化成加法(链接);2.利用乙水库水位的变化来说明。点评时,教师通过动画演示验证学生结论的正确性。
问题2:①你知道(-3)×0的结果吗?
②如何用水位的变化来解释(-3)×0= 0 ?
通过演示,学生很容易就能看出当时间没有变化时,水位不会发生变化。
问题3.认真观察上述5个算式,其中包含什么规律?
此处是本节课的一个难点,学生要得到答案,比较困难。我将从以下几个方面对学生进行引导。1.观察算式的左边,找出变化的因数和不变的因数;2.观察算式的右边,找出积的变化规律;3.要求学生在独立思考之后,将两边的变化规律总结成一个结论。即:一个因数不变,另一个因数每次减小1.算式右边的积每次增加-3.
上述三个问题的解决,渗透了高效课堂教学的理念,让学生通过自主交流,自我展示,达到理解知识、培养能力、张扬个性的效果。学生通过独立思考,自己发现规律,也能提高学习数学的兴趣,同时也为解决下面的问题4打下坚实的基础。
2. 独立思考,探索规律
问题4.猜一猜
(-3)×(-1)=
(-3)×(-2)=
(-3)×(-3)=
(-3)×(-4)=
由于有了上面的铺垫,学生很容易猜出这4个算式的结果,但是为什么是这四个结果,学生却并不明白,为突破这一关键点,我给出了教科书上的一个规定: 水位上升为正,水位下降为负 ; 为区分时间,我们规定:“现在前”为负,“现在后”为正 .根据上述规定,我先让学生说一说这4个算式的实际意义,如(-3)×(-1)表示乙水库一天前的水位等。接着让学生看动画演示,然后再让他们充分发表自己的意见,在争辩讨论中弄清楚此时各种情况下水位的总变化量,最后达成共识。
这样做的目的为了让学生知其然更知其所以然,感受数学结论的合理性。
问题5.你能猜出 3×(-2)的结果,并解释理由吗?
通过与第四个问题进行类比,学生很容易得出此题答案。这里补充正数与负数相乘,是为后面学生归纳有理数的乘法法则打下伏笔。
本环节我以学生的发展为本,让学生经历探索的过程,培养学生自主学习的能力。通过文字的叙述和算式的有机结合,使得乘法结果的得出自然合理,更有助于一般结论的归纳。课件动画效果可以使情境更生动,有助于学生思考问题得出结论,使学生由感性认识上升到理性思维。
接着我引导学生进入第三步:归纳总结,得出法则。
3、归纳总结,得出法则
完成问题6后,学生对有理数的乘法法则已经到了呼之欲出的地步,于是我提出了问题7:
由于学生对负数的意义理解不深,计算时很容易算对绝对值的乘积而忽视了符号问题,或者,注意了符号而又忘记了把绝对值相乘,于是我设置了做一做及问题8,让学生清楚运算时的几个步骤。并引导学生进行归纳:有理数相乘,先确定积的符号,再决定积的绝对值。
通过层层设置的问题,我引导学生讨论发现,归纳结论。这些环节展示了知识的形成过程,培养了学生探究能力,锻炼了学生概括表述能力。在探究归纳的过程中,也渗透了类比和分类讨论、从特殊到一般、数学建模的思想方法。
(三)知识运用,加深理解
1、运用法则进行计算
在这一环节,为了提高学生计算的准确度,培养学生的运算能力,并为多个有理数的乘法及乘除法混合运算奠基,在选题时,例1安排了分数、小数、带分数及整数参与运算。在(2)中设计了整数与小数相乘、(4)设计了小数与带分数相乘,(5)设计了有理数的连乘,在学生解题的基础上,都分别总结了两种计算方法;并由学生总结解题的方法和技巧:当因数是小数时,一般可化为分数再相乘;当因数是带分数时,一般要化为假分数再相乘,有理数的连乘
可以两两相乘,也可以先确定积的符号,再确定积的绝对值。同时通过(1)的计算要让学生明白:乘积是1的两个数互为倒数。
2、运用法则解决实际问题
有理数的乘法运算法则只是计算工具,更主要的还是运用它来解决生活中的实际问题,因此我设计了例2,这个问题的解决对学生来说,难度不大,因此我打算让学生上黑板演板。通过这个问题的解决,
让学生体验到数学来源于生活又服务于生活的数学理念,培养学生的应用意识。
两个例题的解决采取了师生互动方式,评价采取生生评价的方式,提高了学生学习兴趣,培养了学生严谨的数学思维习惯。
(四)变式训练,拓展思维。
通过变式训练,可加深学生对法则的理解,使学生的学习巩固过程成为再深化、再创造的过程。开放性的试题,让不同学生的思维潜能得到展示,体现了“不同的人在数学上得到不同的发展”的理念。
(五)回顾反思,感悟提升。
在课堂临近尾声时,我鼓励学生从数学知识、数学方法和数学情感等方面进行自我评价,让学生对所学知识有比较清晰的轮廓体系,也让学生形成善于反思、总结的学习习惯。
(六)布置作业,延伸知识。
数学课程提出:人人学有价值的数学,人人获得必须的数学,不同的人在数学上得到不同的发展。因此我设计了A、B两组作业:
分层设置作业,兼顾了不同学生的学习水平,关注了学生的个体差异。设置开放性的作业,充分挖掘了学生的学习潜力,锻炼了学生的思维意志品质,同时也让学生的学习延伸到课外,使他们学会时刻“用数学的眼光”来观察生活。
四、教学反思
最后,对这节课我做了如下的反思:
在教学过程中,我始终坚持以观察为起点,以问题为主线,以能力培养为核心的宗旨;遵照学生为主体,教师为主导,训练为主线的教学原则;遵循由已知到未知、由浅入深、由易到难的认知规律,采用诱思探究教学法,通过课件和师生的双边活动,使学生的知识和能力得到提高。通过创设、引导、渗透、归纳等活动随时搜集和评价学生的学习情况,及时反馈调节,查漏补缺,让全体学生参与教学的全过程,从而更好的促进学生全面、持续、和谐的发展。
我的说课到此结束,恳请各位专家批评,指正。谢谢大家!
《有理数》说课稿5
今天我要说课的课题是有理数的加减法,属课前说课。首先,我对本节教材进行一些分析。本节课选自人民教育出版社出版的〈义务教育课程标准实验教科书〉数学七年级(上)。这一节课是本册书第一章第三节的内容。我打算分四课时完成,去括号、加法计算、减法计算、加减法混合计算。下面我就从以下六个方面——教材结构与内容简析、教学目标、教学重点难点及关键、教法、学法、教学过程的设计向大家介绍一下我对本小节的理解与设计。
一、教材结构与内容简析
在分析新数学课程标准的基础上确定了本节课在教材中的地位和作用以及确定本节课的教学目标、重点和难点。首先来看一下本节课在教材中的地位和作用。
有理数的加减法在整个知识系统中的地位和作用是很重要的。它是整个初中代数的一个基础,它直接关系到有理数运算、实数运算、代数式运算、解方程、、研究函数等内容的学习。初中阶段要培养学生的运算能力、逻辑思维能力和空间想象能力以及让学生根据一些现实模型,把它转化成数学问题,从而培养学生的数学意识,增强学生对数学的理解和解决实际问题的能力。就第一章而言,有理数的加减法是本章的一个重点。在有理数范围内进行的各种运算:加、减法可以统一成为加法,乘法、除法和乘方可以统一成乘法,因此加法和乘法的运算是本章的关键,而加法又是学生接触的第一种有理数运算,学生能否接受和形成在有理数范围内进行的各种运算的思考方式(确定结果的符号和绝对值),关键是这一节的学习。
数学思想方法分析:作为一名数学老师,不仅要传授给学生数学知识,更重要的是传授给学生数学思想、数学意识,因此本节课在教学中力图向学生渗透的德育目标是:
(1)渗透由特殊到一般的辩证唯物主义思想
(2)培养学生严谨的思维品质。
二、教学目标
根据新课程标准和上述对教材结构与内容分析,考虑到学生已有的认知结构及心理特征,制定如下教学目标:
1.了解代数和的概念,理解有理数加减法可以互相转化,会进行加减混合运算;
2.通过学习理解加减法运算,都可以统一成加法运算,继续渗透数学的转化思想;
3.通过加法运算练习,培养学生的运算能力。
三、教学建议
(一)重点、难点分析
本小节的重点是依据运算法则和运算律准确迅速地进行有理数的加减混合运算,难点是省略符号与括号的代数和的计算.
由于减法运算可以转化为加法运算,所以加减混合运算实际上就是有理数的加法运算。了解运算符号和性质符号之间的关系,把任何一个含有有理数加、减混合运算的算式都看成和式,就可灵活运用加法运算律,简化计算.
(二)教法建议
1.通过习题,复习、巩固有理数的加、减运算以及加减混合运算的法则与技能,讲课前教师要认真总结、分析学生在进行有理数加、减混合运算时常犯的错误,以便在这节课分析习题时,有意识地帮助学生改正.
2.关于“去括号法则”,只要学生了解,并不要求追究所以然.
3.任意含加法、减法的算式,都可把运算符号理解为数的性质符号,看成省略加号的和式。这时,称这个和式为代数和。再例如:-3-4表示-3、-4两数的代数和,-4+3表示-4、+3两数的代数和,3+4表示3和+4的代数和等。代数和概念是掌握有理数运算的一个重要概念,请老师务必给予充分注意。
4.先把正数与负数分别相加,可以使运算简便。
5.在交换加数的位置时,要连同前面的符号一起交换。如:12-5+7应变成12+7-5,而不能变成12-7+5。
备注:教学过程我主要说第一小节---去括号
(三)教学过程:
根据教材的结构特点,紧紧抓住新旧知识的内在联系,运用类比、联想、转化的思想,突破难点。
本节课的教学设计环节:
教学环节
教学活动设计
设计说明
前提诊测,复习提问
1、如何表示一个数的相反数?-(+3),+(-2)各表示的意义是什么?从而引导学生理解“-”号表示一个数的相反数,“+”表示一个数的本身;2、绝对值检测:随机出五六道小题即可
复习旧知识的目的是对学生新课应具备的“认知前提能力”和“情感前提特征进行检测判断”.
提出问题,创设情景
把以下数相加、相减
1、+4,-5,+3,-6,-7,3,-2.5
2、-3.2,-2.6,+5,+6,-4
在黑板上写五六个正负数请同学们把他们加在一起再减在一起。不要怕学生写错,让学生自己体会书写的繁琐计算的困难,继而想出解决办法。(可以多给学生时间。)
尝试指导,实施目标
从学生的错误出发,引导学生先填括号,在想法去括号,通过小组探究得出去括号法则。,掌握计算方法。(5-10分钟即可)
题型训练,巩固目标
1、两数加减:+3+(-4);(-5)+(-6);(-8)-(+4);(+5)-(-6)
2、多数加减:(-12)-(+23)+(-7)-(-2);-(-4)+(+5)-(-6);
+(+6)-(-5)+(-9);0-(-3)+(+6)-(+0.1)+(-0.25);
-(-7)+(-2.3)-(-5.1)+(-3)
此处要反复练习,并使学生明白去括号后的是省略加号的和式。
鼓励学生积极发言,增进师生、生生之间的交流、互动.
形成性测试,检测目标
1、做书18、20、23、24页练习题(只去括号)
2、利用书上习题1.3复习巩固1、2题的双数题进检测
把“反馈---调节”贯穿于整个课堂,教学结束,应针对教学目标的层次水平,进行测试,对尚未达标的学生进行补救,以消除错误的积累,从而有效的控制学生学习上的两极分化。
归纳总结,纳入知识系统
+,去掉括号后所得结果仍是括号内的数;-(),去掉括号后所得结果是括号内数的相反数。
由学生总结、归纳、反思,加深对知识的理解,并且能熟练运用所学知识解决问题
布置作业
1、课后作业:书24页习题1.31.(1)、(3)、(5)、(7);2.(1)、(3)
要求:小组长及时检查力争人人掌握去括号方法,会省略括号。
利用课堂检测及时反馈本课重、难点。
利用课后作业巩固新知。
谢谢大家!我的说课完毕。
《有理数》说课稿6
一、教材分析
分析本节课在教材中的.地位和作用,以及在分析数学大纲的基础上确定本节课的教学目标、重点和难点。首先来看一下本节课在教材中的地位和作用。
1、有理数的加法在整个知识系统中的地位和作用是很重要的。初中阶段要培养学生的运算能力、逻辑思维能力和空间想象能力以及让学生根据一些现实模型,把它转化成数学问题,从而培养学生的数学意识,增强学生对数学的理解和解决实际问题的能力。运算能力的培养主要是在初一阶段完成。有理数的加法作为有理数的运算的一种,它是有理数运算的重要基础之一,它是整个初中代数的一个基础,它直接关系到有理数运算、实数运算、代数式运算、解方程、研究函数等内容的学习。
2、就第二章而言,有理数的加法是本章的一个重点。有理数这一章分为两大部分----有理数的意义和有理数的运算,有理数的意义是有理数运算的基础,有理数的混合运算是这一章的难点,但混合运算是以各种基本运算为基础的。在有理数范围内进行的各种运算:加、减法可以统一成为加法,乘法、除法和乘方可以统一成乘法,因此加法和乘法的运算是本章的关键,而加法又是学生接触的第一种有理数运算,学生能否接受和形成在有理数范围内进行的各种运算的思考方式(确定结果的符合和绝对值),关键是这一节的学习。
从以上两点不难看出它的地位和作用都是很重要的。
接下来,介绍本节课的教学目标、重点和难点。(结合微机显示)
教学大纲是我们确定教学目标,重点和难点的依据。教学大钢规定,在有理数的加法的第一节要使学生理解有理数加法的意义,理解有理数的加法法则,并运用法则进行准确运算。因此根据教学大纲的要求,确定了本节课的教学目标。1、知识目标是:“(1)理解有理数加法的意义;(2)理解并掌握有理数加法的法则;(3)应用有理数加法法则进行准确运算;(4)渗透数形结合的思想。2、能力目标是:(1)培养学生准确运算的能力;(2)培养学生归纳总结知识的能力;3、德育目标是:(1)渗透由特殊到一般的辩证唯物主义思想;(2)培养学生严谨的思维品质。有理数加法的意义与小学学习的在正有理数和零的范围内进行的加法运算的意义相同,让学生理解即可,有理数的加法法则的理解与运用是本节的重点内容。因此本节课的重点是:有理数加法法则的理解与运用。由于本阶段的学生很难把握住事物主要特征:如异号两数、绝对值不相等的异号两数和互为相反数之间的关系,这就对法则的理解造成困难。因此我确定本节课的难,是是;有理数加法法则的理解。
二、教材处理
本节课是在前面学习了有理数的意义的基础上进行的,学生已经很牢固地掌握了正数、负数、数轴、相反数、绝对值等概念,因此我没有把时间过多地放在复习这些旧知识上,而是利用学生的好奇心,采用生动形象的事例,让学生充当指挥官的角色,亲身参加探索发现,从而获取知识。在法则的得出过程中,我引进了现代化的教学工具微机,让学生在微机演示的一种动态变化中自己发现规律归纳总结,这不但增加了课堂的趣味性提高了学生的能力。而且直接地向学生渗透了数形结合的思想。在法则的应用这一环节我又选配了一些变式练习,通过书上的基本练习达到训练双基的目的,通过变式练习达到发展智力、提高能力的目的。这些我将在教学过程的设计中具体体现。而且在做练习的过程中让学生互相提问,使课堂在学生的参与下积极有序的进行。
三、教学方法和数学孚段
在教学过程中,我注重体现教师的导向作用和学生的主体地位,。本节是新课内容的学习,教学过程中尽力引导学生成为知识的发现者,把教师的点拨和学生解决问题结合起来,为学生创设情境,从而不断激发学生的求知欲望和学习兴趣,使学生轻松愉快地学习不断克服学生学习中的被动情况,使其在教学过程中在掌握知识同时、发展智力、受到教育。
四、教学过程的设计。
1、引入:再课堂的引入上,开始我本打算选择教材上的例子,但是它过于简单。并且不宜于引起学生的注意,所以我选择了学生们感兴趣的军事问题,让学生在充当指挥官的同时,有一种解决问题的成就感,从而使学生积极主动的学习,并且营造了良好的学习氛围。
2、探索规律:法则的得出重要体现知识的发生,发展,形成过程。我通过了一个小人在坐标轴上来回的移动,使学生在小人的移动过程中体会两个数相加的变化规律。由于采用了形式活泼的教学手段,学生能够全副身心的投入到思考问题中去,让学生亲身参加了探索发现,获取知识和技能的全过程。最后由学生对规律进行归纳总结补充,从而得出有理数的加法法则。
3、巩固练习:再习题的配备上,我注意了学生的思维是一个循序渐进的过程,所以习题的配备由难而易,使学生在练习的过程中能够逐步的提高能力,得到发展。并且采用男生出题,女生回答;女生出题,男生回答,活跃课堂气氛,充分调动学生的积极性。使学生在一种比较活跃的氛围中,解决各种问题。
4、归纳总结:归纳总结由学生完成,并且做适当的补充。最后教师对本节的课进行说明。
《有理数》说课稿7
本节课我所讲的是人教版七年级上册第一章《有理数》中的第三节第二课《有理数的减法》的第一课时.
一、说课标:
数与代数部分是义务教育阶段数学课程的重要内容。这部分内容包括数的概念、数的运算、数的估计;字母表数、代数式及其运算;方程、方程组、不等式,函数等。而数的运算伴随着数的形成与发展不断丰富,从最基本的自然数的四则运算,扩展到有理数的四则运算、乘方、开方运算等。新课标中指出:运算能力主要是根据法则和运算律正确地进行运算的能力。培养运算能力有助于学生理解运算的算理,寻求合理简洁的运算途径解决问题。新课标是在总目标的四个方面之一的“数学思考”中提出运算能力的思维和抽象思维。”这说明运算能力是数学思考的重要内涵。不仅如此,运算能力对新课标在总目标中提出的其他三个方面目标的整体实现,同样是不可缺少的基本条件。
二、说教材的地位和作用:
“有理数的运算”是“数与代数”学习领域的重要内容,减法是其中的一种基本运算.有理数的减法是小学减法的延续,通过对有理数的减法运算的学习,学生将对减法运算有进一步的认识和理解,它对今后正确熟练地进行有理数的混合运算奠定基础,并对解决实际问题都有十分重要的作用。
三、说学情:
在生活中,学生经常会进行同类量之间的比较,因此学生对减法运算并不陌生,但这种认识常常流于经验的层面。在小学阶段学生学习了局限性的减法运算,并进行了技能性的强化训练,学生对此缺乏理性的认识,很多时候减法仅作为加法的逆运算而存在。因比,在教学中一方面要利用这些既有的知识储备作为“知识生长的最近发展区”来促进新课的学习,另一方面要通过具体情境中减法运算的学习,让学生体会减法的意义。此外,值得注意的是本年龄段的学生学习积极性高,探索欲望强烈,但数学活动的经验较少,探索效率较低,合作交流能力有待加强,因此在教学过程中要做好调控和引导,并且要让学生体验到成功的快乐。
四、说教学目标:
依据《课程标准》的要求,结合本班学生情况,确定本节课的教学目标如下:
知识与技能目标:掌握有理数的减法法则,能运用有理数的减法法则进行运算。
过程与方法目标:经历由特例归纳出一般规律的过程,培养学生的抽象概括能力及表达能力;通过对有理数减法法则的探讨,体验数学的转化思想。
情感态度与价值观目标: 在归纳有理数减法法则的过程中,通过讨论、交流等方式进行同伴间的合作学习。
根据以上对教材的地位和作用,以及学情分析,结合新课标对本节课的要求,我将本节课的重点确定为:理解有理数减法法则的意义,会运用有理数的减法法则进行运算。难点确定为:有理数减法法则的探讨。
五、说教学方法和学法指导:
《新课标》中明确指出:学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者,基于以上理念,结合本节课内容及学生情况,教学设计中采用“引导发现法”组织教学.其基本程序设计为:创设情境提出猜想一探索验证一总结归纳一反馈运用,上述教学程序的实施很大程度上依赖于学生的学习,因此对学生学习方式的指导是十分重要的,本节课应鼓励和引导学生采用自主探索与合作交流相结合的方式进行学习,让学生亲历从特例到归纳(不完全归纳)出一般的减法法则的全过程,体验知识产生和发展的全过程。
六、说教学过程及设计思路:
本节课主要以多媒体课件教学,通过创设情境,层层深入,环环相扣,师生互动,探讨交流,讲练结合设计本节课.
(一)复习回顾
1.-2的相反数是____,+0.3的相反数____,相反数是它的本身的数是___.
2.计算
(1) 4 + 16 = (2)(–2)+(–7)=
(3)(–1)+3.6 = (4) 2 + (–4) =
(5)(–5)+ 5 = (6) 0 + (–8) =
设计意图:通过复习回顾,熟悉旧知,为学生本节课的学习做好知识准备。
(二)创设情境、引入新课
北京某天气温是-3C~3C,这天的温差是多少摄氏度呢?
学生列式表示3-(-3)=?但是不知道结果。
设计意图:通过小知识引入问题,然后引出有理数的减法运算,引起学生的探究欲望,激发学生的学习兴趣。
(三)探究新知
同学们都知道,减法和加法互为逆运算,3-(-3)=?也就是问什么数加上-3等于3?
因为6+(-3)=3 所以 3-(-3)=6
师问:3+?=6 生答:3+ 3=6
请同学们观察以下两个式子:
(1)3 -( –3)=6; (2)3+3=6
你发现了什么?换些数试试。(学生自主思考)
9-8=____, 9+(-8)=____;
15-7=____, 15+(-7)=____.
然后比较上面的式子,能发现其中的规律吗?分小组讨论。
然后师生共同归纳法则,教师板书法则。并强调减法在运算时有 2 个要素要发生变化,1个要素不变。(两变一不变)
设计意图:通过观察、交流、讨论,归纳发现有理数的减法法则,感受转化的数学思想。
练习:下列括号内各应填什么数?
(1)(-2)-(-3)=(-2)+____;
(2) 0 - (-4)= 0 ____ 4 ;
(3)(-6)- 3 =(-6)+_______;
(4) 1-(+39)= ____ +(-39).
设计意图:通过学生边口述,边解释法则,学生能找准在将减法变加法的过程中什么变,什么不变。
(四)典例讲解
例4计算:
(1)(-3)-(-5) (2)0-7
(3)7.2-(-4.8) (4)
教师板演示范(1)(4),示范书写过程,学生完成(2)(3)。
设计意图:通过教师的板演,为学生的书写起示范作用,学生练习暴露出来的问题,教师可以及时发现并指正。
思考:在小学,只有当a大于或等于b时,我们才会做a-b,现在,当a小于b时,你会做a-b吗?
一般地,较小的数减去较大的数,所得的差的符号是什么?
通过上述例题,学生不难解答。
(五)当堂检测
1.计算:
(1) 6-9; (2) (+4)-(-7);
(3)(-5)-(-8); (4) 0 -(-5);
(5)(-2.5)-5.9 ; (6) 1.9 -(-0.6).
2.计算:
(1)比2C 低 8C 的温度;
(2)比 -3C 低 6C 的温度.
3.(20xx·中考)计算:|(-3)-5|=____.
(六)小结
这节课我们学习了哪些知识?你还学到了什么?你能说一说吗?
学生自主谈收获,其他同学补充,教师可给与必要总结.
设计说明:小结归纳不应该仅仅是知识的简单罗列,而应该是优化认知结构,完善知识体系的一种有效手段,为充分发挥学生的主体地位,让学生自己总结,谈收获,培养学生善于进行学习反思的良好习惯.
(七)作业布置
必做题:
习题1.3第3题(1)(2)(5)(9)(10)第4题(1)(5)
选做题:
已知a=8,b=-5,c=-6,求(c-a)-|b|的值.
设计说明:根据课标和本节课的教学目标的要求,学生要会运用有理数的减法法则进行运算。我将作业分成选做和必做两个层次,这样尽量能让每个同学在今天的学习中都有所收获.
(八)板书设计
1.3.2有理数的减法
1.有理数的减法法则
2.两个变化要素
相反数
3.转化思想
设计意图:本节课的板书我主要采用提纲式的板书,既直观形象,又能加深理解记忆.
以上是我对本节课的见解,还请各位老师多多指导.
《有理数》说课稿8
一、说教材
1、教材的地位及作用。
有理数的运算是本章的重点,是学好后续内容的重要前提。本节课是在学习了有理数乘法的基础上进行的,是熟练进行有理数运算的必备知识,它与有理数的其它运 算形成了一个完整的知识体系。整节内容渗透了从一般到特殊、化未知到已知、用已知求新知的数学思想方法。通过本节学习让学生感受数学学习的乐趣,体验数学 思维的力量,发展学生自主创新的意识。
2、教学目标。
根据学生已有的认知基础及本课教材的地位及作用,依据课程标准,我确定本节课的教学目标为:
(1)知识技能方面:理解有理数除法的意义,熟练掌握有理数除法法则,会求有理数的倒数,会进行有理数的除法运算。
(2)过程与方法方面:通过有理数除法法则的导出及运算,让学生体会转化思想,感知数学知识的普遍性、相互转化性。
(3)情感态度方面:通过生生合作,使学生体会在解决问题中与他人合作的重要性,通过积极参与教学活动,让学生充分体验问题的探索过程,培养学生的探究意识,激发学生学好数学的热情。
3、教学重点、难点
在整个知识系统中,学生能够熟练地进行有理数的运算是很重要的,因此本节课的教学重点确定为熟练进行有理数的除法运算。勤思、善思,是学好数学的必要条 件。本节内容是在有理数乘法的基础上进行的,有理数的除法可以利用乘法进行,基于此,教科书中给出了两种法则,对初一学生来说,理解这两种法则有一定的难 度,因此,本节课的教学难点定为:理解有理数的除法法则。
二、说教法
为了突出重点、突破难点,使学生能达到本节设定的教学目标,我采用的教学方法是:
针对初一学生的思维依赖性强,思维活跃,但抽象概括能力相对较弱的特点,本节课充分借助多媒体来增强直观效果。运用“自学—辅导”模式,遵循“面向全体, 尊重主体”的教学理念,采用“先学后教,当堂训练”的课堂教学结构,把教学过程化为学生自学、大胆猜想、合作交流、归纳总结的过程,使课堂教学遵循从生 动、直观到抽象思维的认识规律。
三、说学法
在教学活动中,为了激发学生自主学习,真正做到课堂教学面向全体学生,在教师的组织引导下,采用自主探究、合作交流的研讨式学习方式,让学生思考问题、获取知识、掌握方法,从而培养学生动手、动口、动脑的能力,成为学习的真正主人。
四、教学过程设计
1、设计问题,导入课题,提出课堂教学目标。
本着设计问题要有启发性、探索性的原则,首先出示了学生熟知的问题8÷(-4)=?也就是说(-4)*?=8
得出(-4)*(-2)=8所以8÷(-4)=-2而我们知道8*(-1/4)=-2所以8÷(-4)=8*(-1/4)
2、指导学生自学。
课件揭示自学指导(1)阅读教材第34页内容;(2)小组讨论疑难问题。这样做的目的是:让学生带着明确的任务,掌握恰当的自学方法,从而使自学更有效,与此同时,坚持每次自学前给予方法指导,可以使学生积累自学方法,从而提高学生的自学能力。
3、学生自学,教师巡视。
学生根据自学指导开始自学,通过察言观色,了解学生自学情况,使每个学生都积极动脑,认真学习,从而挖掘每个学生的潜力。在这个过程中,我会重点巡视中差的学生,帮助他们端正学习态度。
4、检查自学效果。
课件展示与例题类似的习题,让后进生板演或回答,要面向全体学生,后进生回答或板演时,要照顾到全体同学,让他们聆听别人回答问题,随时准备纠正错误,通 过巡视,搜集学生存在的错误,并在头脑里分类,哪些属于新知方面的,哪些属于旧知遗忘或粗心大意的,把倾向性的错误用彩色粉笔写在黑板对应练习处,供讲评 时用。通过这个过程,培养学生分析问题和解决问题以及学已致用的能力。
5、引导学生更正,指导学生运用。
学生观察板演,找出错误或比较与自己做的方法,结果是否与板演的相同,学生自由更正,让他们各抒己见,小组讨论,说出错因,更正的道理,引导学生归纳,上 升为理论,指导以后的学习。这个过程既是帮助后进生解决疑难问题,又通过纠正错误,训练一题多解,使优等生了解更加透彻,训练他们的求异思维和创新思维, 培养了他们的创新精神和一题多解的能力。同时,在这个过程中,要引导学生寻找规律,帮助学生归纳上升为理论,引导学生找出运用时可能出现的错误,这是从理 论到理论架起一座桥梁,以免学生走弯路。
6、当堂训练。
为学生巩固知识,加深理解,我给出一组练习,这组题目,分三个梯度:法则的直接运用、有理数的除法运算、解决实际问题,而且把这些题分为必做题、选做题。 通过完成课堂作业,检测每一位学生是否都能当堂达到学习目的。在这个过程中,我会不断巡视,了解哪些同学真正做到了“堂堂清”,哪些同学课后需要“开小 灶”,使课外辅导要有针对性。
7、反思小结,观点提炼。
通过前六个环节,学生已对本节课所学的内容有了较深刻的理解和掌握,引导学生进行反思,整理知识,总结规律,提炼思想方法。让学生从多角度对本节课归纳总结、感悟点滴,使学生将知识系统化,提高学生素质,锻炼学生的综合及表达能力。
8、布置作业。
课本38页四题让学生做到作业本上,以考查学生对本节基本方法和基本技能的掌握情况。
五、两点说明。
(一)、板书设计
这节课的板书我是这样设计的,在黑板的正上方中间处写明课题,然后把板书分为左右两部分,左边是有理数除法的法则,为了培养学生把文字语言转化成符号语言 的能力,板书中只出现两种法则的符号表示,从而加深他们对法则的理解,板书右边是学生的板演,以便于比较他们做题中出现的问题。板书下方是课堂小结,重点 写出:有理数的除法可以转化成有理数的乘法,以体现本节课中的重要的数学思想方法。
有理数的除法
有理数除法的法则:a÷b=a×1/b(b≠0) 板演练习:
1
a>0,b>0,a/b>0;a<0,b<0,a b=“”>0; 2
a>0,b<0,a/b<0;a<0,b>0,a/b<0. 3
课堂小结:有理数的除法 有理数的乘法
转化
(二)、时间分配:
教学过程中的八个环节所需的时间分别为:1分钟、2分钟、5分钟、8分钟、8分钟、16分钟、2分钟、1分钟。
《有理数》说课稿9
一、教学内容
《有理数的加法》是北师大版七年级数学上册第二章《有理数及其运算》第四节课的内容,这节课的内容应两个课时完成。本课时是本节内容的第一课时,依据教材的安排本节课应是让学生理解有理数的加法法则和运算律,最终熟练地进行整数加法运算,并能用运算律简化运算。
在有理数范围内进行的各种运算:加、减法可以统一成为加法,乘法、除法和乘方可以统一成乘法,因此加法和乘法的运算是本章的关键,而加法又是学生接触的第一种有理数运算,学生能否接受和形成在有理数范围内进行的各种运算的思考方式(确定结果的符合和绝对值),关键在于这一节的学习。
二、设计理念
七年级年龄段的学生思维活跃、求知欲强、有比较强烈的自我意识,对观察、猜想、探索性的问题充满好奇,又刚从小学升上初中三周时间,人人都自信满满,摩拳擦掌,准备大施拳脚,因此我采用探究式的学习方法,以“问题串”引领整个课堂,请同学们通过动脑、计算、分析得出结论,并利用组间游戏帮助学生理解法则,运用法则。
三、教学目标与重难点
目标:
1.使学生掌握有理数加法法则,并能运用法则进行计算;
2.让学生亲身经历探究有理数加法法则的过程,深刻感受分类讨论、数形结合的思想,感受由具体到抽象、由特殊到一般的认知规律;
3. 让学生通过研讨、分类、比较等方法的学习,培养归纳总结知识的能力。
重点:会用有理数加法法则进行运算。
难点:异号两数相加的法则。
四、学情分析
1.学生非常熟悉正数加正数,正数加零的情况。
2.有理数的分类、数轴、绝对值的相关知识已经掌握。
3.学生善于形象思维,思维活跃,能积极参与讨论。
五、教学策略
1.将本节课的教学内容设计成六个重要问题,引导学生深层次的思考;
2.由学生自己举出生活中的具体实例,认识到运算的作用,加深对运算意义的理解;
3.在教学过程中,将每一个环节的要点及时归纳,并准确地表达,帮助学生构建知识体系。
六、教学流程
1.回顾旧知,启发思维
展示课件上的三个问题,请同学们思考并回答。
(1)有理数是怎么分类的?
(2)有理数的绝对值是怎么定义的?
(3)下列各组数中,哪一个数的绝对值大?
7和4; -7和4; 7和-4; -7和-4
【设计意图】回顾与本节课有关的概念和性质,为新课引入进行铺垫。
2.创设情境 引入课题
问题一:两个有理数相加,有多少种不同的情形?
答:正+正,负+负,正+负,正+0,负+0,0+0.
【设计意图】强化学生分类讨论的意识,明确研究数学问题一般所应采取的具体步骤。同时也增强了孩子们学习的信心,因为在六种不同的情况中,学生们四种都已经熟练掌握,仅剩两种需要攻克。
问题二:你能举出需要运用有理数加法的知识去解决的生活实例吗?
请同学们举自己熟悉的例子:①西安夜间平均气温为16 摄氏度,白天的平均温度比夜间高9摄氏度,那么白天的平均温度是多少?②土星表面的夜间平均气温为-150摄氏度,白天比夜间高27摄氏度,那么白天的平均温度是多少摄氏度?(多媒体展示题目)
师:同学们已经有了研究有理数加法运算的准备知识了。今天同学们有信心和我一同当回“研究生”共同研究有理数的加法运算吗?
(出示课题)
【设计意图】体现了数学源于生活,体会学习有理数加法的必要性,激发学生探究新知的兴趣。同时肯定学生的知识准备,树立学生进一步学习的信心,激发学生的斗志,让学生尽快参与到教学中来,进一步体会到自己是课堂的主人。
(二)分析问题探究新知
问题三:你能根据同学们所举的例子总结出正数+负数、负数+负数的运算规律吗?
学生们各抒己见,总结法则。
1、同号两数相加,取相同的符号,并把绝对值相加。
2、绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数 的两个数相加得0.
3、一个数同0相加,仍得这个数
老师总结口诀:“同号相加一边倒,异号等距零正好,异号不等‘大’减‘小’,符号跟着‘大’的跑”.
【设计意图】感受两个有理数相加的各种情况。用表格的形式展示有理数加法的所有可能情况,使学生体会数学思维的规律性和严密性,感受分类和归纳的数学思想方法。借助于生活中的实例,使学生亲身参加探索发现,主动的获取知识和技能,直观感受有理数的加法法则。鼓励学生用自己的语言概括法则,提高学生的概括能力和语言表达能力
(三)运用新知深入体会
例1计算(-3)+(-9)。
分析:这是两个负数相加,属于同号两数相加,和的符号与加数相同(应为负),和的绝对值就是把绝对值相加(应为3+9=12)(强调相同、相加的特征)。
解:(-3)+(-9)=-12.
分析:这是异号两数相加,和的符号与绝对值较大的加数的符号相同(应为负),和的绝对值等于较大绝对值减去较小绝对
解题时,先确定和的符号,后计算和的绝对值。
课堂练习:
1.计算(口答)
(1)4+9; (2) 4+(-9); (3)-4+9; (4)(-4)+(-9);
(5)4+(-4); (6)9+(-2); (7)(-9)+2; (8)-9+0;
2.计算
(1)5+(-22); (2)(-1.3)+(-8)
(3)(-0.9)+1.5; (4)2.7+(-3.5)
3.用“>”或“<”填空:
(1)如果a>0,b>0,那么a+b____0;
(2) 如果a<0,b<0,那么a+b____0;
(3) 如果a>0,b<0,|a|>|b|,那么a+b____0;
(4) 如果a<0,b>0, |a|<|b|,那么a+b____0;
【设计意图】帮助学生熟悉法则,并养成“算必有据”的习惯。更重要的是渗透了研究一般与特殊关系的思想。
问题四:你能尝试着使用数学语言将有理数加法法则表示出来吗?
(1)如果a>0,b>0,那么a+b=+(|a|+|b|)
(2) 如果a<0,b<0,那么a+b=-(|a|-|b|)
(3) 如果a>0,b<0,|a|>|b|,那么a+b=+(|a|-|b|)
(4) 如果a<0,b>0, |a|<|b|,那么a+b=-(|b|-|a|)
(5)a+0=a.
【设计意图】有意识培养学生使用数学表达的能力,将数学书写渗透到每一节课当中。
(四)延伸拓展敢于挑战
问题五:和一定大于加数吗?和与两个加数这三者之间的有什么大小关系?
问题六:小学学过的运算律是否适用于有理数的加法?
【设计意图】由课堂延伸到课外,不仅为下节课做好了铺垫,也给学有余力的同学留下了无限的思考空间。
(五)归纳总结感受思想
(1)本节课所学的有理数的加法法则是什么?在应用时应注意哪些问题?
(2)本节课你学习到了哪些数学思想方法?
【设计意图】由学生总结,归纳反思,加深对知识的理解,并且能熟练运用所学知识解决问题及养成归纳总结的习惯和语言表达的能力。
(六)布置作业
(1)P56习题1、3
(2)请同学们回家用有理数牌和父母进行有理数加法运算比赛。
【设计意图】充分发挥家庭教育资源,让学生在快乐的游戏中达到熟练的程度。
七、设计说明
1.通过“问题串”的设置,激发兴趣,引起学生深层次的思考;
2.通过“互举例子”、“小组竞赛”两个活动,鼓励学生主动参与活动。
3.通过法则的符号化 ,促进学生数学语言的形成,数学表示能力的提升。
4.在活动中注重运用态势、语言对学生进行即兴评价,在整个评价的设计中安排多维评价:既关注学生合作交流的意识和能力、又关注学生数学思维能力与发展水平、还关注学生发现问题和解决问题的能力。
《有理数》说课稿10
有理数的除法是一种基本的有理数运算,它的学习是学生在小学已掌握了倒数的意义,除法的意义和运算法则,乘除法的混合运算,以及知道0不能作除数的规定和刚学过的有理数乘法的基础上进行的,对今后正确熟练地进行有理数的混合运算,并对解决实际问题都有十分重要的作用。
本节课的教学目标:
1、通过对有理数除法法则的探求,理解有理数除法法则,会进行有理数的除法运算。
2、会求有理数的倒数(特别是负数的倒数)。
3、通过把有理数的除法运算转化为乘法培养学生的转化思想。本节课的重点:熟练进行有理数的除法。
说课内容:有理数的除法运算,会求一个负数的倒数,难点是熟练掌握有理数的除法,难点的突出关键点在运算时,先确定商的符号,然后再根据不同情况采取适当的方法来求商的绝对值。因而教学时,让学生通过求实例理解有理数,除法与小学除法基本相同,只是增加了符号的变化。根据本节教材内容和学生的实际水平,为了更有效的突出重点,突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,采用探求,发现,讲练相结合的教学方法。本节课的教学过程如下:
一、导入
1、复习有理数的乘法法则,为新课的讲解作为铺垫。
2、提出已知两个因数的积和其中一个因数,求另一个因数用什么运算,引出有理数的除法。
二、新课讲授
1、探究:由12/3是什么意思,商是几?引到(-12)/(-3)是什么意思?从而由已学的除法是乘法的逆运算得出(-12)/(-3)=4,或从除以一个数等于乘以另一个数的倒数考虑,把除法转化成乘法来计算。
2、接着由一组有理数除法题目,先计算然后通过引导学生观察比较每题的除数,被除数的符号,绝对值与商的符号,绝对值的关系,总结出规律,得出有理数的法则1,并提醒学生注意0不能作除数。
3、再准备两组题目让学生练习,通过练习加深对法则的理解及加强运算的能力。
4、通过课本中的做一做,比较每组算式的关系,总结出规律得到有理数除法法则2,并指出如何根据具体情况来选择这两个法则再根据法则2及做一做中第1题并结合小学时求正数的倒数的方法,归纳得出求负数的倒数的方法,并指出0没有倒数。
三、巩固提高
通过练习,让学生的新知识得到巩固,并纠正错误。
四、总结反思
让学生感受本节课所学的有哪些知识,本节课的知识点。
五、检测反馈
根据课后习题,选择适当的题目作为课堂作业,让学生更加熟练掌握本节课的知识。
板书设计:
1、有理数除法法则。
2、倒数的求法。
《有理数》说课稿11
一、教材分析
1、教材地位和作用
有理数除法是人教版七年级数学第一章《有理数》中的第四节的第二小节内容,是继有理数的加法、减法和乘法之后的又一种运算。学习有理数除法对学生解决生活中的实际问题带来了简便,使学生体会到学习有理数除法的必要性和现实意义,为后面学习有理数的混合算奠定了很好的基础。
2、教学目标
(1)知识与技能目标:了解有理数除法的意义;经历有理数的除法法则的过程,会熟练进行有理数除法运算。
(2)过程与方法目标:通过有理数除法法则的导出及运用,让学生体会转化思想;培养学生运用数学思想知道数学思维活动的能力。
(3)情感态度与价值观:在独立思考的基础上,积极参与对数学问题的讨论,能从交流中获益。
3、教学重点与难点
重点:正确运用法则进行有理数的除法运算。
难点:根据不同的情况选取适当的方法求商。
教学思想:转化思想
二、学生情况分析
学生在学习本节课前对有理数数的加、减、乘法运算以及相反数、绝对值相关概念较为熟悉且具有一定的观察、动手操作、合作交流能力,已初步具有一点分析归纳概括的能力。
三、教法与手段
采用“观察——猜想——验证——类比——归纳”的教学模式,营造可探索的环境,引导学生积极参与,掌握规律,主动地获取新知识。利用多媒体辅助教学,充分调动学生学习积极性,体会转化的数学思想。
四、学法指导
本节主要指导学生自主探究——合作交流——主动总结——自我提高。改变学生被动接受的学习方式,倡导学生自主参与,积极互动,主动地获取新知识,培养学生观察、归纳等数学能力和转化的数学思想方法。
五、教学过程
1、引入新课.
我们在前几节课中学习了有理数的乘法运算,并认识了有理数的倒数,那大家知道乘法的逆运算是什么?该如何进行有理数的除法运算,这就是本节课我们学习的内容.引入新课,在黑板上写下课题:有理数的除法
2、温故而知新
(1)多媒体出示:倒数的定义你还记得吗?(指名回答)
(2)多媒体出示:你能很快地说出下列各数的倒数吗?以表格形式出现
计算(﹣4)×(﹣2)=?? 3 ×(﹣5)= 学生很容易做出。接着出示两道除法运算,计算8÷(﹣4)= (﹣15)÷3= 通过学生观察上题,猜想并验证,根据上面乘法运算的结果,也很容易得到答案。再用类比的方法得到另一道题答案。接着给出两组比大小,观察上面三个式子,你有什么发现吗?在这安排一个学生活动,引导学生观察,发现并总结得出结论:把除法运算转化为乘法运算,并及时提问如何转化的,得到除以一个不为0的数 ,等于乘这个数的倒数。多媒体出示有理数除法法则:文字形式,学生读一遍。并出示数学表达式,强调0不能作除数。 (3)温故而知新:提问乘法法则并出两道乘法运算题
(4)多媒体出示例题两道,重在用法则,接下来安排9道练习,安排一个活动,学生在做中发现有理数除法运算符号法则,以填空形式出示。在安排两道例题,是学生在做中总结,什么时候用第一个法则,什么时候用符号法则较为简单,训练观察,归纳的能力.后面是6道填空、3道选择综合训练
3、课堂小结:谈谈我们的收获,从我学会了,我明白了等方面
4、作业:课本38页4、6
六、评价分析
1、合理选用教学素材,利用多媒体辅助教学,优化教学内容。
2、注意创设情境,引导学生探究,使其充分感受和体验知识的产生和发展过程。
3,注重了转化、类比等数学思想方法的渗透
4、对知识的迁移拓展,培养了学生的探索和创新能力,使每位学生得到不同程度的发展。
《有理数》说课稿12
一、教学目标:
知识目标:让学生理解并掌握有理数的乘方、幂、底数、指数的概念及意义;能够正确进行有理数的乘方运算。
能力目标:在生动的情境中让学生获得有理数乘方的初步经验;培养学生观察、分析、归纳、概括的能力;经历从乘法到乘方的推广的过程,从中感受转化的数学思想。
情感目标:让学生通过观察、推理,归纳出有理数乘方的符号法则,增进学生学好数学的自信心。经历知识的拓展过程,培养学生探究的能力和动手操作的能力,体会与他人合作交流的重要性。
1、教学重点:
有理数的乘方、幂、底数、指数的概念及其相互间的关系;有理数乘方的运算方法。
2、教学难点:
有理数的乘方符号法则的理解。
二、说教学方法
启发诱导式、实践探究式。
三、说教学设计
(一)创设问题、引入新知
a(1)边长为2的正方形的面积是多少?
(2)棱长为2的正方体的体积是多少?
(3)学生活动:
我们把一张纸对折后裁开,可以裁成几张纸?对折两次后可以裁成几张纸?对折三次呢?
猜想对折10次后可以裁成几张纸?
对折20次后的纸张的厚度比我们大唐发电厂的烟囱的高度还高,你信吗?
学完这节课后,你就知道结果了。
(让学生思考回答、教师引导、归纳同时板书问题答案)
学习新知:
(二)、自主学习新知:
1、阅读书了解什么是乘方?还有那些新的概念?
2、同学们想一想?以上乘法与前面学习过乘法有什么不同?
(让学生观察回答,教师引入乘方、幂、底数、指数的概念、归纳同时板书问题答案)
板书:求n个相同因数的积的运算叫做乘方。
乘方的结果叫做幂。
一个数可以表示成这个数本身的一次方,指数1通常省略不写。
3、提出问题:到目前为止,对有理数来说,我们学过的运算有哪些?分别是什么?运算结果叫什么?(让学生讨论交流回答,教师板书问题答案)。
板书答案:
运算:加、减、乘、除、乘方
结果:和、差、积、商、幂
4、检验学习:
在这里,我设置了三组题,第一组学生组内完成,采用组内互检方式完成。
第二三组题先由学生独立完成,在由组长检查,并让两名学生到黑板上展示交流,教师给予点评。
(三)探究乘方的符号法则
设置了四组习题探究规律:
1、完成下面的计算:
22= 32= 43 = 104=
(-3)2= (-2)4= (-3)4=
(-3)3= (-10)3= (-2)5=
02= 03 = 04= 06=
2、思考:根据上面计算的结果想一想:正数的幂的符号与指数有何关系;负数的幂的符号与指数有何关系?
师生总结:正数的任何次幂都是正数;0的任何次幂都是0;负数的奇次幂是负数,负数的偶次幂是正数。
板书结论:负数的奇次幂是负数,负数的偶次幂是正数。
正数的任何次幂都是正数,0的任何正整数次幂都是0
(四)学习使用计算器计算乘方的方法。
1、每组一个计算器,教师讲解,学生操作。
2、解决引例折叠20次后纸张的厚度。如果一张纸的厚度为0.2毫米,试用计算器求出结果。
(五)小结反思
通过这节课的学习,你有什么收获?你还有什么疑惑?
课堂检测、布置作业。
(目的:为巩固本节所学的知识,了解学生掌握知识的情况及应用知识的能力。)
《有理数》说课稿13
1. 教学目标
1.1地位、作用
在初中阶段,要培养学生的运算能力、逻辑思维能力和空间想象能力以及让学生根据一些现实模型,把实际问题转化成数学问题的数学意识,增强学生对数学的理解和解决实际问题的能力.运算能力的培养主要是在初一阶段完成. 有理数的运算是初等数学的基本运算,掌握有理数的运算,是学好后续内容的重要前提.有理数的加法作为有理数的运算的一种,它是有理数运算的重要基础之一,也是整个初中代数的一个基础,它直接关系到有理数运算、实数运算、代数式运算、解方程、研究函数等内容的学习.
1.2学情分析
在初中数学教学中,非智力因素在认知过程中起十分重要的作用,而兴趣在非智力因素中占有特殊的地位,它是学生学习自觉性和积极性的核心因素,是学习的强化剂.因此,从初一开始培养学生对数学的兴趣,是其学好数学的重要保障.围绕这一点,在教学中要让不同程度的学生都有体验成功的机会,教学中教师为导、学生为主,充分认识初一学生这个年龄段的心理特征:好奇心强;好胜心强;抽象思维能力弱,过分依赖直观;意志薄弱,缺乏毅力.
另一方面,课本知识的传授是符合学生的认知发展特点的.在前期段,学生已经储藏了两个正数的加法,较大数减较小数的减法,引入了负数,有必要再学习有理数的加法,然后过渡到有理数的其它运算,再到式的运算、方程、函数的运算;同时,负数、数轴、绝对值的学习又为这节课的学习方法奠定了基础.
1.3教学目标
根据本节所处的地位与作用,结合学生的具体学情,确定本节课的教学目标如下:
知识目标:通过将生活中的问题转化为有理数加法的全过程,使学生直观形象地理解有理数加法的意义,掌握有理数的加法法则,并能正确运用.
能力目标:通过情境的设计,培养学生的探索创新精神.在学生学习的过程中,渗透分类思想、数形结合思想与及综合、归纳、概括的能力.
情感目标:通过教师引导下的探索,让学生感受到数学学习的价值与乐趣.
1.4教材处理
根据本节教材的内容,我把有理数的加法划分为两个课时,第一课时学习有理数的加法法则并能准确进行两个数的加法运算;第二节课学习有理数的加法运算律并能准确进行多个数的加法运算.
2. 重点、难点
2.1教学重点:有理数加法法则的理解与运用(而不是简单地记忆法则).
2.2教学难点:异号两数加法的实际意义及法则的归纳.
3. 教学方法与教学手段
本课采用多媒体辅助教学,从学生熟悉的人物出发,激发学生探索欲;通过层层铺垫,引导学生利用已学数学工具探索新知;在学生探索的基础上,有意识地引导学生对多样化的结果进行分类整理;在法则的提炼过程中,培养学生类比、归纳和概括的学习能力.
在本节的设计过程中,利用了一道开放性习题引出课题,让学生在研究中学习,对学生进行能力培养,充分跨越学生的最近发展区.
4. 教学过程:
4.1创设情境,让学生的思维“动”起来
[生活情境]刘翔是世界男子青年锦标赛110米栏的冠军,是中国人的骄傲.从他的体育精神中我们应该学习他坚忍不拔的刻苦精神,激励学生爱国、立志.将跑道抽象为数轴,起跑点为原点,将生活问题数学化.
说明:这种从生活到数学的建模,从学生感兴趣的题材出发,为创设下文的探索情境作一个兴奋点的刺激,让每个学生都有信心并且能够积极尝试、探索.
4.2体验进程,让学生的思维“活”起来
“数学是问题的心脏”,是教学的出发点,由问题引入课题能使学生产生较强的未知欲.
[开放式探索] 刘翔在一条东西方向的跑道上往返跑步进行训练,他连续跑了两段路,共跑了80米.问刘翔两次以后的位置可能在哪里?
设计意图:这是一道条件不唯一,结果也不唯一的开放性题型,对学生有一定的挑战性.它的优点在于:只要理解题意,任何一个学生都能答对至少一种正确答案;同时它的答案又分多种情况,学生由于思维的不完备性,很容易丢失答案,并且这种错误在别人的提醒中能马上恍然大悟.这是一道能锻炼学生思维的灵活性、严谨性及答案适用分类讨论、培养学生概括能力的好题.在本题中,包含学生对有理数加法的意义的理解及探索有理数加法加数的几种类别(从正负性上区分),在求和的过程中,让学生有机会经历从实物模拟到表象操作再到符号操作的转化.
教学方法:用课件帮助学生思维从“实物操作”过渡到“表象操作”并优化思路;给予学生充分的思考机会;善于抓住学生思维的弱势因势利导.
预计困难:①学生直观思维理解“共跑了80米”就是在离出发点80米远的地方.这是一个距离与位移的概念混淆并且教学中不宜新增概念. ②条件中的“两段”和“80米”分别对应加法中的什么量?有的学生不理解题意,可能放弃.
处理方法:①教学中学生思维上的弱点也可能会成为他这堂课思维的亮点,让学生在练习纸上尝试“实物操作”思维方式,自己突破思维瓶颈.②在学生正确理解80米的条件使用方法后,再让学生比较80与加数的绝对值、和的绝对值的关系,在理解能力上更上一层楼 .③区别不同程度的学生,可以从“列式子”,“列等式”,问“为什么”逐步递进,让尽可能多的学生尝试最近发展区.
教学注意点:要明确本堂课的教学重点和目标,对开放题的探索浅尝止,不深究问题的所有可能性,剪辑学生答案尽快引出课题.
4.3探究规律,让学生的思维“跳”起来
用分类讨论的方法进行有理数的加法规律的归纳是本节课的重点和难点,教师要依据学生现有得出的学习发现组织语言,减少指示或命令性语言,争取把课堂静止或学生不理解时间减至最少.
在答案的汇总过程中,要肯定学生的探索,爱护学生的学习兴趣和探索欲.让学生作课堂的主人,陈述自己的结果.对学生的不完整或不准确回答,教师适当延迟评价;要鼓励学生创造性思维,教师要及时抓住学生智慧的火花的闪现,这一瞬间的心理激励,是培养学生创造力、充分挖掘潜能的有效途径.
预先设想学生思路,可能从以下方面分类归纳,探索规律:
① 从加数的不同符号情况(可遇见情况:正数+正数;负数+负数;正数+负数;数+0)
② 从加数的不同数值情况(加数为整数;加数为小数)
③ 从有理数加法法则的分类(同号两数相加;异号两数相加;同0相加)
④ 从向量的迭加性方面(加数的绝对值相加;加数的绝对值相减)
⑤ 从和的符号确定方面(同号两数相加符号的确定;异号两数相加符号的确定)
教学中要避免课堂热热闹闹,却陷入数学教学的浅薄与贫乏.
4.4注重反思,让学生的思维“深”下去
[反思应用1] 例1:计算 (-3)+(-9) ; (-4.7)+3.9;
[反思应用2] 例2:足球循环赛中,红队胜黄队4:1,黄队胜蓝队1:0,蓝队胜红队1:0,计算各队的净胜球数?
设计意图:当数学知识转化为表象知识时,一定要让学生从形式化过渡到符号化与数字化.这两例都是课本例题,教学过程中现在要减少学生的表象思维,让他们尽可能习惯用法则做题.培养学生的“数学化”意识.
4.5拓展应用相结合,让学生的思维得以升华
[练习1]计算 15+(-22); (-13)+(-8);
;
[练习2]用算式表示下列结果:
⑴ 温度由-4C上升7 C ⑵收入7元,又支出5元
[练习3]火眼金睛找错误:
+
=-1.7
②文具店、书店和玩具店依次座落在一条东西走向的大街上,文具店在书店西边20米处,玩具店位于书店东边100米处,小明从书店沿街向东走了40米又接着向西走了60米,此时小明的位置在( )
A.文具店 B.玩具店 C. 文具店西边40米处 D. 玩具店西边60米处
C组: ①找规律:从表1中找规律,并按规律在表2的空格里填上合适的数
② 为了体现社会对教师的尊重,教师节这一天上午,出租车司机小王在东西走向的马路上免费接送老师.如果规定向东为正,向西为负,出租车的行程如下(单位:千米):+15,-4,+13,-10,-12,+3,-13,-17
⑴如果最后一名老师送到目的地时,小王距出车地点的距离是多少?
⑵若汽车耗油量为0.4升/千米,这天下午汽车共耗油多少升?
设计意图:分层设计练习,满足不同基础水平和不同思维层次的同学的需要.A类题训练学生的定向思维,培养基本技能;B类题主要训练学生的发散思维,培养学生的灵活性;C类题具有一定的挑战性,培养学生思维的深刻性,同时在挑战的过程中,培养学生的意志力.
[板书设计]
有理数的加法(一)
2 + 3 = 5
(-2)+(-3)=-5
2 + (-3)=-1
(-2) + 3 =1
(-2) + 2 = 0
0 + 3 = 3
0 + (-3)= -3
同号两数相加
绝对值不相等的异号两数
异号两数相加
绝对值相等的异号两数
一个数同0相加
(法则归纳)
先定符号,再算绝对值
教学设计的说明
布鲁纳的认知理论认为:人的认知过程要经历一个从“实物操作”到“表象操作”再到“符号操作”的过程,这时知识才真正内化到人的认知结构.我觉得,这种认知规律是我在这堂课的教学的设计过程中应该遵循并且努力实现的.
《有理数的加法》是一堂纯粹的运算技能课,如何在这种我们认为理所当然而学生茫然无知的课上让学生感觉自己是知识的主人,有主动探索发现的权利是我备课时反复琢磨的一个主题,怎么才能把一堂传统的“教、记、练”的课有效地发挥教师的引导作用从而使课堂富有生命力真正培养学生的各方面能力更是我所追求的.我想,数学就应该是这样一种在具体、半具体、半抽象、抽象中间的铺排,是穿梭于实物与算式之间的一种形式化过渡.
弗兰德对师生语言互动进行分类时认为,课堂上教师的讲与学生的讲有三种交流方式:回应、中立、自发,在这堂课上,我希望学生能自发地运用语言表述他们的需要与探索,我充分设想学生的可能困难同时又充分相信学生、充分调动学生的积极性与参与意识,让他们的思维动起来、跳起来再沉下去,让学生思维从形式化过渡到符号化、数字化,让学生真正成为课堂的主人.
《有理数》说课稿14
教学内容分析:
《有理数的乘方》是人教版七年级上第一章第五节内容,是有理数的一种基本运算,从教材编排结构上,此节内容共3课时,本课为第一课时,是在学生学习了有理数的加、减、乘、除运算后学习的,是有理数乘法的推广和延续,也是后续学习有理数的混合运算、科学计数法和开方及指数幂运算的基础,起到承前启后的作用。通过本节课学习可以让学生发现规律,培养学生的归纳能力,感受化归及分类的数学思想。
教学目标分析:
(1)、知道乘方、底数、指数和幂的概念,会进行有理数的乘方运算;
(2)经历有理数乘方概念的推导,培养学生观察、比较、分析、概括的能力,进一步感受化归、分类的数学思想方法
(3)学生尝试利用知识的迁移获得新知,通过发现问题、研究问题,探索规律,增强数学应用意识。
教学重难点分析:
1、学情分析:从知识基础看,学生在小学已学习了求正方形的面积及正方体的体积,具备求一个正数的平方和立方的知识水平,且刚学完有理数的乘法,能帮助学生很好的理解乘方的定义及表示,实现知识的正迁移。但学生对于有理数乘方的符号法则的掌握上会有难度,对于这类计算容易混淆,是本节课的难点。
2、教学重、难点
教学重点:理解乘方定义,会进行有理数的乘方运算;
教学难点:有理数乘方运算的符号法则的形成与运用
教法学法分析:
教法:启发式教学,多媒体辅助教学;
学法:观察、比较、归纳,合作探究。
教学过程设计:
1、创设情境提出问题
(1)、边长为3的正方形的面积是___3×3可以记作___,读作_________.
(2)、棱长为3的正方体的体积是___3×3×3可以记作___,读作_________.
通过创设问题情境,唤起旧知,为学习新知做好铺垫
2、自主探索形成新知
观察下列各式有何特征?
(1)2×2×2×2=
(2)(-3)×(-3)×(-3)=
引导学生通过类比、探究、归纳乘方定义及表示,实现知识的迁移,培养学生归纳、概括的能力。明确乘方是乘法的特殊形式,体现化归的数学思想。
3、应用新知巩固概念
练习1、2巩固乘方定义及乘方表示的注意点,培养学生良好的学习习惯。例题进一步强化乘方运算
4、探索研究发现规律
通过题组训练,探索规律,合作交流,获得乘方运算的符号法则,充分发挥学生的学习主体作用,体现分类的数学思想。
5、应用新知巩固训练
进一步巩固学生对符号法则的运用及利用乘方的知识解决问题的能力
6、拓展思维知识延伸
利用故事提高学生学习数学兴趣,培养学生应用数学解决解决问题能力,激发学生的探索的热情。
7、课堂小结归纳反思
锻炼学生及时总结的良好习惯和归纳能力
教学评价分析:
对学生探究过程的参与及与同学合作交流进行评价,以增强学生学习主动性;
(1)关注学生的智力参与度
(2)学生的课堂参与度
2、对不同层次的学生采取分层练习的评价方式,以满足不同层次的学生知识技能的发展。
《有理数》说课稿15
一、教材分析
本节是在学习了有理数加法和减法的基础上,进一步将有理数加减混合运算统一成加法运算,并通过省略加号、括号,得出省略括号的代数和形式,对于有理数加减混合运算,首先要将混合运算的式子写成省略括号的代数和的形式,然后按加法法则和运算律进行简便运算。本节内容把有理数的加减混合运算融入实际问题中,既提高了学生学习数学的积极性,又突出了《标准》对本节内容的特别要求。
二、学情分析
学生是在学习了有理数的乘法第一课时的基础上来学习这一节内容的。学生在本节内容的学习中可能存在以下方面的困难:
(1)学生有理数乘法的法则、运算律记忆不牢固;
(2)在实际做题中不能灵活运用乘法运算律;
(3)在运用乘法运算律的过程中不能准确确定每一步运算符号,尤其是乘法的分配律。
三、设计思路
本节课我采用“引导—合作—探究”的教学模式,从实际问题出发,通过创设问题情境,提出探究任务,让学生自主探究解决问题,并在解决问题的过程中发现新问题,并能提出创造性的想法。让学生体验探究的全过程,充分体现学生的主体地位,激发学生学习兴趣,培养学生创新精神和合作能力。
四、教学目标
按照课程标准,本节的教学目标如下:
1、知识与技能
熟练有理数的乘法运算并能用乘法运算律简化运算。
2、过程与方法
让学生通过观察、思考、探究、讨论,主动地进行学习。
3、情感态度与价值观
培养学生语言表达能力以及与他人沟通、交往能力,使其逐渐热爱数学这门课程。
五、教学重点和难点
教学重点:
运用运算律,使运算简化
教学难点:
正确运用运算律,使运算简化
六、教学方法
教法:主要采用实验探究法、谈话法、讨论法、多媒体辅助教学法。让学生通过自己动脑思考,同学之间相互讨论,来学习有理数的加减混合运算,培养学生的分析、综合能力以及探索能力和合作精神,有效地突出重点,突破难点。让学生最大限度地参与到学习的全过程。
学法:
小组合作探究法:
以小组讨论为模式,积极参与合作探究,在小组合作探究中认真思考,操作,讨论,学会合作交流,培养借助团队力量解决自己无法完成问题的团队合作意识。
七、教具及电教手段
电子白板、多媒体课件
八、教学过程
一、做练习复习乘法法则导入
在做练习时我们看到如果像小学一样能利用乘法的交换律和结合
计算:
(1)5×(—6);(4)(—6)×5;
(2)[3×(—4)]×(—5);(3)3×[(—4)×(—5)];
(4)5×[3+(—7)];(5)5×3+5×(—7).
教师指出,由上面计算结果,可以说明有理数乘法也同样有交换律,结合律和分配律,并让学生分别用文字叙述和含字母的代数式表达三种运算律.
二、探究学习乘法运算律:
(1)乘法交换律
文字叙述:两个数相乘,交换因数的位置,积不变。
代数式表达:ab=ba。
(2)乘法结合律
文字叙述:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变。
代数式表达:(ab)c=a(bc)。
(3)乘法分配律
文字叙述:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。
代数式表达:a(b+c)=ab+ac。
提问:这里为什么只说“和”呢?3×(5—7)能不能利用分配律?
答:这里的“和”不再是小学中说的“和”的概念,而是指“代数和”,3 ×(5—7)可以看成3乘以5与—7的和,当然可利用分配律。
提问:如何表达三个以上有理数相乘或一个数乘以几个有理数的和时的运算律?
答:乘法交换律:abc=cab=bca,或者说任意交换因数的位置,积不变;
乘法结合律:a(bc)d=a(bcd)=……,或者说任意先乘其中几个因数,积不变;
分配律:a(b+c+d+…+m)=ab+ac+ad+…+am,再把所得的积相加。
继而教师作如下小结:
(1)小学学习的乘法运算律都适用于有理数乘法。
(2)我们研究数,总是由数的意义、数的认识(读、写、大小比较等)到数的运算和数的运算律这样一个顺序进行,小学学习的正数和0是这样,现在学习有理数也是这样,将来进一步学习范围更大的数还是这样。掌握了学习的方法,就掌握了自学的钥匙,希望予以注意。
三、课堂练习
计算(能简便的尽量简便):
(5)(—23)×(—48)×216×0×(—2);
(6)(—9)×(—48)+(—9)×48;
(7)24×(—17)+24×(—9).
四、小结
教师指导学生看书,精读多个有理数乘法的法则及乘法运算律,并强调运算过程中应该注意的问题.
五、练习设计
1.计算:
(7)(—7。33)×42。07+(—2。07)(—7。33);
(8)(—53。02)(—69。3)+(—130。7)(—5。02);
六、布置作业:
《伴你学》有理数的乘法第二课时
九、板书设计:
(一)乘法交换律:a×b=b×a
乘法结合律:[a×b]×c与a×[b×c]
乘法分配律:(a+b)×c=a×c+b×c
(二)典例示范:
十、教学反思:
在以上设计中,我力求体现“以学生发展为本”的教学理念,突出数学学科学以致用的特征,积极倡导“自主探究”的学习方式,让学生在开放而富有创新活力的氛围中学习,从而落实学生的主体地位,促进学生主动自主学习。
本节课教学的基本目的是让学生掌握有理数乘法的符号法则和运算律.为完成这一教学目标,可以采用直接传授的方法,即教师清楚明白地把乘法的符号法则和乘法的运算律告诉学生,然后通过做习题来加以巩固。这种教学方法具有直截了当的特点,但不利于开启学生思维,更不易使学生在接受知识的同时,提高观察、归纳和概括的能力.因此,我们采取了上述作法。
为了充分发挥每个学生思维的积极性,上述设计强调学生与教师一起共同参与教学活动.只要我们坚持把数学活动过程体现在教学中,又尽力发挥学生的思维积极性,那么学生所学到的就不仅是一些数学知识,而且会学到分析问题和解决问题的一般方法。
第三篇:《有理数》说课稿
《有理数》说课稿
《有理数》说课稿1
教学内容分析:
《有理数的乘方》是人教版七年级上第一章第五节内容,是有理数的一种基本运算,从教材编排结构上,此节内容共3课时,本课为第一课时,是在学生学习了有理数的加、减、乘、除运算后学习的,是有理数乘法的推广和延续,也是后续学习有理数的混合运算、科学计数法和开方及指数幂运算的基础,起到承前启后的作用。通过本节课学习可以让学生发现规律,培养学生的归纳能力,感受化归及分类的数学思想。
教学目标分析:
(1)、知道乘方、底数、指数和幂的概念,会进行有理数的乘方运算;
(2)经历有理数乘方概念的推导,培养学生观察、比较、分析、概括的能力,进一步感受化归、分类的数学思想方法
(3)学生尝试利用知识的迁移获得新知,通过发现问题、研究问题,探索规律,增强数学应用意识。
教学重难点分析:
1、学情分析:从知识基础看,学生在小学已学习了求正方形的面积及正方体的体积,具备求一个正数的平方和立方的知识水平,且刚学完有理数的乘法,能帮助学生很好的理解乘方的定义及表示,实现知识的正迁移。但学生对于有理数乘方的符号法则的掌握上会有难度,对于这类计算容易混淆,是本节课的难点。
2、教学重、难点
教学重点:理解乘方定义,会进行有理数的乘方运算;
教学难点:有理数乘方运算的符号法则的形成与运用
教法学法分析:
教法:启发式教学,多媒体辅助教学;
学法:观察、比较、归纳,合作探究。
教学过程设计:
1、创设情境提出问题
(1)、边长为3的正方形的面积是___3×3可以记作___,读作_________.
(2)、棱长为3的正方体的体积是___3×3×3可以记作___,读作_________.
通过创设问题情境,唤起旧知,为学习新知做好铺垫
2、自主探索形成新知
观察下列各式有何特征?
(1)2×2×2×2=
(2)(-3)×(-3)×(-3)=
引导学生通过类比、探究、归纳乘方定义及表示,实现知识的迁移,培养学生归纳、概括的能力。明确乘方是乘法的特殊形式,体现化归的数学思想。
3、应用新知巩固概念
练习1、2巩固乘方定义及乘方表示的注意点,培养学生良好的学习习惯。例题进一步强化乘方运算
4、探索研究发现规律
通过题组训练,探索规律,合作交流,获得乘方运算的符号法则,充分发挥学生的学习主体作用,体现分类的数学思想。
5、应用新知巩固训练
进一步巩固学生对符号法则的运用及利用乘方的知识解决问题的能力
6、拓展思维知识延伸
利用故事提高学生学习数学兴趣,培养学生应用数学解决解决问题能力,激发学生的探索的热情。
7、课堂小结归纳反思
锻炼学生及时总结的良好习惯和归纳能力
教学评价分析:
对学生探究过程的参与及与同学合作交流进行评价,以增强学生学习主动性;
(1)关注学生的智力参与度
(2)学生的课堂参与度
2、对不同层次的学生采取分层练习的评价方式,以满足不同层次的学生知识技能的发展。
《有理数》说课稿2
一、教材分析
本节是在学习了有理数加法和减法的基础上,进一步将有理数加减混合运算统一成加法运算,并通过省略加号、括号,得出省略括号的代数和形式,对于有理数加减混合运算,首先要将混合运算的式子写成省略括号的代数和的形式,然后按加法法则和运算律进行简便运算。本节内容把有理数的加减混合运算融入实际问题中,既提高了学生学习数学的积极性,又突出了《标准》对本节内容的特别要求。
二、学情分析
学生是在学习了有理数的乘法第一课时的基础上来学习这一节内容的。学生在本节内容的学习中可能存在以下方面的困难:
(1)学生有理数乘法的法则、运算律记忆不牢固;
(2)在实际做题中不能灵活运用乘法运算律;
(3)在运用乘法运算律的过程中不能准确确定每一步运算符号,尤其是乘法的分配律。
三、设计思路
本节课我采用“引导—合作—探究”的教学模式,从实际问题出发,通过创设问题情境,提出探究任务,让学生自主探究解决问题,并在解决问题的过程中发现新问题,并能提出创造性的想法。让学生体验探究的全过程,充分体现学生的主体地位,激发学生学习兴趣,培养学生创新精神和合作能力。
四、教学目标
按照课程标准,本节的教学目标如下:
1、知识与技能
熟练有理数的乘法运算并能用乘法运算律简化运算。
2、过程与方法
让学生通过观察、思考、探究、讨论,主动地进行学习。
3、情感态度与价值观
培养学生语言表达能力以及与他人沟通、交往能力,使其逐渐热爱数学这门课程。
五、教学重点和难点
教学重点:
运用运算律,使运算简化
教学难点:
正确运用运算律,使运算简化
六、教学方法
教法:主要采用实验探究法、谈话法、讨论法、多媒体辅助教学法。让学生通过自己动脑思考,同学之间相互讨论,来学习有理数的加减混合运算,培养学生的分析、综合能力以及探索能力和合作精神,有效地突出重点,突破难点。让学生最大限度地参与到学习的全过程。
学法:
小组合作探究法:
以小组讨论为模式,积极参与合作探究,在小组合作探究中认真思考,操作,讨论,学会合作交流,培养借助团队力量解决自己无法完成问题的团队合作意识。
七、教具及电教手段
电子白板、多媒体课件
八、教学过程
一、做练习复习乘法法则导入
在做练习时我们看到如果像小学一样能利用乘法的交换律和结合
计算:
(1)5×(—6);(4)(—6)×5;
(2)[3×(—4)]×(—5);(3)3×[(—4)×(—5)];
(4)5×[3+(—7)];(5)5×3+5×(—7).
教师指出,由上面计算结果,可以说明有理数乘法也同样有交换律,结合律和分配律,并让学生分别用文字叙述和含字母的代数式表达三种运算律.
二、探究学习乘法运算律:
(1)乘法交换律
文字叙述:两个数相乘,交换因数的位置,积不变。
代数式表达:ab=ba。
(2)乘法结合律
文字叙述:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变。
代数式表达:(ab)c=a(bc)。
(3)乘法分配律
文字叙述:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。
代数式表达:a(b+c)=ab+ac。
提问:这里为什么只说“和”呢?3×(5—7)能不能利用分配律?
答:这里的“和”不再是小学中说的“和”的概念,而是指“代数和”,3 ×(5—7)可以看成3乘以5与—7的和,当然可利用分配律。
提问:如何表达三个以上有理数相乘或一个数乘以几个有理数的和时的运算律?
答:乘法交换律:abc=cab=bca,或者说任意交换因数的位置,积不变;
乘法结合律:a(bc)d=a(bcd)=……,或者说任意先乘其中几个因数,积不变;
分配律:a(b+c+d+…+m)=ab+ac+ad+…+am,再把所得的积相加。
继而教师作如下小结:
(1)小学学习的乘法运算律都适用于有理数乘法。
(2)我们研究数,总是由数的意义、数的认识(读、写、大小比较等)到数的运算和数的运算律这样一个顺序进行,小学学习的正数和0是这样,现在学习有理数也是这样,将来进一步学习范围更大的数还是这样。掌握了学习的方法,就掌握了自学的钥匙,希望予以注意。
三、课堂练习
计算(能简便的尽量简便):
(5)(—23)×(—48)×216×0×(—2);
(6)(—9)×(—48)+(—9)×48;
(7)24×(—17)+24×(—9).
四、小结
教师指导学生看书,精读多个有理数乘法的法则及乘法运算律,并强调运算过程中应该注意的问题.
五、练习设计
1.计算:
(7)(—7。33)×42。07+(—2。07)(—7。33);
(8)(—53。02)(—69。3)+(—130。7)(—5。02);
六、布置作业:
《伴你学》有理数的乘法第二课时
九、板书设计:
(一)乘法交换律:a×b=b×a
乘法结合律:[a×b]×c与a×[b×c]
乘法分配律:(a+b)×c=a×c+b×c
(二)典例示范:
十、教学反思:
在以上设计中,我力求体现“以学生发展为本”的教学理念,突出数学学科学以致用的特征,积极倡导“自主探究”的学习方式,让学生在开放而富有创新活力的氛围中学习,从而落实学生的主体地位,促进学生主动自主学习。
本节课教学的基本目的是让学生掌握有理数乘法的符号法则和运算律.为完成这一教学目标,可以采用直接传授的方法,即教师清楚明白地把乘法的符号法则和乘法的运算律告诉学生,然后通过做习题来加以巩固。这种教学方法具有直截了当的特点,但不利于开启学生思维,更不易使学生在接受知识的同时,提高观察、归纳和概括的能力.因此,我们采取了上述作法。
为了充分发挥每个学生思维的积极性,上述设计强调学生与教师一起共同参与教学活动.只要我们坚持把数学活动过程体现在教学中,又尽力发挥学生的思维积极性,那么学生所学到的就不仅是一些数学知识,而且会学到分析问题和解决问题的一般方法。
《有理数》说课稿3
一、教材分析:
“数的运算”是“数与代数”学习领域的重要内容,减法是其中的一种基本运算.本课的学习远接小学阶段关于整数、分数(包括小数)的减法运算,近承第四节有理数的加法运算.通过对有理数的减法运算的学习,学生将对减法运算有进一步的认识和理解,为后继诸如实数、复数的减法运算的学习奠定了坚实的基础.
鉴于以上对教学内容在教材体系中的位置及地位的认识和理解,确定本节课的教学目标如下:
1 、知识目标:
经历探索有理数的减法法则的过程,理解有理数的减法法则,并能熟练运用法则进行有理数的减法运算。
2 、能力目标:
经历由特例归纳出一般规律的过程,培养学生的抽象概括能力及表达能力;通过减法到加法的转化,让学生初步体会转化、化归的数学思想。
3 、情感目标:
在归纳有理数减法法则的过程中,通过讨论、交流等方式进行同伴间的合作学习。
为了实现以上教学目标,确定本节课的教学重点是:有理数的减法法则的理解和运用.教学难点是:在实际情境中体会减法运算的意义并利用有理数的减法法则解决实际问题.
二、学情分析:
我们面对的教学对象是已具备一定知识储备和一定认知能力的个性鲜明的学生,而不是一张“白纸”,因此关注学生的情况对教学是十分有必要的。
在生活中学生经常会进行同类量之间的比较,因此学生对减法运算并不陌生,但这种认识常常流于经验的层面;在小学阶段学生进一步学习了作为“数的运算”的减法运算,但这种减法运算的学习很大程度上的是一种技能性的强化训练,学生对此缺乏理性的认识,很多时候减法仅作为加法的逆运算而存在.因此在教学中一方面要利用这些既有的知识储备作为知识生长的“最近发展区”来促进新课的学习,另一方面要通过具体情境中减法运算的学习,让学生体会减法的意义。
此外,值得注意的是本年龄段的学生学习积极性高,探索欲望强烈,但数学活动的经验较少,探索效率较低,合作交流能力有待加强.因此在教学过程中要做好调控。
三、教法选择及学法指导:
《课程标准》中明确指出:学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者.基于以上理念,结合本节课内容及学生情况,教学设计中采用“引导——发现法”组织教学.其基本程序设计为:创设情境——提出猜想——探索验证——总结归纳——反馈运用。
上述教学程序的实施很大程度上有赖于学生的学习,因此对学生学习方式的指导是十分重要的.本节课应鼓励和引导学生采用自主探索与合作交流相结合的方式进行学习,让学生亲历从列举特例到归纳(不完全归纳)出一般的减法法则的全过程,体验知识产生和发展的全过程。
四、过程分析:
教学环节教学活动设计设计说明
一、创设情境,自然引入
1 、首先与学生互动谈论合肥本地今日的气温,了解合肥今天的最高气温和最低气温。提问:合肥今天的温差是多少度?你是怎样计算的?
2 、自然过渡到乌鲁木齐的温差的计算问题,在学生列出算式4 –(– 3)后引入课题:有理数的减法
(板书课题)通过温度的比较让学生明白减法的实际意义在于同类量之间的比较,为后来运用减法解决实际问题打下基础.
思考:从学生身边的实际引入新课,让学生感受到数学就在自己身边,增强学数学的乐趣.同时这也符合七年级学生的认知特征,使学生乐于进一步探索.
二、探索规律,归纳结论
在学生提出可以用4 –(– 3)计算乌鲁木齐的温差后,教师鼓励学生充分探索计算4 –(– 3)的方法,得出结果为7。
在学生得出4 –(– 3)=7后,教师引导学生比较4 –(– 3)=7与4+3=7这两个算式及其结果.
在学生对有理数的减法计算提出初步的猜想“减去一个数等于加上这个数的相反数”后,教师设问:
只有4 –(– 3)=4+3=7这一个例子,你能不能断定这个猜想成立?
引导学生通过列举具有不同代表性的特例,如:正数减去正数、正数减去零、正数减去负数、负数减去正数、负数减去零、负数减去负数、零减去正数、零减去零、零减去负数等.
最后请学生根据上面的数学活动经验自主总结归纳有理数的减法法则.(教师板书这一法则)学生得出结果的方法可能不一样,教学中只要是合理的都应鼓励。
如采取逆运算的方法,或利用温度计直接数读数的方法等。
对4 –(– 3)=7与4+3=7的观察、比较,是进一步探索有理数减法法则的基础.可借助多媒体课件演示算式的规律,帮助学生探索其中的内在关系。
思考:从提出猜想到得出正确得结论之间有一个探索验证的过程,这个过程正是新课程改革所提倡的“做数学”的过程,教学中要提供足够的时间让学生探索、交流。
学生通过相互补充,不断列举不同代表性的特例,在合作交流中彻底理解有理数相减时总成立的一般法则.而这个“举例”过程,正是一个“数学化”的过程,正是一种对数学素养的培养。
学生的归纳可能不规范,教师可请学生互相交流、补充使之规范,从而培养学生的抽象概括能力及口头表达能力。
三、例题讲解,即时反馈
1 、师生共同完成P53例1,其中第(1)小题教师讲解,其余各题请学生完成.
在完成例1后,教学中采用分组竞赛的方法及时处理P54 “随堂练习”.
2 、师生共同完成P53例2 、P54例3
教师要通过引导学生分析实际情境,让学生在实际情境中进一步体会减法的意义,并熟练利用减法法则进行减法运算。
教师讲解第(1)小题时要点明算理,规范解答。
互动交流式的练习方式让学生的学习更积极主动.学生在活动中能体会参与数学活动的乐趣。
例2 、例3是实际问题,它们的解答有利于培养学生“用数学”的意识。
四、拓展应用
师生一起分析P55的习题第5题.在弄清题意后,请学生填写方阵图.
解决问题的核心是找到“每个数都加上的同一个数”是什么,这就是有理数的减法在这个实际情境下的应用.
另一方面,本题也提供了一个三阶幻方的一般填法,拓展了知识面,并为“试一试”的思考。
五、课堂总结
多媒体出示总结性问题:
1 、这一节课我们一起学习了哪些知识?
2 、对这些内容你有什么体会,请与你的同伴交流。
鼓励学生积极发言,增进师生、生生之间的交流、互动。
六、布置作业
1 、课堂作业:
P54—55习题2.6第1 、2 、3 、4题
2 、课外思考:
P55习题2.6试一试利用课堂作业及时反馈本课重、难点。
利用课外思考给部分学生提供进一步发展的机会。
《有理数》说课稿4
我说课的内容是义务教育课程标准实验教科书(人教版)《数学》七年级上册第一章第四节《有理数的乘法》的第一课时,我将从教材分析、教学目标、教学方法、学法指导、教学程序设计等五个部分进行阐述。
一、教材分析
1、教材的地位和作用
有理数的乘法是在学生学完有理数的加法后学习的,它与有理数的加法运算一样,也是建立在小学算术的基础上。因此,有理数的乘法运算,在确定“积”的符号后,实质上是小学算术数的乘法运算,思维过程就是如何把中学有理数的乘法运算化归为小学算术数的乘法运算。由于有理数的乘法是有理数最基本的运算之一,因而它是进一步学习有理数运算的基础,也是今后学习实数运算、代数式的运算、解方程以及函数知识的基础。学好这部分内容,对增强学习代数的信心具有十分重要的意义。
2、教材的重点和难点
本节课的重点是有理数的乘法法则。这是因为:
(1)要熟练地进行有理数的乘法运算,就得深刻理解运算法则,对法则理解得越深,运算才能掌握得越好。
(2)学好有理数的乘法法则,对将要学习的有理数的除法以及其他的运算都是至关重要的。
本节课的难点是有理数乘法中的符号法则。由于初一年级的学生刚接触负数,对负数的意义理解不深,因此,与小学算术数的乘法比较,学生对含有负数特别是两个负数相乘的意义的理解,思维角度变化较大,思维强度也增大。
二、教学目标
1、知识与技能:使学生理解有理数乘法的意义,掌握有理数乘法法则,并能准确地进行有理数的乘法运算。
2、过程与方法:通过教学,渗透化归、分类等数学思想方法,初步培养学生的化归意识和观察、比较、概括等思维能力。
3、情感与态度:激发学生学习数学的兴趣,培养学生勇于探索新知的精神。
三、教学方法
本节课的教学是以启发式教学为主,通过教师的引导,启发调动学生学习积极性,让学生在课堂上多活动,多观察、主动参与到整个教学的全过程,通过自己的努力,发现规律,总结出法则。它符合教学论中的自觉性和积极性。并有利于培养学生勇于探索新知的创新精神。
四、学法指导
通过本节课的教学,教师引导学生学会观察、比较、归纳等学习方法。让每个学生都动口、动脑、动手,积极思考,参与讨论,自己归纳出运算法则,学会自主探究、合作的学习方式,培养学生良好的学习品质。
五、教学程序设计
本节课我的设计理念是:遵循“教学、学习、研究”同步协调的原则,依据教材,恰当地创设情境,激发学生对数学的好奇心和求知欲,通过独立思考,不断发现和提出问题,分析并创造性地解决问题,教师为学生构建开放的学习环境引导学生体验探索、研究的过程。让学生在探究合作交流的过程中,展示思维过程。
以下我将对每一教学环节分别教什么怎么教,为什么这么教,教学目标的控制等方面加以说明:
(一)创设情境、引入新课
教师利用课件出示问题,学生根据教师交给的问题,独立思考并解决问题,为今后讨论做准备。提供这一组问题,目的在于前两个学段学过求几个相同加数的和用乘法,沿用这个规定,就可以得到(—2)+(—2)=(—2)×2;(—2)+(—2)+(—2)=(—2)×3,……于是就得到我们前两个学段没有学过的负数与正数相乘的乘法,从而引入新课,使学生思路清晰。
(二)观察——猜想
这一教学环节首先让学生观察算式感知两个有理数相乘的三种情况,再以如下问题使学生初步感悟两个有理数相乘的符号法则,最后猜想出有理数的陈法则。
意图是以学生已有知识结构为基础,由一系列算式,猜想出有理数乘法法则,培养学生观察、猜想、归纳、概括的能力。
(三)探究——验证
教师启发学生“为区分方向,我们规定:向左为负,向右为正,为区分时间,我们规定:现在前为负,现在后为正”。学生根据教师给出的蜗牛爬行的例子结合问题(1)——(4)先独立思考,然后合作探究,互相启发,互相学习,激发灵感,并得出算式。意图是利用数轴通过蜗牛运动的例子验证有理数乘法法则学生容易接受,并有意识地引导学生主动去探索,从而充分验证了学生的猜想。
(四)比较——提炼
在学生探究的基础上让同学们完成下面的填空题,从而使学生更进一步明确了两个有理数相乘的符号规律,通过观察比较使学生用自己的语言归纳提炼出法则,有利于培养学生观察、比较、分析和概括的思维能力。
(五)分析法则、掌握实质
教师设计以下例子目的使学生归纳出有理数乘法法则步骤,初步培养学生的化归意识。设计抢答题是想让学生熟悉法则,掌握法则实质。
(六)应用——巩固:
例1和例2的教学通过学生板演来完成,再由师生共同评价与完善。例1是运用乘法法则进行运算的基本题,而且一举两得,不仅让学生练习了有理数的乘法,而且得出了有理数范围内倒数的定义;例2是说明有理数乘法的意义,即在什么情况下用乘法解决问题。通过课堂练习不仅巩固了课堂所学的'知识由可以使学生体会学习数学成功的喜悦。
(七)小结——反思这一环节我设计了三个问题:
1、本节课你学到了什么?
2、本节课你有何收获?
3、你还有什么疑问?
目的是使学生学会反思回顾总结梳理课堂所学知识完善认知结构,发挥学生的主体作用,提高他们的表达能力。
(八)作业——延展
为了满足不同的学生需要本节课后作业设置了必做题和选做题,通过作业不仅巩固有理数乘法的运算而且也为下节课将要学习的几个不等于零的数乘法和有理数的乘方做铺垫设下伏笔。进一步体现《数学课程标准》所要求的人人都能获得必需的数学、不同的人在数学上得到不同的发展。
《有理数》说课稿5
各位专家,各位同仁:;大家好!;我说课的课题是北师大版《数学》七年级上册教材中的;
一。教材分析;
(一)教材的地位与作用;本课时既是有理数加减混合运算的自然延续,又是后面;
(二)教学目标分析;
1、知识与技能目标:借助实际情境,使学生理解有理;
2、方法与过程目标:让学生经历有理数乘法法则的探;
3、情感﹑态度与价值观目标:通过学习
2.8. 有理数的乘法(第一课时)
各位专家,各位同仁 :
大家好!
我说课的课题是北师大版《数学》七年级上册教材中的第二章第8节“有理数的乘法”.第一课时。我将从以下四个方面谈一谈这节课的教学设计。
一。教材分析
(一)教材的地位与作用
本课时既是有理数加减混合运算的自然延续,又是后面学习有理数除法、乘方运算的基础,还是今后学习代数式运算﹑方程﹑函数等内容的必要知识储备。因此本节课的学习有着承上启下﹑铺路架桥的作用。学好这部分内容,对于学生理解“类比和化归”这些重要数学思想,应用“不完全归纳法”,发展学生数学探究能力,增强学生学习数学的信心都具有十分现实的意义。
(二)教学目标分析
1、知识与技能目标:借助实际情境,使学生理解有理数乘法的意义,掌握有理数的乘法法则,并运用法则解决实际问题。
2、方法与过程目标:让学生经历有理数乘法法则的探索过程,发展学生观察、猜想、归纳、验证、运算的能力,让学生领会类比、数学建模,以及从特殊到一般的数学思想方法。
3、情感﹑态度与价值观目标:通过学习,激发学生的学习动机和好奇心理,锻炼学生的思维意志品质,张扬学生个性,培养学生科学严谨的学习态度,使学生树立正确的价值观、人生观。
(三)教学重、难点及成因分析
教学重点定为:掌握有理数的乘法法则,会进行有理数的乘法运算。
教学难点定为:有理数的乘法法则的探索和对法则的理解。
为了突破教学重难点,教学的关键是运用猜想验证的方式,利用水位变化的直观性,帮助学生掌握有理数乘法运算法则。
二、教法、学法分析
(一)、学情分析
1、学生在小学已经明确正数乘法的意义和正数之间、正数与零之间的乘法运算法则。
2、通过对有理数加法运算的学习,学生对负数参与运算有了一定的认识,已经明确计算时要先确定和的符号,再确定和的绝对值的基本方法。
(二)、教法分析
《课程标准》中明确指出:学生是学习的主人,教师是学习的组织者、引导者与合作者。基于以上理念,结合本节课内容及学生的实际情况,教学中我主要采用“引导——探究法”组织教学。
(三)、学法指导
本节课我鼓励学生采用自主探索与合作交流相结合的方式进行学习,让学生亲身体验知识的发生、发展、发现的全过程,增强学生的参与意识,促进学生对知识的理解和掌握,真正提升学生的数学素养。
三、教学过程分析
我根据数学课程“倡导积极主动,勇于探索的学习方式”的基本理念,将本节课的基调定为对于创设情境,引入课题,我考虑了两种方式:
1.直接提出问题:你能给出下列各式的结果吗?
(1)2×3=____;(2)(-2)×(-3)=____;(3)2×(-3)=____;(4)0×(-4)=____. 这种引入由学生所熟悉的正数乘法运算引入未知的负数参与的乘法运算,能做好中学与小学知识的衔接,激起学生认知上的冲突。但它较难让学生快速进入学习情境。
2、通过演示实际生活中甲,乙两水库的水位上升或下降的情景,得到乘法算式,以次引入课题。这种引入符合七年级学生形象思维能力强的认知特点,易激发学生的学习兴趣,在复习乘法意义的同时,也为后面利用水位变化研究课题打下基础。因此我选择第二种方式引出课题。
(二)自主探究,归纳结论
根据学生思维活跃,善于交流的特点,本着由浅入深,由易到难,由形象思维过渡到抽象思维的原则,我设计了:出示问题,建立模型;独立思考,探索规律; 归纳总结,得出法则 这样三个层次,来逐步展开对课题的探究。以便更好的展示知识的形成过程,突出重点,突破难点;减轻学生对法则的理解难度。
1.出示问题 ,建立模型
问题1. 议一议
(-3)×4= -12
(-3)×3=
(-3)×2=
(-3)×1=
在出示问题,建立模型这一环节,先提出问题1. 议一议,我要求学生按6人一组,进行探究活动,在充分合作并取得一致意见的基础上,然后由学生主动进行展示。学生可能会从以下两个方面进行回答。1.把乘法转化成加法(链接);2.利用乙水库水位的变化来说明。点评时,教师通过动画演示验证学生结论的正确性。
问题2:①你知道(-3)×0的结果吗?
②如何用水位的变化来解释(-3)×0= 0 ?
通过演示,学生很容易就能看出当时间没有变化时,水位不会发生变化。
问题3.认真观察上述5个算式,其中包含什么规律?
此处是本节课的一个难点,学生要得到答案,比较困难。我将从以下几个方面对学生进行引导。1.观察算式的左边,找出变化的因数和不变的因数;2.观察算式的右边,找出积的变化规律;3.要求学生在独立思考之后,将两边的变化规律总结成一个结论。即:一个因数不变,另一个因数每次减小1.算式右边的积每次增加-3.
上述三个问题的解决,渗透了高效课堂教学的理念,让学生通过自主交流,自我展示,达到理解知识、培养能力、张扬个性的效果。学生通过独立思考,自己发现规律,也能提高学习数学的兴趣,同时也为解决下面的问题4打下坚实的基础。
2. 独立思考,探索规律
问题4.猜一猜
(-3)×(-1)=
(-3)×(-2)=
(-3)×(-3)=
(-3)×(-4)=
由于有了上面的铺垫,学生很容易猜出这4个算式的结果,但是为什么是这四个结果,学生却并不明白,为突破这一关键点,我给出了教科书上的一个规定: 水位上升为正,水位下降为负 ; 为区分时间,我们规定:“现在前”为负,“现在后”为正 .根据上述规定,我先让学生说一说这4个算式的实际意义,如(-3)×(-1)表示乙水库一天前的水位等。接着让学生看动画演示,然后再让他们充分发表自己的意见,在争辩讨论中弄清楚此时各种情况下水位的总变化量,最后达成共识。
这样做的目的为了让学生知其然更知其所以然,感受数学结论的合理性。
问题5.你能猜出 3×(-2)的结果,并解释理由吗?
通过与第四个问题进行类比,学生很容易得出此题答案。这里补充正数与负数相乘,是为后面学生归纳有理数的乘法法则打下伏笔。
本环节我以学生的发展为本,让学生经历探索的过程,培养学生自主学习的能力。通过文字的叙述和算式的有机结合,使得乘法结果的得出自然合理,更有助于一般结论的归纳。课件动画效果可以使情境更生动,有助于学生思考问题得出结论,使学生由感性认识上升到理性思维。
接着我引导学生进入第三步:归纳总结,得出法则。
3、归纳总结,得出法则
完成问题6后,学生对有理数的乘法法则已经到了呼之欲出的地步,于是我提出了问题7:
由于学生对负数的意义理解不深,计算时很容易算对绝对值的乘积而忽视了符号问题,或者,注意了符号而又忘记了把绝对值相乘,于是我设置了做一做及问题8,让学生清楚运算时的几个步骤。并引导学生进行归纳:有理数相乘,先确定积的符号,再决定积的绝对值。
通过层层设置的问题,我引导学生讨论发现,归纳结论。这些环节展示了知识的形成过程,培养了学生探究能力,锻炼了学生概括表述能力。在探究归纳的过程中,也渗透了类比和分类讨论、从特殊到一般、数学建模的思想方法。
(三)知识运用,加深理解
1、运用法则进行计算
在这一环节,为了提高学生计算的准确度,培养学生的运算能力,并为多个有理数的乘法及乘除法混合运算奠基,在选题时,例1安排了分数、小数、带分数及整数参与运算。在(2)中设计了整数与小数相乘、(4)设计了小数与带分数相乘,(5)设计了有理数的连乘,在学生解题的基础上,都分别总结了两种计算方法;并由学生总结解题的方法和技巧:当因数是小数时,一般可化为分数再相乘;当因数是带分数时,一般要化为假分数再相乘,有理数的连乘
可以两两相乘,也可以先确定积的符号,再确定积的绝对值。同时通过(1)的计算要让学生明白:乘积是1的两个数互为倒数。
2、运用法则解决实际问题
有理数的乘法运算法则只是计算工具,更主要的还是运用它来解决生活中的实际问题,因此我设计了例2,这个问题的解决对学生来说,难度不大,因此我打算让学生上黑板演板。通过这个问题的解决,
让学生体验到数学来源于生活又服务于生活的数学理念,培养学生的应用意识。
两个例题的解决采取了师生互动方式,评价采取生生评价的方式,提高了学生学习兴趣,培养了学生严谨的数学思维习惯。
(四)变式训练,拓展思维。
通过变式训练,可加深学生对法则的理解,使学生的学习巩固过程成为再深化、再创造的过程。开放性的试题,让不同学生的思维潜能得到展示,体现了“不同的人在数学上得到不同的发展”的理念。
(五)回顾反思,感悟提升。
在课堂临近尾声时,我鼓励学生从数学知识、数学方法和数学情感等方面进行自我评价,让学生对所学知识有比较清晰的轮廓体系,也让学生形成善于反思、总结的学习习惯。
(六)布置作业,延伸知识。
数学课程提出:人人学有价值的数学,人人获得必须的数学,不同的人在数学上得到不同的发展。因此我设计了A、B两组作业:
分层设置作业,兼顾了不同学生的学习水平,关注了学生的个体差异。设置开放性的作业,充分挖掘了学生的学习潜力,锻炼了学生的思维意志品质,同时也让学生的学习延伸到课外,使他们学会时刻“用数学的眼光”来观察生活。
四、教学反思
最后,对这节课我做了如下的反思:
在教学过程中,我始终坚持以观察为起点,以问题为主线,以能力培养为核心的宗旨;遵照学生为主体,教师为主导,训练为主线的教学原则;遵循由已知到未知、由浅入深、由易到难的认知规律,采用诱思探究教学法,通过课件和师生的双边活动,使学生的知识和能力得到提高。通过创设、引导、渗透、归纳等活动随时搜集和评价学生的学习情况,及时反馈调节,查漏补缺,让全体学生参与教学的全过程,从而更好的促进学生全面、持续、和谐的发展。
我的说课到此结束,恳请各位专家批评,指正。谢谢大家!
《有理数》说课稿6
说教材:
《正数与负数》是人教版七年级数学第一章第一节的内容,属于数与代数领域的知识。本节课是学生学过的自然数与分数的延续和拓展,又是后面研究有理数的基础,因此起到了承上启下的作用。作为初中阶段的第一节课,不仅要让学生学会区分正、负数以及用正、负数表示相反意义的量,还要培养学生对数学学习的兴趣和自信心。
说学情:
223团中学作为第二师唯一的一所少数民族团场学校,本身有着自己学校的特色,其次因为刚刚推行民汉混合编班,国语教学有一定的困难和挑战,学生国语基础相对比较薄弱,因此数学学科采用循序渐进的教学方法,以巩固基础为主。基于对教材的分析,制订了如下的教学目标。
说目标:
让学生理解正、负数的概念,了解正数与负数是从实际需要中产生的。通过本节课的学习,学生能够正确判断一个数是正数还是负数,明确零既不是正数也不是负数。实际例子的引入,让学生体验到数学来源于生活,服务于生活,激发学生学习数学的兴趣。
说教学重点和难点:
教学重点:了解负数的意义,学会用正、负数表示日常生活中具有相反意义的量。
教学难点:了解负数的意义及0的内涵。
说教学方法:
为了突出重点,突破难点,使学生能够达到教学目标,在教法上采用了引导启发法和讲解传授法相结合的方法来完成本节课的教学。这是因为初一的学生个性活泼,学习积极性高,在整个过程中,教师的讲解和分析与学生自己归纳相融合,激发学生的学习兴趣。在学法上,鼓励学生积极主动地参与到教与学的整个过程,对学生的回答与表现给予肯定、表扬,由此保护并发展学生学习数学的好奇心、积极性。
说教学过程:
在教学方法和理念的引领下,本节课的教学过程设计分为五个部分:
(1)创设情境,引入新课;
(2)合作交流,探索新知;
(3)巩固练习,熟练技能;
(4)总结反思,发展情意;
(5)布置作业
创设情境,引入新课
首先我让学生观察课本上的三幅图,通过设置问题串,为学生复习小学学过的自然数、零和分数,让学生了解到数是因为实际生活的需要产生的,同时增加一个新的问题:某市某天的最高气温是零上3℃,最低气温是零下3℃,要表示这两个温度,那么都记作3℃,这样就不能把它们区别清楚。所以学生很容易就发现,用以前学过的数不能简洁清楚地表示这两个数,由此需要产生一种新数,自然而然地引入了新课。这样的引入,既符合学生已有的认知基础,又能够较好地激发学生探索问题的欲望。
合作交流,探索新知
接着,我根据学生已经产生的认知冲突及时地给出实际例子帮助学生理解具有相反意义的量,进入合作交流,探索新知的环节,给出4个例子:学生练习,教师巡视
例1:气温有零上3℃和零下3℃;
例2:高于海平面8848米和低于海平面155米;
例3:收入50元和支出32元;
例4:汽车向东行驶4千米和向西行驶3千米;
学生对以上例子中出现的每一对量进行讨论,由于学生的语文基础,很容易就发现:零上和零下,高于和低于,收入和支出,向东和向西都是一对反义词。于是我在学生回答的基础上,进一步归纳出它们的共同特点:零上和零下,高于和低于,收入和支出,向东和向西,都是具有相反意义的量。
然后我让学生自己举出一些日常生活中具有相反意义的量的实例。学生在阅读课本后很容易就会回答:足球比赛中的净赢球和净输球;花生产量的增长和减少;体重的增加和减少等这些例子。这样的举例一方面能够充分调动学生参与的热情,另一方面也为新知的展开铺平了道路。
帮助学生理解了具有相反意义的量后,我带领学生回到创设情境中产生的问题:零上3℃和零下3℃应该如何表示?我将一边引导学生一边归纳总结:对于具有相反意义的两个量,如果其中一种量用正数表示,那么另一种量可以用负数表示。通常地,我们规定盈利、存入、增加、上升为正。如零上3℃和零下3℃可以表示成+3℃和—3℃;收入50元和支出32元可以表示成+50元和—32元。这里建立正数与负数的概念时,我会特别强调,零既不是正数也不是负数,它是正数与负数的分界。同时指出,0不仅仅是表示“没有”的意义,比如0℃就是一个确定的温度。
巩固练习,熟练技能
为了使学生实现由掌握知识到运用知识的转化,教师将通过形式不同的练习,让美好学生把知识转化成技能,如课本上的练习:判断正、负数以及用正、负数表示具有相反意义的量。在判断正、负数的时候,我将再一次强调学生的易错点:0既不是正数,也不是负数。而其中一道练习:如果水位升高3m时水位变化记作+3m,那么水位下降3m时水位变化就可以记作—3m,水位不升不降时水位变化可以记作0m。这里也要特别强调0表示的意义。由此让学生加深对正、负数概念以及零的意义的理解,同时这种课内及时练习,反馈调整,又符合心理学特征,提高了课堂的教学效率,减轻了学生的课外负担。
总结反思,发展情意的环节
教师将引导学生通过回顾本节课所学内容,结合本节课的教学目标,归纳总结出本节课的知识要点是用正数与负数表示具有相反意义的量,零既不是正数也不是负数,从而起到了对本节课巩固深化的作用,这样不但可以梳理学生的思维,促进学生记忆,而且可以让学生的知识结构更合理,更完善,更有所侧重。
布置作业
最后,针对所有学生的实际情况,布置作业,并将作业进行分层,这样可以充分调动学生的学习积极性,同时也适应了不同学生的不同要求,切实减轻了学生的课业负担。
说板书设计:
通过教学过程的设计,我将板书确定为以下内容
1、负数源于生活;
2、理解正数、零、负数表示的意义;
3、会用正、负数表示具有相反意义的量、
说教学反思:
教师将引导学生通过回顾本节课所学内容,结合本节课的教学目标,归纳总结出本节课的知识要点是用正数与负数表示具有相反意义的量,零既不是正数也不是负数,从而起到了对本节课巩固深化的作用,这样不但可以梳理学生的思维,促进学生记忆,而且可以让学生的知识结构更合理,更完善,更有所侧重。
各位老师,以上说课只是我在短时间内设计出来的一种方案,一定存在很多不足的地方,如果准备时间充分的话,我会在教学过程这一模块进行更多细节的探讨,让本节课的内容讲授更贴近学生的实际情况,让学生更容易接受新知识。
好了,我的说课到此结束,谢谢!
《有理数》说课稿7
我说课的内容是七年级《数学》上册《有理数的乘法》的第1课时。下面我主要从教材分析、教学目标、教法与学法、教学过程分析四个方面进行说课:
一、教材分析:
1. 教学内容:
本节教材设置了甲、乙两个水库的水位变化的现实情境,引导学生仔细观察一列算式的因数与积的变化规律,使他们自己发现、探索出有理数的乘法法则,并能用自己的语言描术,由有理数的乘法的练习中引出倒数的概念,进一步探索出几个不等于零的有理数乘法的法则及乘法运算律,使同学们真正地掌握有理数的乘法运算。
2. 教材地位和作用:
“有理数的乘法(1)”占有十分重要的地位,它是前几课的延伸与拓展,是有理数除法运算的基础,也为今后学习有理数四则混合运算奠定了基础,具有很重要的地位。
二、教学目标:
1. 能力目标:经常探索有理数乘法法则,发展观察、归纳、猜想、验证等能力。
知识目标:会运用有理数的乘法法则熟练地进行有理数的乘法运算。
2. 教学重难点:
本节的重点即为经历探索有理数乘法法则运算律的过程,发展学生观察、归纳、猜测、验证等能力,使学生在理解记忆乘法法则的基础上会熟练地进行有理数的乘法运算。难点是确定多个不等于零的有理数相乘的积的符号,及有一个为零时积的情况。
三、教法与学法:
1. 教法:
采取师生互动方式,并将分析、观察、验证相结合。通过学生主动性学习,教师的指导,练习的巩固层层展开教学,激发学生的求知愿望,让学生更好地理解和接受新知识。
2. 学法:
事先让学生预习,有不懂的再在课堂上在教师引导下弄懂。学生在教师引导下进行观察、归纳、猜想、验证,并通过练习及时巩固新学知识,能熟练地进行乘法运算。
四、教学过程分析:
1. 导入过程:
利用课本的问题的案例来导入,既让学生感受数学与生活实际问题的联系,又让学生在解决问题的过程中回顾小学已学过的乘法知识,为后面学习负有理数的乘法做铺垫。
2. 探索新知过程:
首先,我引用课本的议一议和猜一猜中的两组式子,逐步引导学生发现其中规律,猜出结果,并自己归纳出乘法法则。其中利用导入中所书写的式子,节省课堂时间。
对于例题的选取,我先了两个例题,例题共五个小题,我先示范做一个题,其余让学生尝试用刚学的知识自己解决,这样做的目的是先示范做题的步骤和格式,再查看学生是否能正确运用乘法法则进行计算。其中还利用例1引入有理数中倒数的概念。在例题的选取中,我还有意挑选了不同的题型的乘法计算题:例1是两个数相乘的,(1)小题是一负一正相乘,(2)小题是两个负整数相乘,(3)小题是两个负分数相乘的;例2是三个数相乘的,(1)小题含一个负数,(2)小题含2个负数。这样做既可让学生了解不同题型,也为后面的教学做了准备。我还利用例2的第2小题添加“0”改变题目,让学生了解有一个因数为0时,积是0,我认为这样不但让学生了解了知识,也节省了课堂时间。
对于乘法中确定符号的问题,我引导学生通过对例题中式子的观察,以及对原有乘法知识的回顾,提示学生留意各个式子中负数的个数,引导学生发现规律,解决课本76页议一议中的积的符号的确定问题。
3. 随堂练习:
在课堂练习题的选取中,我也有意选择了多种题型加以巩固,并增加了一个两个数的和与第三个数相乘的题型,让学生再次了解要先计算小括号中的加法,明确此类题型的计算顺序。
4. 小结:
以提问的形式大致回顾本节所学的内容,主要问了三个问题:
(1) 这节课我们主要学习了些什么内容?
(2) 有理数的乘法法则是什么?
(3) 什么样的数互为倒数?
5. 作业:
作业我同样选取不同题型的五个计算题,目的是想查看学生学的效果如何,是否对哪类题型还留有疑问。
6. 自我评价:
这堂课我觉得满意的,是能够利用短暂的45分钟把要学的知识穿插在学与练当中,充分地利用了课堂有限的时间,并且能让学生边学边练,及时巩固。
当然这堂课也有很多不足之处,我觉得自己对于课堂上学生做练习时出现的一些小问题处理还没有能够处理得很好,我应该吸取经验教训,再以后的教学中加以改进。
另外对于多个有理数相乘时的符号问题,我觉得自己归纳得还不是很到位,我想解决的办法是在以后的练习中再做些补充,让学生加深理解。从中我也得到一个教训,再以后的教学工作中,我还应该多学习教学方法,多思考如何归纳知识点,才能更好地帮学生形成一个系统的知识系统!
《有理数》说课稿8
今天我说课的内容是:人教实验版教材《义务教育课程标准实验教科书》七年级(上),第一章有理数第四节有理数的除法第二课时p36页例9。
一、说教材
1、教材的地位和作用
本节课是在学习了有理数加减法及乘除法法则的基础上学习的。本节课对前面所学知识是一个很好的小结,同时也为后面的有理数混合运算做好铺垫,很好地锻炼了学生的运算能力,并在现实生活中有比较广泛的应用。
2、教育目标
(1)知识与能力
①能按照有理数加减乘除的运算顺序,正确熟练地进行运算。
②培养学生的观察能力、分析能力和运算能力。
(2)过程与方法
培养学生在解决应用题前认真审题,观察题目已知条件,确定解题思路,列出代数式,并确定运算顺序,计算中按步骤进行,最后要验算的好习惯。
(3)情感态度价值观
通过本例的学习,学生认识到如何利用有理数的四则运算解决实际问题,并认识到小学算术里的四则混合运算顺序同样适用于有理数系,学生会感受到知识普适性美。
3、教学重点和难点
重点和难点是如何利用有理数列式解决实际问题及正确而
合理地进行计算。
二、说教法
鉴于七年级学生的年龄特点,他们对概念的理解能力不强,精神不能长时间集中,但思维比较活跃。尝试指导法,以学生为主体,以训练为主线。为了突出学生的主体性,使学生积极参与到数学活动中来,采用了问题性教学模式。“以学生为主体、以问题为中心、以活动为基础、以培养分析问题和解决问题能力为目标。
三、说学法指导
本例将指导学生通过观察、讨论、动手等活动,主动探索,发现问题;互动合作,解决问题;归纳概括,形成能力。增强数学应用意识,合作意识,养成及时归纳总结的良好学习习惯。
四、师生互动活动设计
教师用投影仪出示例题,学生用抢答等多种形式完成最终的解题。
五、说教学程序
(课本36页)例9:某公司去年1~3月份平均每月亏损1.5万元,4~6月份平均每月盈利2万元,7~10月份平均每月盈利1.7万元,11~12月份平均每月亏损2.3万元,这个公司去年盈亏情况如何?
师生共析:认真审题,观察、分析本题的问题共同回答以下问题:
1、年哪几个月是亏损的?哪几个月是的盈利的?
2、各月亏损与盈利情况又如何?
3、如果盈利记为“”,亏损记为“-”,那么全年亏损多少?盈利多少?
4、你能将亏损情况与盈利情况用算式列出来吗?
5、通过算式你能说出这个公司去年盈亏情况如何吗?
【师生行为】:由教师指导学生列出算式并指出运算顺序(有理数加减乘除混合运算,如无括号,则按“先乘除后加减”的顺序进行)再由学生自主完成运算。
【教法说明】:此题一方面可以复习加法运算,另一方面为以后学习有理数混合运算做准备,特别注意运算顺序。同时训练了学生的观察,分析题目的能力。为以后解决实际问题做准备。
(三)归纳小结
今天我们通过例9的学习懂得了遇到实际问题应把实际问题通过“观察—分析—动手”的过程用数学的形式表现出来,直观准确的解决问题。
六、说板书设计
板书要少而精,直观性要强。能使学生清楚的看到本节课的重点,模仿示范例题熟练而准确的完成练习。也能体现出学生做题时出现的问题,便于及时纠正。
《有理数》说课稿9
一、教材分析
教材的地位和作用
本课教材所处位置,是小学所学算术数之后数的范围的第一次扩充,是算术数到有理数的衔接与过渡,并且是以后学习数轴、相反数、绝对值以及有理数运算的基础.
二、目标界定
常言说,好方法不如正确的方向,数学课堂上的目标就是一节课的灵魂和方向标,为此结合有理数在数学数体系中的位置以及学生已有知识和认知规律,我制定了以下三维目标
知识:有理数的概念及分类。
方法:数学分类方法。
情感:培养学生选定标准、严密分类的数学素养。
三、教学重点、难点及突破策略:
教学重点:有理数的概念。
教学难点:正确理解分类的标准和按一定的标准进行分类;合作交流、查找资料进行难点突破。
四、说教学流程
鉴于初一年级学生的年龄特点,及已有知识和认知的规律。他们对概念的理解能力,分析剖析、问题的能力都不强,精神不能长时间集中,但思维比较活跃、好奇心比较强。我决定采取启发式教学法及激趣、设疑情感性教学,创设问题情境,引导学生主动思考,用大量的实例和生动、严密的数学语言激发学生学习兴趣,调节学习情绪。
本节课通过创设问题情境导入课题;阅读质疑,自主探究;多元互动,合作探究;训练检测,目标探究;迁移运用,拓展探究五个环节完成本课时的学习。
导入:(1分钟)有人说,中国汉字最具创造力,一个字可以写成一幅画,那么我抓住有理数一词的字面意思,巧设课引:同学们,看课题:教师直接板书课题《有理数》,什么是有理数呢?难道咱们今天要给数的家族评理来了吗?看哪些是有理的数?要想弄个明白,请把心思投入这节课的学习。
行家一再提倡:教师不是要教给学生知识,而是教给他们学知识和使用知识的方法。所以,我以自主阅读、质疑、独立思考、合作探究贯穿学生获取知识的全过程。
阅读质疑,自主探究(10分钟)
1、自主阅读课本第6页,(1)找到有理数的概念。(2)明确有理数(按整数和分数)的分类。2.记录你对问题的理解及疑惑。
2、阅读提示:深入剖析,围绕下列问题阅读与思考:
通过最近的学习,我们已经将数的范围扩大了,那么你能写出3个不同类的数吗?_______,_________,______。(比如正负数、零或整数分数,突出其不同类。为下面的按不同标准分类埋伏笔。)
问题展示(1):观察三位同学所写的数做一下分类,该分为几类,又该怎样分呢?请认真思考后把自己的想法与别人交流。
分为类,分别是:
归纳:
统称为整数,统称为分数统称为有理数.
(2):我们是否可以把上面的数换另一种角度进行两类?如果可以,应怎样分呢?(正负数和零)
3、数集概念解释:深奥道理浅显化,为使学生易于接受数集这一概念,我要举生活中物以类聚人以群分的例子,使道理生活化,并能够借此对学生进行思想品德教育。把一些数放在一起,就组成了一些数的集合。如所有的整数放在一起就组成了整数集合。数集一般用圆圈或大括号表示。
多元互动合作探究(10分钟的时间)
整体把握知识点,再次阅读课本6--7页的相关内容,自主加合作重点梳理有理数分类的两种方法(整数和分数;正负数和零)和不同的数集。
如所有的正数组成正数集合,所有的负数组成负数集合;零和负数统称为_非正数集合,零和正数统称为非负数集合。
训练检测目标探究(10分钟)
有人说,知识就是力量,使用知识才可以使知识的能量进行释放。相信大家有能力使用今天所学的知识完成下面的题目。
1、下列说法中不正确的是……………………………………………
A.-3.14既是负数,分数,也是有理数
B.0既不是正数,也不是负数,但是整数
C.-xxxx既是负数,也是整数,但不是有理数
D.O是正数和负数的分界
2、下列说法正确的是()
A、整数就是正整数和负整数B、分数包括正分数、负分数
C、正有理数和负有理数组成全体有理数D、一个数不是正数就是负数。
3、下列一定是有理数的是()
A、πB、aC、a+2D、
3、、判断题:(打“√”或“×”)
(1)、自然数是整数。﹝﹞
(2)、有理数只包括正数和负数。﹝﹞
(3)、我们知道了有理数有两种分类方法。﹝﹞
(4)、零是最小的自然数。﹝﹞
(5)、正整数包括零和自然数。﹝﹞
(6)任何分数和小数都是有理数。﹝﹞
4、完成课本第6--7页练习第1、2题。尤其提醒学生:小数也要分在分数集合内;集合圈内的省略号表示本集合中的数是无限的,而本题中只填了所给的几个数,所以用省略号。
5、图中两个圆圈分别表示正整数集合和整数集合,请写并填入两个圆圈的重叠部分.你能说出这个重叠部分表示什么数的集合吗?____________
正数集合整数集合
迁移应用拓展探究(9分钟)
学习链接
1.本节课学了哪些数学知识:
2.本节课学会的数学方法及数学思想:
3.本节知识的梳理过程中,应提醒大家注意什么问题?(如概念分类混淆)
二.学习链接2
.观察下面依次排列的一列数,它的排列有什么规律?请接着写出后面的3个数,你能说出第10个数,第200个数,第201个数是什么吗?
①1,-1,1,-1,1,-1,1,-l,____,____,____,…;
②1,-2,3,-4,5,-6,7,-8,____,____,____,…;
提示学生:学习这类型题目应从符号和数字两方面考虑。
三、有理数含义揭晓:有理数原意为可写成两个整数的比的数,并不是字面意思理解为有一定道理的数。因为所有的整数都可看着分母是1;零可看着它与零以外的所有数的比;有限小数和无限循环小数都可以化成分数,所以它们都是有理数;而无限不循环小数不能写成两个整数比的形式,所以不是有理数,如π,它是将来要学习的无理数。
知识赏阅:数的由来与发展(2分钟)
人类在漫长的生活实践中,由于记事和分配物品等方面的需要,逐渐产生了数的概念。我国古代《易经》一书中有“结绳而治”的记载.现
在我们已经认识了自然数、负整数、分数和小数,这些都属于有理数.你了解这些数的由来与发展吗?请到图书馆或上因特网查找有关数的发展史的资料,写一篇数学小论文,介绍数的由来与发展.
撰写“数的发展与由来”的小论文,主要是让学生体会数学在人类文明发展与进步中的作用,这也是一个对学生能力的培养的机会.应该告诉学生到图书馆查阅资料及搜索网站的方法.如用google搜索,怎样打如关键词,能找到什么资料,怎样下载,对下载的资料怎样进行裁剪等等..
课堂小结:这节课咱们既获得了有理数概念、分类,了解了一些数集,又学会了一些数学思想和方法,并从中感受到了数学的逻辑性和严密性。相信大家在以后的数学学习中会越学越有趣,数学素养会越来越深。
板书设计:有理数
概念有理数
数集
分类有理数分类
数集种类
作业:
1、课本第4页第1题
2、基础训练第一课时
这篇初一上册数学说课稿:《有理数》说课稿就介绍到这里了,希望大家喜欢!
《有理数》说课稿10
一、说教材:
(一)地位和作用
有理数的加法是小学算术加法运算的拓展,是初中数学运算最重要,最基础的内容之一。熟练掌握有理数的加法运算是学习有理数其它运算的前提,同时,也为后继学习实数、代数式运算、方程、不等式、函数等知识奠定基础。有理数的加法运算是建构在生产、生活实例上,有较强的生活价值,体现了数学来源于实践,又反作用于实践。就本章而言,有理数的加法是本章的重点之一。学生能否接受和形成在有理数范围内进行的各种运算的思考方式(确定结果的符合和绝对值),关键在于这一节的学习。
(二)课程目标:
1、知识与技能目标:
⑴了解有理数加法的意义。
⑵经历探索有理数加法法则的过程,理解并掌握有理数加法的法则。
(3)运用有理数加法法则正确进行运算(主要是整数的运算)。
2、过程与方法目标:
⑴在教师创设的熟悉情境与学生探索法则的过程中,通过观察结果的符号及绝对值与两个加数的符号及其绝对值的关系,培养学生的分类、归纳、概括的能力。
(2)在探索过程中感受数形结合和分类讨论的数学思想。
(3)渗透由特殊到一般的唯物辩证法思想
3、情感态度与价值观目标:
(1)通过师生交流、探索,激发学生的学习兴趣、求知欲望,养成良好的数学思维品质。
(2)让学生体会到数学知识来源于生活、服务于生活,培养学生对数学的热爱,培养学生运用数学的意识。
(3)培养学生合作意识,体验成功,树立学习自信心。
(三)教学重点、难点:
重点:理解和运用有理数的加法法则
难点:理解有理数加法法则,尤其是理解异号两数相加的法则
二、说教法:
在教学过程中一如既往的开展“新、行、省、信”四字教育模式的教学。
新:创设新的问题情境(足球净胜球数)、开展新的学习方式(自主、合作、交流)、进行新的评价体系(个人评价与小组评价相结合);
行:在教师的启发引导下自主、合作探究新知(有理数的加法法则),教师关注学生是否积极思考问题(几组有理数加法的符号与绝对值特征)、是否主动参与讨论(同号与异号的特征)、是否敢于发表自己的见解(有理数加法法则的概括);
省:在特殊实例的基础上观察、归纳、概括有理数的加法法则,在实例讲解和自主练习的基础上总结心得、反省得失(如:解后思)。
信:在本节课的探究法则与运用法则中体验成功,树立学习自信心(如在教师用数带正号球的方法得出(+2)+(+3)= +5后,学生按照此思路可以很快得出(-2)+(-3)等其它情形。又如以口答形式判断几组有理数加法的和的符号和在最后以“挑战老师”的形式判断一句话的正误)。
同时本节课在运用“正负抵消”和数轴探讨有理数法则时,教师只对第一个或前两个进行指导和示范,其它的留给学生独立得出或合作完成。
另外利用多媒体来辅助教学,使教学内容直观形象化,使学生在比较真实的环境里面体验数学的生活性。
三、说学法:
本节课同号两数相加学生易理解,难点是异号两数相加,所以在教学时要注意以下几点:
第一、学生在小学阶段的学习和前面正数、负数、数轴、绝对值的学习为本节课提供了学习的前提;
第二、七年级的学生已经初步具备合作和交流的能力,通过探究和合作获得成功基本上可以实现课程目标的;
第三、范例讲解和随堂练习始终是学以至用的有效方法。范例讲解与随堂练习都是学生强化理解法则、正确运用法则的地方。范例讲解时应引导学生步步说理,随堂练习时应引导学生通过自我反省、小组评价、来克服解题时的错误,有必要教师给与规范矫正。
四、说教学程序:
本节课我将“新、行、省、信”四字教育法运用到教学中,教学过程划分为以下几个环节:(简述如下)
1、引入新知---新(创设新的问题情境)。
今年恰好举行了世界杯,所以通过足球净胜球问题引入教学,情境活泼、自然。在学生回答(-1)+(+1)=0和(+1)+(-1)=0时渗透“正负抵消”的思想引入讨论整数加法的几种情形。
2、探究新知---行
(1) 类比小学学习加法的“实物数数法”(1用一个 表示,-1用一个 表示,那么2就用两个 表示的方法)和“正负抵消”法形象直观得出一组有理数加法的结果,教学时除(+2)+(+3)教师示范得出外,其他几例均可学生自主得出,教师在聆听学生讲述自己的方法时及时给与积极的评价。
(2) 联系前面数轴,运用数轴也可以形象得出上述四组数的结果。在教学时要强调加法的“叠加性”,此处学生易出错。如在讲(-2)+(-3)时学生虽然明白-2表示从原点出发往西移动2个单位,但在加上-3时易犯“又从原点出发”的错误,教学时可以采取以下策略:一是先讲点的移动再移动然后用数学式子表示,在此基础上出示其它几个算式,让学生运用点的移动说明运算结果;二是联系孩提时学数数(数手指)的方法进行类比。在此处的教学师应加强引导,在讲完第一个式子的表示过程后其他三个让学生依照刚才教师的方法和思路独立完成,在学生发表见解时师可以让其他学生给出矫正和评价。
3、得出新知---省
在前面形象得出结果的基础上教师诱导学生从四个例子中发现一般的结论。教师引导学生观察:
(-2)+(-3)=-5
(+3)+(-2)=+1
(+2)+(+3)=+5
(-3)+(+2)=-1
(-4)+(+4)=0
问:两个有理数相加,和的符号怎样确定?和的绝对值怎样确定?一个有理数同0相加,和是多少?
在引导学生观察前可以让学生小组合作、交流、讨论。教师可以参与到学生当中的讨论中,在讨论中师可诱导学生先看式子的和的符号与两个加数的符号的关系,再诱导学生看和的绝对值与两个加数的绝对值的关系。如果学生有困难,师可引导学生分类:同号类、异号类、相反数类,观察符号与绝对值特征,再请学生发表自己或小组成员的见解。此处应肯定学生朴素的语言特别应表彰有独特见解和说得完备的学生。最后师生一起用比较规范的语言总结有理数加法法则。
4、运用新知---信
此处的“信”主要是指在运用法则解决问题时对照法则“步步说理”,从而树立学生学好法则用好法则的信心。特别是异号两数相加时更要着重强调、矫正、理清思路和步骤。然后师生一起“解后思”:在做题时应该注意什么(此处又是“省”),在随堂练习时教师关键是反馈矫正、积极评价,
5、联系实际、小小拓展;
为落实“数学来源于生活、生活处处有数学”的理念,此处可安排两道实际应用题:如:请根据式子(-4)+3举出一个恰当的生活情境;(此例有很多好情境,教师应对举例举得好的学生给与积极评价)。又如:土星表面的夜间平均温度为-150度,白天比夜间高27度,那么白天的平均温度是多少?
6、教学小结、知识回顾:
教师让学生畅所欲言的谈在这节课的得与失、感到困惑和疑难的地方、运用法则的关键和步骤等等。师在学生发言的基础上再提炼。运算时的基本思路:①确定类型、②确定符号、③确定绝对值。
7、课外作业
为进一步巩固知识,布置适当作业。教师还可提问供学生课外思考以挑战老师:学习完今天的知识后,老师认为“两个有理数相加,和一定大于其中一个加数”,老师的说法正确吗?请聪明的你举例说明。
《有理数》说课稿11
各位领导、老师,大家好!
今天我将要为大家讲的课题是有理数的加法,首先,我对本节教材进行一些分析。
本节课选自人民教育出版社出版的〈义务教育课程标准实验教科书〉数学七年级(上)。这一节课是本册书第一章第三节第一课时的内容。下面我就从以下六个方面——教材结构与内容简析、教学目标、教学重点难点及关键、教法、学法、教学过程的设计向大家介绍一下我对本节课的理解与设计。
一、教材结构与内容简析
在分析新数学课程标准的基础上确定了本节课在教材中的地位和作用以及确定本节课的教学目标、重点和难点。首先来看一下本节课在教材中的地位和作用。
1、有理数的加法在整个知识系统中的地位和作用是很重要的。初中阶段要培养学生的运算能力、逻辑思维能力和空间想象能力以及让学生根据一些现实模型,把它转化成数学问题,从而培养学生的数学意识,增强学生对数学的理解和解决实际问题的能力。运算能力的培养主要是在初一阶段完成。有理数的加法作为有理数的运算的一种,它是有理数运算的重要基础之一,它是整个初中代数的一个基础,它直接关系到有理数运算、实数运算、代数式运算、解方程、、研究函数等内容的学习。
2、就第一章而言,有理数的加法是本章的一个重点。有理数这一章分为两大部分——有理数的意义和有理数的运算,有理数的意义是有理数运算的基础,有理数的混合运算是这一章的难点,但混合运算是以各种基本运算为基础的。在有理数范围内进行的各种运算:加、减法可以统一成为加法,乘法、除法和乘方可以统一成乘法,因此加法和乘法的运算是本章的关键,而加法又是学生接触的第一种有理数运算,学生能否接受和形成在有理数范围内进行的各种运算的思考方式(确定结果的符合和绝对值),关键是这一节的学习。
3、数学思想方法分析:作为一名数学老师,不仅要传授给学生数学知识,更重要的是传授给学生数学思想、数学意识,因此本节课在教学中力图向学生渗透的德育目标是:
(1)渗透由特殊到一般的辩证唯物主义思想
(2)培养学生严谨的思维品质。
二、教学目标
根据新课程标准和上述对教材结构与内容分析,考虑到学生已有的认知结构及心理特征 ,制定如下教学目标:
1、基础知识目标:
(1)理解有理数加法的意义;
(2)理解并掌握有理数加法的法则;
(3)应用有理数加法法则进行准确运算;
(4)渗透数形结合的思想。
2、能力目标是:
(1)培养学生准确运算的能力;
(2)培养学生归纳总结知识的能力;
3、德育目标是:渗透由特殊到一般的辩证唯物主义思想
4、个性品质目标:培养学生严谨的思维品质。
三、教学重点、难点、关键
有理数加法的意义与小学学习的在正有理数和零的范围内进行的加法运算的意义相同,让学生理解即可,有理数的加法法则的理解与运用是本节的重点内容。因此本节课的重点是:有理数加法法则的理解与运用。由于本阶段的学生很难把握住事物主要特征:如异号两数、绝对值不相等的异号两数和互为相反数之间的关系,这就对法则的理解造成困难。因此我确定本节课的难点是:有理数加法法则的理解。
四、教法
数学是一门培养人的思维,发展人的思维的重要学科,因此,在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”,我们在以师生既为主体,又为客体的原则下,展现获取知识和方法的思维过程。在教学过程中,我注重体现教师的导向作用和学生的主体地位,。本节是新课内容的学习,教学过程中尽力引导学生成为知识的发现者,把教师的点拨和学生解决问题结合起来,为学生创设情境,从而不断激发学生的求知欲望和学习兴趣,使学生轻松愉快地学习,不断克服学生学习中的被动情况,使其在教学过程中在掌握知识的同时发展智力、受到教育。
五、学法
本节课是在前面学习了有理数的意义的基础上进行的,学生已经很牢固地掌握了正数、负数、数轴、相反数、绝对值等概念,因此我没有把时间过多地放在复习这些旧知识上,而是利用学生的好奇心,采用生动形象的事例,让学生充当指挥官的角色,亲身参加探索发现,从而获取知识。在法则的得出过程中,我引进了现代化的教学工具微机,让学生在微机演示的一种动态变化中自己发现规律归纳总结,这不但增加了课堂的趣味性提高了学生的能力,而且直接地向学生渗透了数形结合的思想。在法则的应用这一环节我又选配了一些变式练习,通过书上的基本练习达到训练双基的目的,通过变式练习达到发展智力、提高能力的目的。这些我都在教学过程的设计中具体体现。而且在做练习的过程中让学生互相提问,使课堂在学生的参与下积极有序的进行。
六、教学过程的设计
1、引入:再课堂的引入上,开始我本打算选择教材上的例子,但是它过于简单。并且不宜于引起学生的注意,所以我选择了学生们感兴趣的军事问题,让学生在充当指挥官的同时,有一种解决问题的成就感,从而使学生积极主动的学习,并且营造了良好的学习氛围。
2、探索规律:法则的得出重要体现知识的发生,发展,形成过程。我通过了一个小人在坐标轴上来回的移动,使学生在小人的移动过程中体会两个数相加的变化规律。由于采用了形式活泼的教学手段,学生能够全身心的投入到思考问题中去,让学生亲身参加了探索发现及获取知识和技能的全过程。最后由学生对规律进行归纳总结补充,从而得出有理数的加法法则。
3、巩固练习:再习题的配备上,我注意了学生的思维是一个循序渐进的过程,所以习题的配备由难而易,使学生在练习的过程中能够逐步的提高能力,得到发展。并且采用男生出题,女生回答;女生出题,男生回答,活跃课堂气氛,充分调动学生的积极性。使学生在一种比较活跃的氛围中,解决各种问题。同时针对学生素质的差异进行分层训练,既使学生掌握基础知识,又使学有佘力的学生有所提高,从而达到拔尖和“减负”的目的。
4、归纳总结:归纳总结由学生完成,并且做适当的补充。最后教师对本节的课进行说明。
以上是我对本节课的理解和设计。希望各位老师批评指正,以达到提高个人教学能力的目的。说课对我仍是新事物,今后我也将进一步说好课,并希望各位专家领导对本堂说课提出宝贵意见。
《有理数》说课稿12
一、说教材:
(一)地位、作用:
本节课是在学习了正负数、相反数、有理数的加法运算之后,以初中代数第一册P80页的有理数的减法法则及有理数减法运算的例1、例2为课堂教学内容。有理数的减法运算是一种基本的有理数运算,对今后正确熟练地进行有理数的混合运算,并对解决实际问题都有十分重要的作用
(二)教学目标:
1、知识目标:使学生掌握有理数的减法法则,熟练地进行有理数的减法运算。
2、能力目标:培养学生探究思维能力和分析解决问题的能力
3、情感目标:使学生了解加与减两种运算的对立统一的关系,了解数学中转化的数学思想方法,渗透辩证唯物主义思想,培养探究分析数学知识方法的兴趣。
(三)重点、难点:
重点:有理数的减法法则,熟练地进行有理数的减法运算
难点:理解有理数减法的意义,正确熟练地进行有理数的减法运算
二、说教学方法:
根据本节教材内容和学生的实际水平,为了更有效地突出重点,突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,我将采用探究发现法、多媒体辅助教学方法等。教学中教师精心设计一个又一个带有启发性和思考性的问题,创设问题情景,诱导学生思考,教师并适时运用电教多媒体动画演示,激发学生探索知识的欲望来达到对知识的发现,并自我探索找出规律,使学生始终处于主动探索问题的积极状态,从而培养思维能力。
附教学工具:温度计、投影仪、多媒体
三、说学法:
根据学法指导自主性的原则,让学生在教师创设的问题情境下,通过教师的启发点拨,学生的积极思考努力下,自主参与知识的发生、发展、发现的过程,使学生掌握了知识,体现了素质教育中学生学习能力的培养问题,达到教学的目的。
四、说教学程序:
(一)引入课题环节:
1、复习有理数的加法法则,为新课的讲授作好铺垫。
2、(提问)用算式表示:与—3的和等于—10的数。
(根据学过的知识,引导学生列出减法算式后提出问题:怎样进行这里的减法运算呢?有理数的减法运算法则是什么呢?由问题的给出,激发学生探求解决问题方法的兴趣,从而引出本节课的课题。
(二)新课讲解环节:
1、通过投影仪给出以下算式:
减法加法
(+10)—(+3)=+7(+10)+(—3)=+7
让学生比较上面这两个算式并讨论后得出:
(+10)—(+3)=(+10)+(—3)
再给出以下算式:
减法加法
(+5)—(+2)=+3(+5)+(—2)=+3
继续让学生比较上面这两个算式并讨论后得出:
(+5)—(+2)=(+5)+(—2)
从而,它启发我们有理数的减法可以转化成加法进行
2、讲解课本P80的内容,回答复习题2提出的问题即如何求(—10)—(—3)的结果。通过分析讲解,请学生自己归纳出有理数的减法法则,最后老师再完整地总结出法则。
文字叙述:减去一个数,等于加上这个数的相反数p;字母表示:a—b=a+(—b)(说明:简明的表示方法,体现字母表示数的优越性,实际运算时会更加方便)
强调运用法则时:被减数不变,减号变加号,减数变成其相反数
减数变号
(减法============加法)
3、出示温度计,用多媒体出现(如P81的图2—20),并进行动画演示,通过求15℃比5℃高多少?15℃比—5℃高多少?的实例来说明减法法则的合理性以及有理数减法的实际意义。同时进行练习反馈:课本P82的练习1,
4、通过例题教学使学生巩固方法,初步具备解决问题的能力。
例1.计算:(1)(—3)—(—5);(2)0—7
例2.计算(1)7。2—(—4。8);(2)(—3-)—5
说明:讲解时注意让学生复述有理数法减法法则,加深学生对法则的认识,并注意归纳有理数减法的规律,而不机械地将减法转化成加法,为今后进一步学习减法运算逐步省略化成加法的中间步骤作准备。
(三)巩固练习环节:
让学生完成课本P82的练习2、3,巩固有理数减法法则的运用,强化学生对这节课的掌握。第2题口答,第3题请6个学生上台板演。对回答好的同学给予表扬肯定,如果有错误,请其他同学纠正。
(四)课堂小结环节:
本节课学习了有理数的减法运算,进行有理数的减法运算时转化成加法进行计算,即a—b=a+(—b)
(五)布置课后作业:
课本P83习题2.6的2、3、4、5的偶数题。
通过作业反馈对学生所学知识掌握的效果,以利课后解决学生尚有疑难的地方。
(六)板书设计:
(略)
《有理数》说课稿13
一. 教材的地位和作用
有理数的加法是小学算术加法运算的拓展,是初中数学的起始部分,也是初中数学运算最重要,最基础的内容。熟练掌握有理数的加法运算是学习有理数其它运算的前提,同时,也为后继学习实数、代数式运算、方程、不等式、函数等知识奠定基础。有理数的加法运算是建构在生产、生活实例上,有较强的生活价值,体现了数学来源于实践,又反作用于实践。就本章而言,有理数的加法是本章的一个重点。有理数这一章分为两大部分一-有理数的意义和有理数的运算,有理数的意义是有理数运算的基础,有理数的混合运算是这一章的难点,但混合运算是以各种基本运算为基础的。在有理数范围内进行的各种运算:加、减法可以统一成为加法,乘法、除法和乘方可以统一成乘法,因此加法和乘法的运算是本章的关键,而加法又是学生接触的第一种有理数运算,学生能否接受和形成在有理数范围内进行的各种运算的思考方式(确定结果的符合和绝对值),关键在于这一节的学习。二.教学目标 1、认知目标:
(1)理解有理数加法的意义;
(2)理解并掌握有理数加法的法则; (3)应用有理数加法法则进行准确运算; 2、能力目标:
(1)培养学生准确运算的能力; (2)培养学生归纳总结知识的能力; 3、情感目标:
(1)通过丰富的数学活动,获得成功的经验,体验数学活动充满着探索和创造。 (2)体会有理数加法的数形思想。
三.教学重点、难点:
整节课都是围绕着有理数加法法则进行的,因此根据《教学大纲》的要求,本节课的重点是:有理数加法法则的理解与运用。突破策略:?利用多媒体手段,借助于动画演示,化抽象为具体.?讲清楚探究有理数加法法则的方法和过程。由于学生第一次接触带有符号的两个数
相加,必须克服小学里长期形成的算术加法的思维定势的影响,特别是异号两数相加的符号和绝对值因此我确定本节课的难点是:异号两数相加加法法则的理解和应用。突破策略;?精选各种有趣的题型,让学生通过训练,尝试成功. ?利用多媒体手段,借助于动画演示,化抽象为形象,化难为易。
教学方法
我在本节课主要采用“引导——发现教学法”,并借助于计算机课件,通过“问题情境—建立模型—解释、应用与拓展”的模式展开教学。
本节课是在前面学习了有理数的意义的基础上进行的,学生已经很牢固地掌握了正数、负数、数轴、相反数、绝对值等概念,因此我没有把时间过多地放在复习这些旧知识上,而是利用学生的好奇心,采用生动形象的事例,让学生充当主角,亲身参加探索发现,从而获取知识。在法则的得出过程中,我引进了现代化的教学工具多媒体 ,让学生在多媒体演示的一种动态变化中自己发现规律归纳总结,这不但增加了课堂的趣味性提高了学生的能力。而且直接地向学生渗透了数形结合的思想。在法则的应用这一环节我又选配了一些变式练习,通过书上的基本练习达到训练双基的目的,通过变式练习达到发展智力、提高能力的目的。这些我将在教学过程的设计中具体体现。而且在做练习的过程中让学生互相提问,使课堂在学生的参与下积极有序的进行。
在整个教学过程中,我注重体现教师的导向作用和学生的主体地位,。本节是新课内容的学习,。教学过程中尽力引导学生成为知识的发现者,把教师的点拨和学生解决问题结合起来,为学生创设情境,从而不断激发学生的求知欲望和学习兴趣,使学生轻松愉快地学习不断克服学生学习中的被动情况,使其在教学过程中在掌握知识同时、发展智力、受到教育。
学习方法
七年级学生是智力发展的关键年龄,逻辑思维从经验型逐步向理论型发展。观察能力,记忆能力和想象能力也随着迅猛发展。他们生性好动,注意力易分散,爱发表见解,希望得到老师的表扬。所以在教学中我抓住学生的这一生理特点,一方面应用直观生动的形象幻灯图象,引发学生的兴趣,使他们的注意力始终集中在课堂上。另一方面通过小组竞赛和互举例子创造条件和机会,让学生发表见解,发挥学生学习的主动性。
本节课学生主要采用“探究学习法”,学生通过多媒体的演示;主动探索,发现规律;并及时进行归纳总结,使学生的主体地位得以体现又让学生充分感受探究有理数加法法则的过程,符合学生的认知过程。并且将单调的练习转换成学生互相提问,互相比赛的方式,使学生的学习热情得以调动。
采用这种学习方法的优点是:学生主动参与知识的发生、发展过程,在解决问题的过程中学习,在探究的过程中,激发学生学习兴趣和创作新热情。掌握这种学习方法后,对学生的终生学习、终生发展有积极的意义。
教学过程
《数学课程标准》明确指出:“数学教学是数学活动的教学,学生是数学学习的主人。”为能更多地向学生提供从事数学活动的机会,我将本节课的教学过程设为以下五个环节:发现新知—再探新知—应用新知—深化拓展—小结巩固。
《有理数》说课稿14
本节课我所讲的是人教版七年级上册第一章《有理数》中的第三节第二课《有理数的减法》的第一课时.
一、说课标:
数与代数部分是义务教育阶段数学课程的重要内容。这部分内容包括数的概念、数的运算、数的估计;字母表数、代数式及其运算;方程、方程组、不等式,函数等。而数的运算伴随着数的形成与发展不断丰富,从最基本的自然数的四则运算,扩展到有理数的四则运算、乘方、开方运算等。新课标中指出:运算能力主要是根据法则和运算律正确地进行运算的能力。培养运算能力有助于学生理解运算的算理,寻求合理简洁的运算途径解决问题。新课标是在总目标的四个方面之一的“数学思考”中提出运算能力的思维和抽象思维。”这说明运算能力是数学思考的重要内涵。不仅如此,运算能力对新课标在总目标中提出的其他三个方面目标的整体实现,同样是不可缺少的基本条件。
二、说教材的地位和作用:
“有理数的运算”是“数与代数”学习领域的重要内容,减法是其中的一种基本运算.有理数的减法是小学减法的延续,通过对有理数的减法运算的学习,学生将对减法运算有进一步的认识和理解,它对今后正确熟练地进行有理数的混合运算奠定基础,并对解决实际问题都有十分重要的作用。
三、说学情:
在生活中,学生经常会进行同类量之间的比较,因此学生对减法运算并不陌生,但这种认识常常流于经验的层面。在小学阶段学生学习了局限性的减法运算,并进行了技能性的强化训练,学生对此缺乏理性的认识,很多时候减法仅作为加法的逆运算而存在。因比,在教学中一方面要利用这些既有的知识储备作为“知识生长的最近发展区”来促进新课的学习,另一方面要通过具体情境中减法运算的学习,让学生体会减法的意义。此外,值得注意的是本年龄段的学生学习积极性高,探索欲望强烈,但数学活动的经验较少,探索效率较低,合作交流能力有待加强,因此在教学过程中要做好调控和引导,并且要让学生体验到成功的快乐。
四、说教学目标:
依据《课程标准》的要求,结合本班学生情况,确定本节课的教学目标如下:
知识与技能目标:掌握有理数的减法法则,能运用有理数的减法法则进行运算。
过程与方法目标:经历由特例归纳出一般规律的过程,培养学生的抽象概括能力及表达能力;通过对有理数减法法则的探讨,体验数学的转化思想。
情感态度与价值观目标: 在归纳有理数减法法则的过程中,通过讨论、交流等方式进行同伴间的合作学习。
根据以上对教材的地位和作用,以及学情分析,结合新课标对本节课的要求,我将本节课的重点确定为:理解有理数减法法则的意义,会运用有理数的减法法则进行运算。难点确定为:有理数减法法则的探讨。
五、说教学方法和学法指导:
《新课标》中明确指出:学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者,基于以上理念,结合本节课内容及学生情况,教学设计中采用“引导发现法”组织教学.其基本程序设计为:创设情境提出猜想一探索验证一总结归纳一反馈运用,上述教学程序的实施很大程度上依赖于学生的学习,因此对学生学习方式的指导是十分重要的,本节课应鼓励和引导学生采用自主探索与合作交流相结合的方式进行学习,让学生亲历从特例到归纳(不完全归纳)出一般的减法法则的全过程,体验知识产生和发展的全过程。
六、说教学过程及设计思路:
本节课主要以多媒体课件教学,通过创设情境,层层深入,环环相扣,师生互动,探讨交流,讲练结合设计本节课.
(一)复习回顾
1.-2的相反数是____,+0.3的相反数____,相反数是它的本身的数是___.
2.计算
(1) 4 + 16 = (2)(–2)+(–7)=
(3)(–1)+3.6 = (4) 2 + (–4) =
(5)(–5)+ 5 = (6) 0 + (–8) =
设计意图:通过复习回顾,熟悉旧知,为学生本节课的学习做好知识准备。
(二)创设情境、引入新课
北京某天气温是-3C~3C,这天的温差是多少摄氏度呢?
学生列式表示3-(-3)=?但是不知道结果。
设计意图:通过小知识引入问题,然后引出有理数的减法运算,引起学生的探究欲望,激发学生的学习兴趣。
(三)探究新知
同学们都知道,减法和加法互为逆运算,3-(-3)=?也就是问什么数加上-3等于3?
因为6+(-3)=3 所以 3-(-3)=6
师问:3+?=6 生答:3+ 3=6
请同学们观察以下两个式子:
(1)3 -( –3)=6; (2)3+3=6
你发现了什么?换些数试试。(学生自主思考)
9-8=____, 9+(-8)=____;
15-7=____, 15+(-7)=____.
然后比较上面的式子,能发现其中的规律吗?分小组讨论。
然后师生共同归纳法则,教师板书法则。并强调减法在运算时有 2 个要素要发生变化,1个要素不变。(两变一不变)
设计意图:通过观察、交流、讨论,归纳发现有理数的减法法则,感受转化的数学思想。
练习:下列括号内各应填什么数?
(1)(-2)-(-3)=(-2)+____;
(2) 0 - (-4)= 0 ____ 4 ;
(3)(-6)- 3 =(-6)+_______;
(4) 1-(+39)= ____ +(-39).
设计意图:通过学生边口述,边解释法则,学生能找准在将减法变加法的过程中什么变,什么不变。
(四)典例讲解
例4计算:
(1)(-3)-(-5) (2)0-7
(3)7.2-(-4.8) (4)
教师板演示范(1)(4),示范书写过程,学生完成(2)(3)。
设计意图:通过教师的板演,为学生的书写起示范作用,学生练习暴露出来的问题,教师可以及时发现并指正。
思考:在小学,只有当a大于或等于b时,我们才会做a-b,现在,当a小于b时,你会做a-b吗?
一般地,较小的数减去较大的数,所得的差的符号是什么?
通过上述例题,学生不难解答。
(五)当堂检测
1.计算:
(1) 6-9; (2) (+4)-(-7);
(3)(-5)-(-8); (4) 0 -(-5);
(5)(-2.5)-5.9 ; (6) 1.9 -(-0.6).
2.计算:
(1)比2C 低 8C 的温度;
(2)比 -3C 低 6C 的温度.
3.(20xx·中考)计算:|(-3)-5|=____.
(六)小结
这节课我们学习了哪些知识?你还学到了什么?你能说一说吗?
学生自主谈收获,其他同学补充,教师可给与必要总结.
设计说明:小结归纳不应该仅仅是知识的简单罗列,而应该是优化认知结构,完善知识体系的一种有效手段,为充分发挥学生的主体地位,让学生自己总结,谈收获,培养学生善于进行学习反思的良好习惯.
(七)作业布置
必做题:
习题1.3第3题(1)(2)(5)(9)(10)第4题(1)(5)
选做题:
已知a=8,b=-5,c=-6,求(c-a)-|b|的值.
设计说明:根据课标和本节课的教学目标的要求,学生要会运用有理数的减法法则进行运算。我将作业分成选做和必做两个层次,这样尽量能让每个同学在今天的学习中都有所收获.
(八)板书设计
1.3.2有理数的减法
1.有理数的减法法则
2.两个变化要素
相反数
3.转化思想
设计意图:本节课的板书我主要采用提纲式的板书,既直观形象,又能加深理解记忆.
以上是我对本节课的见解,还请各位老师多多指导.
《有理数》说课稿15
有理数的除法是一种基本的有理数运算,它的学习是学生在小学已掌握了倒数的意义,除法的意义和运算法则,乘除法的混合运算,以及知道0不能作除数的规定和刚学过的有理数乘法的基础上进行的,对今后正确熟练地进行有理数的混合运算,并对解决实际问题都有十分重要的作用。
本节课的教学目标:
1、通过对有理数除法法则的探求,理解有理数除法法则,会进行有理数的除法运算。
2、会求有理数的倒数(特别是负数的倒数)。
3、通过把有理数的除法运算转化为乘法培养学生的转化思想。本节课的重点:熟练进行有理数的除法。
说课内容:有理数的除法运算,会求一个负数的倒数,难点是熟练掌握有理数的除法,难点的突出关键点在运算时,先确定商的符号,然后再根据不同情况采取适当的方法来求商的绝对值。因而教学时,让学生通过求实例理解有理数,除法与小学除法基本相同,只是增加了符号的变化。根据本节教材内容和学生的实际水平,为了更有效的突出重点,突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,采用探求,发现,讲练相结合的教学方法。本节课的教学过程如下:
一、导入
1、复习有理数的乘法法则,为新课的讲解作为铺垫。
2、提出已知两个因数的积和其中一个因数,求另一个因数用什么运算,引出有理数的除法。
二、新课讲授
1、探究:由12/3是什么意思,商是几?引到(-12)/(-3)是什么意思?从而由已学的除法是乘法的逆运算得出(-12)/(-3)=4,或从除以一个数等于乘以另一个数的倒数考虑,把除法转化成乘法来计算。
2、接着由一组有理数除法题目,先计算然后通过引导学生观察比较每题的除数,被除数的符号,绝对值与商的符号,绝对值的关系,总结出规律,得出有理数的法则1,并提醒学生注意0不能作除数。
3、再准备两组题目让学生练习,通过练习加深对法则的理解及加强运算的能力。
4、通过课本中的做一做,比较每组算式的关系,总结出规律得到有理数除法法则2,并指出如何根据具体情况来选择这两个法则再根据法则2及做一做中第1题并结合小学时求正数的倒数的方法,归纳得出求负数的倒数的方法,并指出0没有倒数。
三、巩固提高
通过练习,让学生的新知识得到巩固,并纠正错误。
四、总结反思
让学生感受本节课所学的有哪些知识,本节课的知识点。
五、检测反馈
根据课后习题,选择适当的题目作为课堂作业,让学生更加熟练掌握本节课的知识。
板书设计:
1、有理数除法法则。
2、倒数的求法。
第四篇:有理数练习题
1、下列各组数中,相等的一组是()
44A.(-2)和 |-2|B.(-2)和-2
C.(-2)和 |-2|D.(-2)和-(-2)
2、下列各组运算,结果正确的是()
A.3a+3b=6abB.-2x-2x=0
C.9x-6x=3D.3y2-y2=2y23、小明在一张日历上圈出一个竖列上相邻的三个日期,算出它们的和是48,则这三天分别是()
A.15,16,17B.6,16,26C.9,16,23D.不确定
4、若一个数的平方等于它本身,则这个数是()
A.0B.1C.-1,1D.0,15、的值是()
A、0B、-4C、4D、166、下列说法不正确的是()
A.0既不是正数,也不是负数B.1是绝对值最小的数
C.一个有理数不是整数就是分数D.0的绝对值是07、的相反数是()
A.B.C.D.28、A.的值是()B.C.D.
9、下面判断正确的是()
.A.一个数的偶次幂一定是正数;
B.一个正数的平方比原数大;
C.一个负数的立方比原数小;
D.互为相反数的两个数的立方仍互为相反数。
10下面几何体的截面图可能是圆的是()
A.正方体B.圆锥C.长方体D.棱柱
第五篇:有理数说课稿
七年级数学1.2有理数说课稿
黄艳琴 各位评委老师大家好:
我是来自伊宁市十九中学的黄燕勤,今天我说课的内容是人教版七年级上册第一章的第二节内容有理数,本小结内容是学生在初中阶段学习的起始章节,承接前两个学段的内容,是学好后续内容的重要前提,下面我就从教材分析,学情分析,教学目标,教学重难点,教法学法五个方面对本小节进行阐述。
首先有理数作为中学阶段的入门章节,其中包括有理数的分类,数轴,相反数和绝对值。数从自然数扩充到有理数,初步形成有理数的概念,进一步学习有理数的运算,是小学算术的延续和发展,重视与前面学段的衔接,有理数的学习为学习实数等知识奠定了基础,是进一步研究代数四则运算工具性内容,因此有理数在教材中具有承上启下的作用,是学习其他学科的必备知识。我认为,有理数的分类渗透了分类的思想,对七年级的学生来说,有一定困难;数轴这一课蕴含了数形结合思想,要通过作图来进一步理解,相反数要结合数轴进一步理解几何意义;由于新课程标准提高了对绝对值的要求,增加了‚知道绝对值a的含义‛,因此,我将本小节内容划分为了6个课时。有理数1课时,数轴2课时,其中,第一课时认识数轴,第二课时运用数轴比较大小,相反数1课时,绝对值2课时。其中数轴第一课内容为认识数轴,第二课时为借助数轴比较大小,学生在小学已经认识了正数,0和负数,这为学习有理数奠定了基础,但对于有理数的分类,数轴概念的形成及相反数、绝对值的几何意义的学习,对于七年级刚入校的新生来讲,具有一定的困难,所以教学中应予 1 以简单明白,深入浅出的引导分析。由于七年级学生的理解能力和思维特征以及生理特征,学生好动性,注意力易分散,爱发表见解,希望得到老师的表扬等特点,所以在教学中应抓住学生这一特点,一方面要运用直观生动的形象,吸引学生注意力,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学生的主动性。我依据新课标对有理数的具体要求和七年级学生的认知特点及学生的现状,确定了本节内容的教学目标:知识与技能目标为理解有理数的意义,能用数轴上的点表示有理数,借助数轴理解相反数和绝对值的意义,会求有理数的相反数和绝对值,会比较有理数的大小。过程与方法目标为:通过内容的学习,体会从数与形两方面考虑问题的方法。情感与态度的价值观目标为:培养学生主体意识,向学生渗透类比,分类及从具体到抽象等思想,对学生进行数学知识来源于生活,服务于生活的教育。
依据教学内容特点和教材的地位和作用,我确定了本节课内容的重点为:正确理解有理数的概念和分类方法,正确画出数轴,加深对数轴概念的理解,能正确写出任意数的相反数,对简化符号能正确运用;通过绝对值意义的学习,能熟练的求出一个数的绝对值;会利用绝对值比较有理数的大小,由于数学的认知规律,数学思想的学习不可能‚一步到位‛以及学生以前不经常接触数形思想和分类思想,加之学生在认知上也存在一定的局限性,因此我将正确地对有理数进行分类,数轴上的点与有理数直观对应关系,相反数的意义,绝对值的几何意义和理解及运用确定为本节的难点。数学教学是数学活动的教学,根据本节课内容特点和学生思维活动的特点及我校‚‘121’高效课堂‛模式的要求,我采用了引导发现教学法,合作探究教学法以及类比的教学方法。以实现生活为素材引入有理数的数学概念,感受生活中处处有数学,创设情境,设计富有新意的游戏,让学生从生活经历和经验中体会数学道理,充分发挥学案导学的作用,教会学生自主学习,合作学习,通过运用有理数的知识解决实际问题,让学生体会到学习数学知识的价值。
在本小节内容中,数轴不仅是进一步认识有理数的重要工具,更是学习相反数和绝对值的几何意义的重要工具,还是以后学好不等式的解法,函数的图像及其性质等内容的必要基础,因此我选择《数轴》这一课为代表进行课时说课,并从以下三个方面予以阐述。《数轴》这一节是引进了负数及分析了有理数的分类后给出的,是初中数学中非常重要的内容,从知识上讲,数轴是数学学习和研究的重要工具,它主要应用于绝对值概念的理解,有理数运算法则的推导及不等式的求解,同时也是学习直角坐标系的基础,从思想方法上讲,数轴是数形结合思想的起点,而数形结合思想是理解数学,学好数学的重要思想方法,日常生活中常见的用温度计度量温度,已为学习数轴概念奠定基础,根据课程标准要求和学生的认知水平,我确定了本节课的教学目标包括从知识、情感、能力等几方面是:了解什么是数轴、怎样画数轴,并理解数轴的三要素,能说出数轴上已知点表示的有理数,能将已知数在数轴上表示出来,培养学生主体意识,向学生渗透类比,分类及从具体到抽象等思想,对学生进行数学知识来源于生活、服务于生活的教育,由于学生学习了用数轴上的点表示有理数后,就能较好的理解相反数,绝对值的概念,及应用数轴比较有理数大小,因此,我认为本节课的重点是数轴的概念和有理数在数轴上的表示方法,从问题情境抽象出数轴这一概念的建模过程,对于抽象思维处于初级阶段的学生来说,认知上存在一定的 困难。因此我确定建立有理数与数轴上的点的对应关系为本节课的难点,而运用类比的数学思想是突破难点的关键,结合学生的年龄特点和理解能力也为使课堂生动,有趣,高效,整节课将观察、思考和讨论,贯穿于整个教学环节中采用启发式教学法,建立师生之间的情感交流,并引导学生,多观察、动脑想、大胆猜、勤钻研的研讨式学习方法,在教学中运用我校的班班通交互式白板和导学案辅助教学,让学生在动脑、动手、动口的过程得到充分的体现和发展,向学生提供更多的机会和学习空间。
根据课程标准要求和学生的认知水平,为了充分体现学生为主体,教师的主导作用,在教学过程中我设计了五个教学环节,分别是创设情境、引导新课、得出定义,揭示概念、手脑并用,深入理解、归纳总结,强化思想、分层作业,巩固课题。通过这几个教学环节,一步一步来实现本节课的教学目标,首先在第一个环节中,观察温度计所指示的数,并填空,请同学们思考怎样用数简明地表示这些树、电线杆和汽车站的相对位置呢?让学生分小组讨论,猜一猜、想一想能否与温度计类似在一条线上划出刻度、标出读数,用直线上的点来表示正数、负数和零呢?,从而引出课题《数轴》,结合实例,使学生以轻松愉快的心情进入本节课的学习也使学生体会到数学来源于实践;同时对新知识的学习有了期待,为顺利完成教学任务做思想上的准备,到底什么是数轴,如何来画数轴,带着这个问题进入本节课的第二个环节,得出定义揭示概念,总结出画数轴的步骤:
1、画直线取原点,在这里说明在一条线上任意取一点作为原点,这点表示为0,我们把数轴画成水平位置是为了读,画方便,同时也为了有美的感觉,第二个步骤是标正方向,规定水平位置的直线上,原点向右为正方向,是习惯和方便所作,由于我们只能画出直线的一部分,所以在这里画上箭头,指明正方向并且表示无限延伸,最后一个步骤选取单位长度,选取适当的长度为单位刻度,单位长度的长短可以根据实际情况来定,但是统一单位长度所表示的量要相同,在标数时,从原点向右每隔一个单位长度取一点依次表示1,2,3依次类推,从原点向左每隔一个单位长度取一点依次表示-1,-2,-3依次标出,由于画数轴是本节课的重点,要板书这三个步骤给学生示范,画完数轴后组织学生讨论,怎样用数学语言描述数轴,由师生共同得出定义,规定了原点正方向单位刻度的一条直线叫做数轴,这时我将一个具体的事物温度计和场景标地点,经过抽象而概括为一个数学概念---数轴,使学生初步体验到一个从实践到理论的认知过程,来进一步加深学生对概念的了解,紧接着进入第三个环节,讨论下列数轴画得对错?并思考你认为画数轴的最重要的三个因素是什么?从数轴三个要素出发,让学生发现错误,避免学生在画数轴时出现类似错误。观察是学生获得知识,积累经验的重要途径,所以这道题我给学生充分的观察时间,经过思考,展开讨论,我参与到学生的讨论之中,去接触学生、认识学生、关注学生,在对数轴有了充分认识的基础上请大家画一条数轴,请几个同学画在黑板上,我巡视给予个别指导,关注学生的个别发展,画完之后给出学生鼓励的语言评价,鼓励学生通过实践总结出数轴三要素缺一不可,在这个活动中我设计这两个问题一个是通过动脑想通过判断分析、判断正误来理解概念,一个是通过动手操作来加深对概念的理解,有了数轴以后,所有的有理数都可以在数轴上表示,反过来是不是数轴上的所有点都表示有理数呢?针对这个问题让学生下去思考,为以后实数的学习打下伏笔,但在这里不再展开,接着安排课本第9页的两道练习,作为例题,从画数轴的过程学生已经知道,利用几 何画板操作功能,让学生动手操作加深学生的兴趣,体现学生的主体性,加深对数形结合思想的理解,使学生真正成为教学的主体,当然这道题可以选取更多的点,也让更多的学生来展示自己,更重要的是让学生从中感受到所有的有理数都可以用数轴上点表示,从而加深学生对数形结合思想的理解,为了及时了解学生对新知识的掌握,我设计了第四个环节,通过从特殊到一般的方法,归纳出数轴的点的特征,逐步培养学生的抽象概括能力,为了进一步强化数形结合思想,我设计了两个强化练习,通过练习,巩固数轴的概念,强化练习题为了培养学生用数轴解决问题的能力。
结合学生的年龄特点,我采用提问方式总结本节课内容,让学生巩固知识,最后让学生讨论:数轴上会不会有两个点表示同一个有理数呢?会不会有一个点表示两个不同的有理数呢?通过学生对这个问题的讨论,让学生牢固地掌握一个有理数只对应数轴上的一个点,在这个环节中还指出仔细观察,注重实质的学习品质,为了满足不同层次的需求,我布置了必做题,选做题两类作业,布置了思考题,与温度计类似,数轴上两个不同的点,所表示的两个有理数大小关系如何?用这个问题引导学生预习下节课有理数的大小的比较,引导学生养成预习的良好行为习惯。
总之这节课我通过五个环节的教学设计,既遵循了概念教学的规律,又符合初中生的认知特点,指导学生操作、观察、引导概括、获得新知,同时,注重培养学生由感性认识上升为理性认识。在教学过程中让学生动口、动手、动眼、动脑为主的学习方法,使学生学有兴趣、学有所获。依据多年的教学经验,发现学生在学习过程中,特别是学困生易出现画数轴时漏标原点0,不 画箭头,单位长度不统一,原点左边的数为正,标错点的问题,并提出相应的用实物对比的解决办法,充分尊重学生的个体差异,发挥激励作用,保护学生的自尊心与自信心,板书设计能体现本节课的重点具有层次性便于学生记忆。
《课标》要求,教师不仅教给学生知识,更要培养学生良好的数学素养和学习习惯,让学生学会学习,所以,我的教学建议是要充分利用好课本,及时了解学生掌握情况,把握好教学的难易程度,重视引导学生对概念的理解,指导和帮助学生形成符号语言的表达习惯和能力,注重培养学生运用数学思想解决问题的意识,充分利用教材提供的教学资源及多媒体辅助教学技术提供的现代化教学手段等,使我们的数学课堂更有效,更高效!最后我用美国著名教育家布鲁纳的一句话:‚探索是数学教学的生命线‛来结束我今天的说课。
不足之处请大家给予批评指正。谢谢!